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Abstract

Regular use of e¤ective health-products such as insecticide-treated mosquito nets (ITN) by

a household bene�ts its neighbors by (a) reducing chances of infection and (b) raising aware-

ness about product-e¤ectiveness, thereby increasing product-use. Due to their potential social

bene�ts and high purchase price, causing free-riding and sub-optimal private procurement, such

products may be subsidized in developing countries through means-testing. Owing to associated

spillover e¤ects, cost-bene�t analysis of such subsidies requires modelling behavioral responses

of both the subsidized household and its neighbors. Using experimental data from Kenya where

subsidies were randomized, coupled with GPS-based location information, we show how to es-

timate aggregate ITN use resulting from means-tested subsidies in the presence of such spatial

spillovers. Accounting for spillovers introduces in�nite-dimensional estimated regressors cor-

responding to continuously distributed location coordinates and makes the inference problem

novel. We show that even if individual ITN use unambiguously increases with increasing in-

cidence of subsidy in the neighborhood, ignoring spillovers may over- or under-predict overall

ITN use resulting from a speci�c targeting rule, depending on the resulting aggregate incidence

of subsidy. Applying our method to the Kenyan data, we �nd that (i) individual ITN use rises

with neighborhood subsidy-rates, (ii) under means-testing, predicted ITN use is a convex in-

creasing function of the subsidy incidence and (iii) ignoring spillovers implies a nearly-linear

increasing relationship leading to over-estimation of ITN use at lower and under-estimation at

higher subsidy rates.

�Bhattacharya gratefully acknowledges �nancial support from the Leverhulme Trusts for partly funding this

project.

1



1 Introduction

An important goal of statistical policy analysis is to estimate the distribution of outcomes that

would result from targeted policy-interventions in society. These estimates can then be fed into

the formulation of e¤ective targeting rules. The formal analysis of such "treatment assignment"

problems was pioneered by Manski (2004, 2007) and subsequently extended and expanded by other

researchers. This line of research has assumed that the treatment is individual-speci�c and does not

produce any externalities for other, untreated individuals. However, in several �eld experiments in

a variety of contexts, it has been demonstrated empirically that providing a certain treatment to

an individual household has signi�cant spillover e¤ects on other untreated households who reside

in its vicinity. These spillovers can be either behavioral, i.e., where the behavior of the untreated

household is a¤ected by the neighbors�treatment, or mechanical, i.e., where the outcome of un-

treated households but not its behavior is a¤ected by the neighbors�treatment. For example, in

epidemiological studies on infectious diseases, the neighborhood incidence of vaccination has been

shown to be an e¤ective disease-deterrent beyond one�s own vaccination status (see Root et al.,

2011, on cholera vaccines in Bangladesh). Likewise, households in sub-Saharan Africa living within

the vicinity of a village with high coverage of insecticide-treated bednets (ITN) are signi�cantly

less likely to get malaria (see Hawley et al., 2004). In Kenya, students attending schools where

the majority of children underwent intestinal worm infection treatment as well as children living

within 3 kilometers of a school where the majority of students were dewormed experienced sig-

ni�cant health-gains, despite not getting the treatment themselves (Miguel and Kremer, 2004).

In economic contexts, Angelucci and De Giorgi (2009) have shown that means-tested cash trans-

fers create behavioral spillovers on ineligible households. On the other hand, Bandiera and Rasul

(2006) demonstrated that farmers strategically delay the time they adopt a recommended farming

technology in order to free ride on the knowledge generated by those in their neighborhood who

experiment before them. In the context of ITN subsidies, Dupas (2012) has recently shown that the

incidence of subsidies in the neighborhood has an independent e¤ect on a household�s decision to

purchase and use an ITN over and above the e¤ect brought about by the household�s own receipt

or non-receipt of a subsidy. The presence of such externalities and the high private procurement

costs relative to earnings for these technologies and products typically lead to socially sub-optimal

levels of private investment in them and creates a case for subsidizing them, at least for the poorest

and most vulnerable sections of society.
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The purpose of the present paper is to develop a method for estimating the predicted aggregate

e¤ect of a given subsidy-targeting rule, taking into account the spillover e¤ects that one house-

hold�s subsidization has on neighboring households�outcomes; and to estimate the error incurred

in prediction due to ignoring the spillovers. A key requirement of the method we propose is the

availability of data to estimate the magnitude and shape of spillovers. In our application, we ex-

ploit data from a randomized �eld experiment (discussed in Dupas, 2009) in which a subsidy for

antimalarial bed nets was randomly assigned across Kenyan households. Randomized program

assignment, which has become common practice among applied microeconomists, yields exogenous

variation in individual treatment status. More importantly, for small enough neighborhoods, it also

yields exogenous variation in neighborhood treatment rates. We propose a method for estimating

own-treatment and indirect-treatment (spillover) e¤ects from such experimental variation and for

using these estimates to predict the e¤ects of means-tested subsidization on aggregate product-

procurement. It is important to note that here we do not aim to identify "social interaction" type

behavioral e¤ects which capture the impact of neighborhood product-use on a household�s own

product use. Instead, the key ingredient of our analysis is the more direct policy-relevant impact

of subsidizing neighborhood households on a household�s own product-use �both when it receives

and when it does not receive the subsidy itself.1

The key methodological innovation in our cost-bene�t analysis is the incorporation of neighbor-

hood e¤ects where neighborhoods are de�ned via physical distance obtained through GPS location

coordinates of households. Even when individual household responses are modeled via paramet-

ric models, incorporating such neighborhood e¤ects introduces in�nite-dimensional estimated re-

gressors corresponding to continuously distributed location coordinates. This makes the inference

problem non-trivial and novel. To solve this problem, we establish an appropriate Hadamard di¤er-

entiability result which, coupled with a functional central limit theorem, establishes the necessary

limiting distribution result. We further establish consistency of the nonparametric bootstrap in

approximating this limiting distribution, thereby giving practitioners a user-friendly method for

calculating con�dence intervals for the parameters of interest. Proving bootstrap validity is non-

trivial in this problem, because here one needs to prove bootstrap consistency for an underlying

stochastic process before applying the functional delta method.

1 In principle, one could use the experiment-led variation in neighborhood subsidy incidence as an instrument for

neighborhood product use and recover such social interaction e¤ects. But this question is somewhat tangential to

our goal.
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Having developed our statistical methodology, we apply it to the problem of predicting aggregate

ITN use resulting from means-tested subsidies. We show that ignoring treatment externalities in

the estimation of aggregate policy impacts can yield large bias, and importantly, that the sign of

this bias cannot be inferred solely from the sign of the externality. For example, when individual

ITN use is increasing in neighborhood subsidy rates, as in our application, intuitive reasoning might

suggest that ignoring this externality would lead to under-estimation of the aggregate impact of a

targeted ITN subsidy program. However, this intuition is �awed and the correct answer depends

on whether the average neighborhood subsidy rate under the proposed subsidy program would be

higher or lower than the average neighborhood subsidy rate observed in the data used to estimate

the parameters of interest.

To get some intuition behind this �nding, consider a much simpler set-up where an outcome Y

is related to a scalar covariate X via the classical linear regression model Y = �0 + �1X + " where

" is zero-mean, independent of X and �1 > 0. OLS estimation of this model yields estimators

�̂1, �̂0 with probability limits (and also expected values) �1 = Cov [X;Y ] =Var [X] and �0 =

E [Y ] � �1E [X], respectively. Corresponding to a value x of X, the predicted outcome has its

probability limit of y� := �0 + �1x = E [Y ] + �1 fx� E [X]g. Now consider what happens if

one ignores the covariate X. Then the prediction is simply the sample mean of Y which has the

probability limit of ymiss := E [Y ]. Therefore, y� < ymiss if x < E [X]. Thus, although the ignored

covariate X has a positive e¤ect on the outcome (since �1 > 0), ignoring it in prediction leads to

an overestimation of the outcome if the point x where the prediction is made is smaller than the

population average of the ignored covariate. On the other hand, if x > E [X], then there will be

under-estimation.

For a more general model, Y = �0 + X1�1 + X2�2 + " with X1; X2 independent of " and X2

independent of X1, the OLS based prediction y� at (x1; x2) will have the probability limit equal to

E [Y ] + fx1 � E [X1]g�1 + fx2 � E [X2]g�2. Ignoring X2 leads to OLS prediction ymiss with its

probability limit E [Y ] + fx1 � E [X1]g ~�1, where ~�1 is the plim of the OLS coe¢ cient of X1 in a

regression of Y on X1 alone. The di¤erence between the two predictions equals

ymiss � y� = fx2 � E [X2]g�2 +
�
�1 � ~�1

�
fx1 � E [X1]g

= fx2 � E [X2]g�2 � fx1 � E [X1]gVar [X1]�1Cov [X1; X2]�2

= fx2 � E [X2]g�2;

since Cov [X1; X2] = 0. This is the higher dimensional analog of the previous result. If the point of
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prediction is higher relative to the population mean of the omitted covariates and the coe¢ cients

on the omitted variables are positive, then ignoring the covariates leads to an over-estimation of

the predicted value. Note that in this case, the omitted covariate X2 is orthogonal to the included

covariate X1 so that there is no omitted variable bias in the coe¢ cient estimate, i.e., �1 = ~�1 and

yet the prediction is biased.2

Literature review and substantive contributions: Several papers have recently appeared

in the statistics and econometrics literature on formal analysis of treatment e¤ects under inter-

ference � i.e., where treatment status of peers or neighbors a¤ects an individual�s outcome over

and above his/her own treatment status. See, for example, Rosenbaum (2007), Hudgens and Hal-

loram (2009) and Manski (2010). A di¤erent strand of the literature has investigated the impact

of alternative peer assignment policies on population outcome distribution when peer-e¤ects are

signi�cant determinants of individual outcomes. See, for instance, Bhattacharya (2009), Graham

(2011), Carrell et al (2012) and the references therein. These papers did not require a separate for-

mulation of neighborhood e¤ects in terms of distance, since peer-e¤ects were taken to work within

identi�able neighborhoods (such as classes, dorm-rooms or entire villages) and hence the set of peers

was "closed". In contrast, in our present context of ITN subsidies, the relevant neighborhoods are

de�ned in terms of physical distance, which is sensible in the context of health externalities or that

of social learning (c.f., Conley and Udry, 2011), especially in communities like rural Africa where

the relevant households are not concentrated in isolated villages but are located continuously in

space.. Therefore, the relevant neighborhoods are overlapping (not closed) in the sense that we can

generically have situations where a household (hhd) i and hhd j are neighbors, hhd j and k are

neighbors but hhd i and k are not neighbors. This distance-based characterization of neighborhood

e¤ects leads to new challenges for formulation and inference in our analysis.

We note that our aim here is not to devise either an outcome-maximizing (c.f., Bhattacharya,

2009; Graham, 2011) or decision-theoretically optimal (c.f., Manski, 2004; Dehejia, 2005, Hirano

and Porter, 2009; Stoye, 2008; Tetenov, 2010) treatment-targeting rule. Instead, we wish to calcu-

late marginal and average returns for what is arguably the most common subsidy allocation rule in

developing (and developed) countries, viz. means-testing, where only households below a certain

income level qualify for the subsidy. The methodological innovation is to conduct this analysis in

2A similar argument applies if we predict the population-average outcome corresponding to a counter-factual

change in the marginal distribution of the covariates. In this case, an over-estimation will occur if the mean of the

ignored covariate under the counterfactual distribution is lower than its mean under the original distribution.
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the presence of in�nite-dimensional neighborhood e¤ects identi�ed experimentally. Therefore, our

problem and its analysis are, to the best of our knowledge, unique relative to the existing literature

on neighborhood e¤ects in the analysis of treatment response and treatment assignment problems.

Last, but not least, our �nding that ignoring neighborhood-externalities can lead to either

under or over-estimation of the aggregate impact of treatment �even when raising neighborhood

treatment rates unambiguously increase individual outcomes �appears to be novel. It highlights

a statistical issue concerning the impact of omitted variables on outcome predictions which is very

di¤erent from the well-known impact of omitted variables on regression coe¢ cients. As such, this

�nding provides a new �and to our knowledge, heretofore unnoticed �cautionary note regarding the

extrapolation of experimental results involving randomized treatment assignment to the prediction

of aggregate outcomes in situations where the aggregate incidence of treatment might di¤er from

that in the experiment.

2 The context and the experiment

Malaria is a life-threatening parasitic disease transmitted from human to human through mos-

quitoes. In 2010, malaria is estimated to have caused up to 1,200,000 deaths, mostly among

African children (Murray et al., 2012). Despite major strides in malaria eradication in the early

and mid-20th century, notably in the Americas, e¤orts to eradicate malaria worldwide were aban-

doned in the 1970s. Recently, e¤orts to control malaria transmission have rejuvenated with the

introduction of highly e¤ective prevention tools, insecticide treated bednets (ITNs). Regular use of

an ITN is believed to reduce overall child mortality by around 18 percent and to reduce morbidity

for the entire population (Lengeler, 2004). However, at $6 or more a piece, ITNs are una¤ord-

able for many poor households, and as of 2007, ITN coverage rates in most of sub-Saharan Africa

were below 25%, way short of the 100% coverage recommended by the World Health Organization

(WHO, 2008). Given this, an important policy question for governments in malaria-endemic areas

of Africa is how much to subsidize ITNs, and for whom. Because the returns to malaria prevention

are higher among children under �ve and pregnant women (Lengeler, 2004), and targeting based on

such easily observable characteristics is relatively cheap, initial calls were made for subsidies to be

targeted at these subgroups (Webster et al., 2007). But as argued in Killeen (2007), in the presence

of externalities, it might actually be more cost-e¤ective to subsidize ITNs for a larger share of the

population than just children under �ve and pregnant women. Evidence on the size and shape
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of these externalities remain scant, however, as few experimental studies to date were designed to

estimate those.

Experimental design: We exploit data from a 2007 randomized ITN subsidy experiment

conducted in eight rural markets of Western Kenya, where malaria is transmitted year-round. In

each market area, a list of 150 to 200 households was compiled from school registers. Households

were then randomly assigned to a subsidy level. After the random assignment had been performed

in o¢ ce, trained enumerators visited each sampled household to administer a baseline survey. At

the end of the interview, the household was given a voucher for an ITN at the randomly assigned

subsidy level. Vouchers could be redeemed within three months at participating local retailers.

The subsidy level varied from 40% to 100%; there were 22 corresponding �nal prices faced by

households, ranging from 0 to 300 Kenyan shillings (US$4.60). In what follows, we group these

subsidy levels into two categories: those who received a large subsidy (i.e., faced a price of 90 Ksh or

below) and those who received a lower subsidy (i.e., faced a price of 100 Ksh or above). Given the

liquidity constraints faced by the study population, these two subsidy categories indeed correspond

to two very di¤erent treatments: 71% of households receiving a price at or below 90 Ksh acquired

the ITN, compared to only 26% of those in the low subsidy group. Furthermore, there is a level

drop in take-up of around 20 percentage points (from 55 to 35%) between the price points of 90

and 100 Ksh, possibly owing to the fact that other types of bednets (less e¤ective but better known

ones) are sometimes available in retail shops for the price of 100 Ksh.3

Data: Three separate but related sources of data are combined in our analysis. First, we

use administrative data on voucher redemption to obtain our main outcome of interest: whether

the household purchased an ITN. Second, we use data on background household characteristics

measured during a baseline survey. The three main background characteristics we consider are

wealth (the combined value of all durable and animal assets owned by the household); the number

of children under 10 years old; and the education level of the female head of the household. Finally,

we have data on the exact geoposition (latitude and longitude, measured with a GPS device) of all

households in the sample. These data enable us to compute, for each household, the number and

density of study households within a given radius. We can also compute the number and density

of households with a given characteristic within that radius, in particular, the share of households

below a certain poverty threshold, and the share of households who received a subsidy.

3See Dupas (2012, Figure 1) for the full demand curve.
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3 Methodology

Stochastic speci�cation: There are n randomly chosen households from the population and they

are indexed by i which will run from 1 to n.

Let Li denote household i�s location (such as a latitude-longitude pair). Let Xi denote other

household covariates, of which the 1st component X1i is wealth-holding. Let F �X;L (�:�) denote the

(true) joint cumulative distribution function (C.D.F.) of (Xi; Li) in the population. Let Yi denote

the binary indicator of whether the household purchased an ITN, and Di is a binary indicator of

whether it had received a subsidy-voucher entitling it to buy an ITN for under 100 Ksh (about

US$1.50). Due to simple random sampling, our experimental dataset consists of n independent and

identically distributed (I.I.D.) realizations of (Yi; Xi; Di; Li).

Finally, we denote by Si (r) := s� (Li; r) the fraction (rate) of households residing within the r

neighborhood of household i (a radius of r from Li) who got a subsidy. In general, several values of r

(say, J values, r1; r2; :::; rJ) will be used in our empirical exercise; so s� (Li; r) should be interpreted

as a generic component of the vector (s� (Li; r1) ; s� (Li; r2) ; :::; s� (Li; rJ)) (we regard s� (Li; �) as a

random function). We will sometimes suppress the dependence of s� on r (or that of Si on r) when

there is no possibility of confusion.

Let Yi (1; s�) denote a potential outcome (ITN purchase) of household i if it receives the subsidy

and a fraction s� of its neighbors also receive the subsidy. Similarly, let Yi (0; s�) denote a potential

outcome when i is not receiving the subsidy itself and a fraction s� of its neighbors receives the

subsidy. Implicit in this notation is the assumption that the treatment status of a household�s

neighbors a¤ects its own outcome only through the aggregate fraction of subsidized households in

the neighborhood. De�ne

�1 (x; s) := E [Yi (1; s) jXi = x] ; �0 (x; s) := E [Yi (0; s) jXi = x] ;

where s denotes a generic incidence of subsidy in the neighborhood (while the function with an

asterisk, s�, denotes the true one). Here the expectation is taken with respect to the population

distribution, or, equivalently, the distribution induced by random sampling from the population.

These quantities can be de�ned without reference to any subsidy allocation mechanism.

Now, random assignment of subsidies in the experiment implies that �1 (x; s) and �0 (x; s) can

be consistently estimated by the sample counterparts

Ê [Yi jDi = 1; Si = s; Xi = x] ; Ê [Yi jDi = 0; Si = s; Xi = x] ;
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respectively, if one observes the realizations of (Yi; Di; Si; Xi).4 However, realizations of Si are not

observed, since only a subset n of the population is sampled for measurement; realizations of Si

need to be estimated o¤ of the observed sample, and hence we have a generated regressor problem.

We estimate the above quantities by

Ê [Yi jDi = 1; ŝ (Li) = s;Xi = x] ; Ê [Yi jDi = 0; ŝ (Li) = s;Xi = x] ;

respectively, where

ŝ (l) = ŝ (l; r) :=
n�1

Pn
k=1 1 fjjl � Lkjj � rgDk

n�1
Pn
u=1 1 fjjl � Lujj � rg

:

Parameters of interest: Our key parameter of interest is potential ITN use resulting from

income-based, i.e., means tested subsidy. Toward this end, consider the binary treatment rule:

giving a subsidy if X1i < . The expected cost of this rule is C () =
R
1 fx1 < g dF �X1 (x1). On

the other hand, under this subsidy rule, the neighborhood subsidy-rate for a generic household at

a location l will be given by

s� (l; r) = Pr [kl � Lik � r & X1i � ] =Pr [kl � Lik � r] ; (1)

where jjl��jj = jjl��jjL = jj��ljjL is an appropriate distance measure between l and � on L. Each

Li is de�ned via latitude-longitude coordinates in our dataset (L is a set of latitude-longitude points

on the earth sphere), and therefore, we work with the distance based on the Haversine formula.5

This distance is used for de�ning each household�s neighborhood.

Finally, the expected ITN usage rate corresponding to this counterfactual subsidy-rule will be

given by

U� () =

Z �
1 fx1 < g � �1

�
x; s� (l; �)

�
+ 1 fx1 � g � �0

�
x; s� (l; �)

��
dF �X;L (x; l) : (2)

4We in particular note that due to randomized subsidy allocation, the following relationship holds:

E [Yi (d; s) jXi = x] = E [Yi (1; s)Di + Yi (0; s) (1�Di) jDi = d; Xi = x]

= E [Yi jDi = 1; Si = s;Xi = x] ; for d = 1; 0:

5For simplicity, we develop our asymptotic theory under the assumption that the earth is a sphere and jjl� �jj =

jjl��jjL measures the shortest distance between two points l and � on the sphere surface. This simplifying assumption

allows us to easily compute so-called covering numbers of functional sets. Note that for the Euclidean norm, we also

use the same notation jj�jj in the sequel, which should cause no confusion.
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If we ignore the externality, we would calculate, analogous to Bhattacharya and Dupas (2011),

��1 (x): Probability of the ITN use if an x type household gets a subsidy;

��0 (x): Probability of the ITN use if an x type household gets no subsidy.

One can identify ���s from the experiment, in which subsidy allocation was randomized. Then

the naive expected ITN usage rate �ignoring the externality �is given by

�U () =

Z
[1 fx1 < g ��1 (x) + 1 fx1 � g ��0 (x)] dF �X (x) : (3)

Our goals are to estimate (2) and (3) and to calculate the di¤erence between them for various

counterfactual subsidy rule (namely, various eligibility thresholds ). We now turn to the question

of how to estimate them from the data and then derive statistical properties of these estimates

which are needed to conduct inference.

Functional forms and estimation method: Now, we formally present our econometric

framework and estimation method. To this end, we �rst re-formulate the fraction of subsidized

households, s� (l; r), as follows. Let F �D;L (�; �) denote the (true) joint distribution function of

(Di; Li) induced in the population via the one-time experiment and let F �L (�) denote the marginal

distribution function of Li in the population. Then, write

s� (l; r) : =
Pr [jjl � Lkjj � r & Dk = 1]

Pr [jjl � Lkjj � r]

=
E [1 fjjl � Lkjj � rgDk]

�� (l; r)
=

R
� � 1 fjjl � �jj � rg dF �D;L (�; �)R

1 fjjl � �jj � rg dF �L (�)
; (4)

for any r 2 [r;1) (with some constant r > 0) and l 2 L, where �� (l; r) is the probability that

some household exists within the r neighborhood of l, i.e.,

�� (l; r) := Pr [jjl � Lkjj � r] = E [1 fjjl � Lkjj � rg] : (5)

In the above expression, probabilities and expectations are calculated with respect to the distribu-

tion corresponding to random sampling from the population, given the realizations of the subsidy

experiment, and not with respect to in�nite repetitions of the experiment itself. Thus, for a house-

hold located at a location l, s� (l; r) denotes the true fraction of subsidized (through the experiment)

households in its r neighborhood.6 It is also important to note that s� (l; r) is not in the form of a

regression (L2-projection) function.

6Thus although Di is randomly assigned during the experiment, Di and Li are not independent with respect

to the sampling distribution F �D;L (�; �), given the realizations of the (one-time) experiment, by which the probabili-

ties/expectations in (4) are computed.
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Since the object s� (�; �) is required to calculate our interested parameters (as previously ex-

plained), we consider nonparametric estimation of this function (indexed by (l; r)) by

ŝ (l; r) :=
n�1

Pn
k=1 1 fjjl � Lkjj � rgDk

n�1
Pn
u=1 1 fjjl � Lujj � rg

: (6)

This is a moment based estimator corresponding to a solution of the moment equation E[1 fjjl � Lkjj � rg�

fDk � s (l; r)g] = 0.7

Next, given the fraction of subsidized households s� (l; r), we model the probability of the ITN

use for an (x; l)-type household with a treatment d 2 f0; 1g (d = 1 if subsidized, and = 0 otherwise)

by

Pr [Yi = 1 jDi = d;Xi = x; Li = l; Si = s] = �d (x; s) = �
�
x0��d +

PJ
j=1 �

�
j;ds (rj)

�
; (7)

where � is some cumulative distribution function of a continuously-distributed random variable

(we choose a standard normal C.D.F. in our application); ��d is a dX -dimensional column vector

(��1;d; : : : ; �
�
dX ;d

)0 (d = 0; 1); and J is some �nite integer and frjgJj=1 is a set of evaluation grid points

picked by an econometrician (with rj 2 [r;1)).

Remark 1 Implicit in this formulation is the assumption that the location Li itself has no impact

on household decision to buy an ITN, given Di, Xi and Si.

We estimate the parameters by the quasi maximum likelihood (QML) method. Here, we do

not suppose that � is correctly speci�ed but interpret it as a device for us to obtain a convenient

and reasonable criteria for the estimation (see, e.g. discussions on the QML estimators in White,

1994), meaning that our asymptotic theory developed below is valid even under misspeci�cation.

To de�ne our QML objective function, write

Zi :=
�
Yi; X

0
i; Di; L

0
i

�0
; � :=

�
�00; �

0
1; �1;0; : : : ; �J;0; �1;1; : : : ; �J;1

�0
; s (�) := (s (�; r1) ; : : : ; s (�; rJ))0 :

In the sequel, �� and s� (�) denote the (pseudo) true parameters (a 2 (dX + J)-dimensional vector

of real numbers and a J-dimensional vector of functions, respectively), and �̂ and ŝ (�) denote their
7Since we are only interested in s� (Li; r), evaluated at l = Li (for each household i), we may use the following

estimator of s� (Li; r):

ŝi (r) :=

P
1�k�n; j 6=i 1 fjjLi � Lkjj � rgDkP
1�u�n; j 6=i 1 fjjLi � Lujj � rg

:

Since we can easily show that ŝ (Li; r) = ŝi (r) + Oa:s:(1=n) uniformly over i and r (under some weak conditions),

whether we use ŝ (Li; r) or ŝi (r) does not a¤ect our asymptotic analyses, and therefore we subsequently work with

the estimator (6).
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estimators.8 Then, the objective function is de�ned as

ln (�; ŝ (�)) := n�1
Xn

i=1
q (Zi;�; ŝ (Li)) ; (8)

where

q (Zi;�; s (Li)) : = DiYi ln[�
�
X 0
i�0 +

PJ
j=1 �j;0s (Li; rj)

�
]

+Di (1� Yi) ln[1� �
�
X 0
i�0 +

PJ
j=1 �j;0s (Li; rj)

�
]

+ (1�Di)Yi ln[�
�
X 0
i�1 +

PJ
j=1 �j;1s (Li; rj)

�
]

+ (1�Di) (1� Yi) ln[1� �
�
X 0
i�1 +

PJ
j=1 �j;1s (Li; rj)

�
]:

The (quasi) log-likelihood function ln is a plug-in type, i.e., the true s� (�) is replaced with the

preliminary (�rst-step) estimator ŝ (�). We note that the (vector-valued) function s (�) in�uences q

only through its value at Li, i.e., s (Li) = (s (Li; r1) ; : : : ; s (Li; rJ))
0. Now, we can de�ne the QML

estimator �̂ as

�̂ : = arg sup�2R2(dX+J) ln (�; ŝ (�)) : (9)

To compute our object of interest, the probability of the ITN use de�ned in (2), we also need

s� (l; r) (de�ned in (1)) and the C.D.F. F
�
X;L (x; l), which are nonparametrically estimated by

ŝ (l; r) : =
n�1

Pn
k=1 1 fjjl � Lkjj � rg � 1 fX1;k < g
n�1

Pn
u=1 1 fjjl � Lujj � rg

for each (; r; l) ; (10)

F̂X;L (x; l) : = n�1
Xn

i=1
1fXi � x & Li � lg for each (x; l) ;

respectively.

Given the estimated ŝ (�; �), �̂, ŝ (�; �) and F̂X;L (�; �) (together with the formulation in (7)), we

can now obtain an estimate of U� () by simply replacing the true parameters with their estimates.

To formulate this and to facilitate our subsequent analyses, we de�ne a [0; 1]-valued functional 	:

	(�; s (�) ; FX;L (�; �) j) : =

Z n
1 fx1 � g � �

�
x0�0 +

PJ
j=1 �j;0s (Li; rj)

�
+1 fx1 < g � �

�
x0�1 +

PJ
j=1 �j;1s (Li; rj)

�o
dFX;L (x; l) ; (11)

where s (�) := (s (�; r1) ; : : : ; s (�; rJ))0. In what follows, we use the notation

� := (�; s (�) ; FX;L (�; �)); (12)

8We often write a function or parameter with an asterisk to refer to the (pseudo) true one, that is, f�, and f̂ with

a hat to denote an estimator of f�, while a function or parameter without an asterisk or hat, such as f , usually refers

to a generic one.
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a (2dX + 3J + 1)-dimensional vector of functions; analogously �� and �̂ refer to the (pseudo) true

parameter and the estimator, respectively. 	 is a map: � 7�! u 2 [0; 1], whose domain is formally

de�ned in the Appendix before the statement of Lemma 5. Then, we can write our estimand and

its estimator as

U� () = 	(�� j ) = 	(��; s� (�) ; F �X;L (�; �) j );

Û () = 	(�̂ j ) = 	(�̂; ŝ (�) ; F̂X;L (�; �) j )

= n�1
Xn

i=1

n
1 fX1;i � g � �

�
X 0
i �̂0 +

PJ
j=1 �̂j;0ŝ (Li; rj)

�
+ 1 fX1;i < g � �

�
X 0
i �̂1 +

PJ
j=1 �̂j;1ŝ (Li; rj)

�o
; (13)

respectively, where s� (�) :=
�
s� (�; r1) ; : : : ; s� (�; rJ)

�0 and ŝ (�) := (ŝ (�; r1) ; : : : ; ŝ (�; rJ))0. The

integral with respect to F̂X;L simply leads to an average as in (13) since F̂X;L is the empirical

distribution function (E.D.F.) from the observations f(Xi; Li)gni=1. We note that this estimator

Û () can be seen as a three-step one: the �rst step is the estimation of the (nuisance) nonparametric

component of s� (�); the second step is obtaining the estimate �̂ of the �nite-dimensional parameter

�� whose estimation depends upon the estimate ŝ (�) from the previous step; and the third step

is computing an empirical average of quantities based on the second-step estimate �̂ as well as

another nonparametric estimator ŝ (�) (or equivalently, computing a value of the functional 	

with (�̂; ŝ ; F̂X;L) as an input).

For the case where the externality is ignored, we model ��d (x) := �
�
x0��d

�
, where ��d is a dX -

dimensional vector (for d = 0; 1), and consider the following (quasi maximum-likelihood) estimator

of the parameter ���d :

(~�
0
0;
~�
0
1)
0: = arg sup(�00;�01)02R2dX ln((�

0
0; �

0
1;0

0)0;0);

where ln is the likelihood function de�ned in (8) and 0 stands for a zero (column) vector (of some

appropriate dimension). By using the functional de�ned in (11), we can also write the mis-measured

usage and its estimate as

�U� () = 	
�
���;0; F �X;L (�; �) j 

�
; ~U () = 	(~�;0; F̂X;L (�; �) j );

respectively, where ��� := (��
�0
0 ;
��
�0
1 ;0

0)0 and ~� :=(~�
0
0;
~�
0
1;0

0)0. Under the null hypothesis that the

externality does not matter for the ITN purchase decision, we can say that ~U is an estimator of

the usage rate which incorporates the restriction due to the null hypothesis.
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4 Distribution theory and methodological contributions

We are primarily interested in the asymptotic distribution of our estimator Û (). Our derivation

of this distribution is somewhat involved due to the complicated three-step form of Û (). As

discussed above, our object of interest U� () may be regarded as a value of the functional 	

evaluated at �� := (��; s� ; F
�
X;L). And therefore, Û () is computed as a plug-in type estimator,

a functional value of 	 evaluated at estimates of parameters �̂ := (�̂; ŝ ; F̂X;L). Our strategy

for deriving the asymptotic distribution of Û () relies on this formulation using the functional 	.

That is, we �rst derive a joint functional central limit theorem (FCLT) for �̂, ŝ (�) and F̂X;L (�; �)

to show that the (normalized) vector of the estimators weakly converges to a Gaussian process.

Then we apply the functional delta method by showing that 	 is Hadamard di¤erentiable and

computing the explicit form of the derivative, and thus obtain the
p
n asymptotic normality of

Û () = 	(�̂; ŝ (�) ; F̂X;L (�; �) j). This approach works here because all three elements, viz., �̂,

ŝ (�) and F̂X;L (�), have the same convergence rate. Combining the above steps then yields an

asymptotic normality result for Û () which takes into account spatial externalities and that for

�U () which does not. This result is presented as Theorem 1.

Before presenting our formal results, we state the conditions which we work with:

Assumption 1 fZigni=1 is a sequence of I.I.D. random vectors (Zi = (Yi; X 0
i; Di; L

0
i)
0), and (X 0

i; s
� (Li)

0)0

is not linearly dependent almost surely.

Assumption 2 There exists some constant C > 0 such that

inf(l;r)2L�[r;1) �
� (l; r) > C: (14)

Assumption 3 (i) The support of Xi, X , is some bounded set in RdX . (ii) � is the C.D.F. of the

standard normal distribution.

Assumption 4 L (the range of Li) is a proper subset of the sphere and does not include any

band/ring surrounding the sphere.

Assumption 5 For each r 2 fr1; : : : ; rJg, s� (l; r) and �� (l; r) are continuous in l(2 L). F �X;L (x; l)

is continuous in (x; l)(2 X � L).

Assumption 2 is imposed to guarantee the uniform convergence of ŝ (l) and ŝ (l) (over l). Since

these are estimators of the ratio type (with the estimated �� (l; rj) in the denominator of ŝ (l) and

14



ŝ (l)), they are potentially unbounded if �� (l; r) and its estimate are very close to zero. The

assumption is useful to avoid the so-called random-denominator problem. From a practical view

point, �� (l; r) and its estimate would be very close to zero if r was so, but we can avoid this by

setting the distance parameters frjg away from zero. The boundedness of the support in (i) of

Assumption 3 is a reasonable assumption in our context and greatly facilitates our formal proofs.

As for (ii) of Assumption 3, we can also think of some other speci�cation such as the logistic

function. Again, we impose this condition for simplicity. Assumption 4 allows us to regard L as

some (bounded) subset of R2 (say, L � R2), which is trivially satis�ed since our data were collected

in Western Kenya (only a part of the globe surface, not a "band"). By regarding L � R2, we can

de�ne the continuity property of the functions in Assumption 5. This continuity condition may not

necessarily be required, but it facilitates our proof by making a set of functions (indexed by (x; l))

smaller (see the condition (19.25) and the proof of Theorem 19.28 of van der Vaart, 1998).

Theorem 1 Suppose that Assumptions 1-5 hold. Then,

p
n

0@ Û ()� U� ()
~U ()� �U� ()

1A d! N (0;� ()) ;

for each , where � () is a 2-by-2 variance-covariance matrix (for the derivation of the explicit

form of � (), see the proof of theorem in the Appendix ).

The asymptotic normality result of Theorem 1 allows us to implement econometric infer-

ence provided we can consistently estimate the asymptotic variance matrix, which takes a com-

plicated form, as is apparent from the proof of Theorem 1 (see the Appendix), and is thus

not easy to estimate. Therefore, we resort to bootstrap-based inference. We use the nonpara-

metric (I.I.D.) bootstrap and show that it consistently estimates the asymptotic distribution of
p
n(Û ()� U� () ; ~U ()� �U� ())0. This assertion is formally stated and proved via Theorem 2.

Let fZ#i gni=1 be bootstrap data drawn randomly with replacement from fZig
n
i=1 (Zi = (Yi; X

0
i; Di; L

0
i)),

and let (Û# () ; ~U# ()) be an estimator of (U� () ; �U� ()) based on the bootstrap data (we sub-

sequently use a superscript # to denote a bootstrapped (resampled) variable or object).

Theorem 2 Suppose that Assumptions 1-5 hold. Then, given fZigni=1,
p
n(Û# ()�Û () ; ~U# ()�

~U ())0 (conditionally) weakly converges to N (0;� ()) in probability as n!1.9

9For the notion of this convergence, see the de�nition (3.9.9) in van der Vaart and Wellner (1996, p. 378). In

subsequent proofs, we use P
=)
#

to denote this convergence.
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This theorem provides the justi�cation of the bootstrap-based inference, i.e., we can obtain an

approximation of the limit distribution by the distribution of bootstrap estimates.10

These theorems are proved in the Appendix, using the following sequence of steps (here we

outline the steps for Û () only; the analogous ones for ~U () are much simpler because they do not

involve the spatial externalities):

1. Lemma 1 establishes the asymptotically linear forms of the (normalized) nonparametric esti-

mators,
p
n [̂s (l)� s� (l)] and

p
n
�
ŝ (l)� s� (l)

�
.

2. By using the pathwise derivative method (Newey, 1994), we quantify e¤ects on �̂ of prelimi-

nary estimation of s� (calculate a so-called correction term).

3. Lemmas 2 and 3 verify an asymptotic linear expression of the QML estimator

�̂ = arg sup�2R2(dX+J) ln (�; ŝ (�))

de�ned in (9) (this expression re�ects the correction due to estimating s� obtained in the

previous step).

4. Combining the previous steps, one then obtains the asymptotically linear uniform expression

of the (stacked) vector of the normalized estimators:

p
n[�̂ (x; l)� �� (x; l)] �

p
n

0BBB@
�̂ � ��

ŝ(l)� s�(l)

F̂X;L(x; l)� F �X;L(x; l)

1CCCA = Ĝ(x; l) + op (1) ; (15)

for each , in terms of an empirical process Ĝ (de�ned in (55) in the Appendix).

Lemma 4 then proves a functional central limit theorem for the process fĜ(x; l)g(x;l)2X�L,

which forms the basis of our inference and makes our analysis di¤erent from previous analyses

of multi-step estimation methods owing to the non-standard form of ŝ.

5. Lemma 5 then establishes that U� () is a Hadamard di¤erentiable functional	 of (��; s� ; F
�
X;L).

6. Steps 4 and 5 are then combined to establish Theorem 1.

10We estimate the limit distribution by a simulation. Simulation errors may be made arbitrarily small by letting

the number of simulations large enough, and therefore we do not evaluate such errors, following the standard manner

in the literature.
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7. Finally, the above steps are combined with two auxiliary results in Lemmas 6 and 7 to obtain

Theorem 2. The key step for establishing the bootstrap validity is to show the asymptotic

uniform negligibility of
p
n[�̂# (x; l)� �̂ (x; l)]� Ĝ#

 (x; l) ; (16)

where �̂# (x; l) and Ĝ
#
 (x; l) are bootstrap counterparts of �̂ (x; l) and Ĝ (x; l), respectively

(Ĝ#
 (x; l) is formally de�ned in (69) in the proof of Theorem 2). Note that

p
n[�̂# (x; l) �

�̂ (x; l)] is a bootstrap counterpart of the normalized (actual) estimator
p
n[�̂ (x; l)��� (x; l)],

and thus the negligibility of (16) states that the expression as (15) holds true also in the

bootstrap world. To verify this negligibility of (16), we exploit U-statistic-like expressions

of estimators, as well as explicit expressions of bootstrapped estimators using multinomial

random variables (see the proof of Lemma 6), where the multinomial distribution arises from

the nonparametric bootstrap procedure.

Relation of our derivations with the existing literature: Our derivations, outlined above

and proved rigorously in the Appendix, may be contrasted with distribution theory for (i) two-step

semiparametric estimators (e.g., Newey, 1994; Chen, Linton and van Keilegom, 2003; Mammen,

Rothe and Schienle, 2012) and (ii) three-step semiparametric estimators (e.g., Hahn and Ridder,

2012).

The two key points of di¤erence in our set-up, relative to other papers in the relevant literature,

are that (i) our �rst step-estimators ŝ(�) and ŝ(�), as is clear from the de�nitions (6) and (10), do

not involve kernel (local) or series-based estimators, and consequently (ii) every component of our

second-step stochastic process, viz., [�̂ (�; �) � �� (�; �)], has a
p
n-rate of convergence. Hence our

proof of the �nal step can be based on the functional CLT coupled with Hadamard di¤erentiability

arguments. This makes the derivation di¤erent from other two or three-step estimators in the

literature.

The two key technical contributions in our derivations are (a) calculating the correction term,

which quanti�es the impact of the estimation of ŝ (�) on the second-step parametric estimator �̂

(see equations in (33) and (34), and Lemma 3), and (b) establishing bootstrap consistency for our

�nal, third step estimator (Theorem 2). As is well-known from e.g., Newey (1994), the e¤ect of

�rst-step estimators of in�nite-dimensional parameters may be calculated via pathwise derivatives

leading to a correction term in the asymptotic linearization of the second-step estimator. But in

general, one needs to �nd these correction terms on a case by case basis, as in the calculations
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for semiparametric e¢ ciency bounds. The calculation of the corrections term here is non-trivial

and involves a clever use of the law of repeated conditional expectations, which is purportedly of

independent interest (see Remark 2 in the Appendix).

As regards bootstrap validity, to our knowledge, ours is the �rst result of bootstrap consistency

for three-step estimators. For two-step ones, Chen, Linton and Keilegom (2003) have shown boot-

strap consistency based on an entropy-based technique. However, for our proof for the three-step

estimators, a corresponding "entropy condition" is di¢ cult to verify since the nonparametric es-

timators ŝ (�) and ŝ (�) are constructed with indicator functions and thus are discontinuous and

non-smooth.11 Therefore, we develop independent proofs based on properties of the multinomial

distribution induced by the bootstrap resampling, as mentioned above. Thus it may be fair to say

that our results and proofs complement existing results and proofs on multi-step estimators in the

semiparametric literature.

5 The application and empirical results

We now apply our methods to data collected via the experiment described above. See Section 2 for

descriptions of the context and details on the design of the experiment generating the data.

The outcome we consider is whether the household acquires the ITN. As shown in Dupas (2012),

this is a very good proxy for ITN coverage (what, ultimately, the social planner that subsidizes ITNs

cares about) since ITN usage conditional on ownership is high, reaching 90% within 12 months.

As regressors Xi, we include household wealth (represented by the total value of the durable

and animal assets reported by the household at a baseline survey), the number of children under

the age of ten years and years of education of the oldest female member of the household. This

choice of regressors is motivated by previous studies on determinants of ITN use in Kenya (c.f.,

Bhattacharya and Dupas, 2011 and Dupas, 2012).

In order to take into account the neighborhood e¤ects, we include as additional regressors

the fraction of households who received a large subsidy and reside within 250 meters, 500 meters

and 1000 meters respectively of a given household. In terms of the notation of section 3, we

included (estimated counterparts of) the three additional regressors s� (Li; 250), s� (Li; 500) and

s� (Li; 1000), in addition to Xi. Table 1 reports summary statistics on these regressors, as well as

11We could work with some smoothed versions of ŝ (�) and ŝ (�), but such smoothing complicates our estimation

procedure, requiring some smoothing parameter choice.
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on the randomized treatment dummy (= 1 if the household received a large subsidy voucher) and

the outcome of interest (a dummy equal to 1 if the household purchased the ITN).

Tables 2A and 2B report the determinants of buying an ITN as a function of household co-

variates, estimated using the experimental data where subsidy allocation was randomized. Table

2A reports the probit coe¢ cient estimates corresponding to subsidized households, i.e., �̂1; �̂1, and

Table 2B reports probit coe¢ cients for the unsubsidized ones, i.e., �̂0; �̂0 in (9). The standard

errors, which adjust for the �rst-step estimation of the ŝ�s, are calculated using the bootstrap. The

justi�cation of the bootstrap follows from lemma 6 and 7 proved in the appendix (c.f., step 7 in

section 4, above).

It can be seen from these tables that the covariates have somewhat di¤erent impacts on the

decision to purchase a net depending on whether the household itself received the subsidy. The

wealth variable is a signi�cant predictor of ITN purchase among households not receiving the large

subsidy but an insigni�cant one among heavily subsidized households. Similarly, the log-likelihood

test statistic for testing the joint signi�cance of the three neighborhood variables yields a chi-square

test statistic of 31:97 (p-value below 0:0001) when the households received the subsidy themselves

and a test statistic value of 5:40 (p-value = 0:145) when they did not.12

These �ndings are intuitive because the ITN is expensive relative to average earnings in our

population of interest. Consequently, it is rare for an unsubsidized household to buy an ITN, no

matter what the neighborhood incidence of subsidy is, unless it is relatively wealthy. However,

upon receiving the subsidy, a household has the option of deciding whether to buy an ITN and it

12The QML objective function in (8) is constructed for obtaining the estimates of two sets of parameters,

(�̂1; �̂1) and (�̂0; �̂0) jointly, i.e, �̂ = (�̂
0
0; �

0
1; �̂1;0; : : : ; �̂J;0; �̂1;1; : : : ; �̂J;1)

0 = (�̂
0
0; �̂

0
1; �̂

0
0; �̂

0
1)
0. While this de�nition

of the objective function facilitates our asymptotic analysis, we here calculate these two sets separately. That

is, we use n�1
Pn

i=1 q0 (Zi;�; ŝ (Li)) as an objective for (�̂0; �̂0) (q0 is the sum of the �rst two terms of q), and

n�1
Pn

i=1 q1 (Zi;�; ŝ (Li)) for (�̂1; �̂1) (q0 is the sum of the last two terms of q). We note that these joint and separate

estimation procedures yield numerically the same result. This is because the objective function q consists of two

parts, one only relevant for (�0; �0) and the other for (�1; �1), and there is no interaction between two sets of the

parameters.

We also note the two chi-square test statistic values reported here are based on two separate QML procedures.

It is known that in a standard setting with no generated regressor, a likelihood ratio statistic is asymptotically chi-

square distributed. This also holds true in our case with generated regressors ŝ (Li). For the asymptotic chi-square

distribution result of a likelihood ratio statistic, what is important is asymptotic normality of the estimator. Since we

have veri�ed the asymptotic normality of the second step estimator (Lemma 4), we can as well prove the asymptotic

result for the test statistic (proof arguments are quite standard as in Section 9 of Newey and McFadden, 1994, and

we omit details).
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is only then that neighborhood e¤ects impact this decision.

Table 3 reports the estimated impact of means-tested subsidies, �rst including and then exclud-

ing the neighborhood e¤ects. The estimates are reported for each of 20 di¤erent choices of wealth

thresholds  for means-testing. Columns 6 and 7 report bootstrapped pointwise 95% equal-tailed

con�dence intervals for estimates of the di¤erence U� () � �U� (), as we vary the poverty line 

such that households with income below  would receive the subsidy. The theoretical justi�cation

of the bootstrap comes from our Theorem 2.

The entries in Table 3 may be interpreted as follows. For example, row 10 in Table 3 (highlighted

in bold font) shows the expected impact if households with wealth no more than 10,000 Kenyan

shillings are made eligible for the subsidy. The estimated fraction of such households is about 36%

of the total population of households. An estimate of the average ITN ownership rate resulting from

this rule is 0:396 if externalities are taken into account and 0:431 if externalities are ignored. This

extent of overestimation is seen to be associated with a 95% con�dence interval (�0:049;�0:019)

which does not include zero and thus suggests statistically signi�cant over-estimation. The reason

why we see such overestimation is that the average neighborhood rate in the experiment used for the

estimation was signi�cantly higher (43%) than under the means-tested subsidy considered in this

case (36%), c.f., our discussion in the Introduction. This means that when the positive externality

is not properly accounted for, the aggregate e¤ect of the subsidy on subsidy-recipients is over-,

rather than under-, estimated.

Figure 1 summarizes the overall �ndings from Table 3. The horizontal axis represents column 2

of Table 3, showing the fraction subsidized under each threshold used for means-testing. The light

grey dashed line in the background is the 45-degree line, the solid black line represents the predicted

fraction � including the neighborhood e¤ects �of households who will purchase an ITN. Finally,

the thick dashed line represents the predicted take-up rate if the neighborhood e¤ects are ignored.

It can be seen from Figure 1 that ignoring externalities leads to overestimation of ITN coverage at

low subsidy incidence rates and to underestimation at higher rates. When the incidence rate equals

that in the experiment (about 0.43), the lines corresponding to including or ignoring externalities

coincide and there is no bias. This is the point discussed earlier. This feature is illustrated in

Figure 2 where we plot the di¤erence between the predicted usage including externality and the

one ignoring the externality together with the corresponding (pointwise) 95% con�dence intervals.

Some policy-relevant conclusions from Table 3 may be stated in terms of average and marginal

returns on the subsidy. We show these calculations in Table 4 where we list the average and marginal
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returns to the incidence of subsidy. The average return is the ratio of the predicted take-up rate

(column 3 of Table 3) to the share of the population eligible for the subsidy (column 2 of Table

3). The (approximate) marginal return is de�ned to be the ratio of the di¤erence in (predicted)

ITN ownership rates to the di¤erence in subsidy incidence rate. For example, row 10 in Table 4

suggests that when the 36% poorest households of the population are eligible for the large subsidy,

the average return is 110%; while the marginal return is 81% when the spatial externality is taken

into account, and 51% when it is ignored. For the most part, ignoring the positive externalities

via neighborhood e¤ects leads to under-estimation of marginal returns. The overall pattern of

average and marginal returns are plotted in Figure 3. Because a �xed share of households acquires

the ITN even if not eligible for the large subsidy, average returns appear relatively high at low

levels of subsidy, and steadily decline as the subsidy rate increases. For example, subsidizing

the poorest ten percent households leads to expected ITN ownership by about 24 percent of all

households; subsidizing the poorest 55 percent leads to average use of just around 55 percent.

However, the marginal returns to subsidy, i.e., the increase in ITN ownership corresponding to an

increase in subsidy-incidence rates, is increasing in the subsidy rate. For example, when subsidizing

the poorest ten percent of households via means-testing, increasing the subsidy incidence rate by

one percentage point leads to increase in expected ITN ownership by about 0.5 percentage points;

when subsidizing the poorest 55 percent, increasing the subsidy-rate by one percentage point leads

to increase in expected ITN ownership by about 0.8 percentage points.

The third feature, shown graphically in Figure 4 is that the marginal returns, taking into account

the externalities, tend to be higher than those obtained ignoring externalities, except at very low

(less than 15%) incidence-rates. The latter curve is almost �at in contrast to the former, which is

generally increasing due to the positive feedback e¤ects coming through neighborhood e¤ects. This

feature corresponds to the convexity of the solid black line and the linearity of the thick dashed

grey line in Figure 1. The di¤erence between these two curves shown by the dashed line in Figure

4 can be interpreted as the impact of the externality.

6 Conclusion

In this paper we have addressed the problem of predicting the aggregate e¤ect of treatment-targeting

policies in a population where spatial externalities are present, i.e., where treating some households

(e.g., whose income is lower than a threshold) a¤ects the behavior of households living in close vicin-
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ity of the treated households. Our set-up is quite general in that we do not assume that all of the

spillover takes place within a closed and identi�able locality (e.g., classroom/village/school/hospital

ward) but not across localities �as is often assumed in empirical studies of spillover e¤ects.13 In

other words, our set-up allows for households i; j; k where i; j are neighbors, j; k are neighbors

but i; k are not neighbors. This distance-based notion of neighborhood is the relevant one in con-

texts like ours, involving the spatial dissipation of infection or of social learning when the relevant

households are not concentrated in isolated villages/hamlets but are located continuously in space.

However, allowing for such distance-based, overlapping neighborhoods in the statistical analysis

gives rise to an in�nite dimensional estimated regressor �viz., the fraction of treated households

in a neighborhood around a (continuously varying) location coordinate. We develop the relevant

theory of inference which (i) accommodates such predicted, in�nite dimensional regressors, and (ii)

establishes bootstrap consistency for the resulting three-step semiparametric estimator. On a more

substantive note, we point out that ignoring spatial spillovers may, statistically, over or underesti-

mate the aggregate e¤ect of targeted subsidy regimes even when the sign of the spillover e¤ects is

unambiguously positive. This, somewhat counter-intuitive, conclusion obtains from discrepancies

between aggregate incidence of subsidies under the proposed regime and that under the experiment

used to obtain estimates of the spillover e¤ects.

The methods developed above are applicable to other estimation situations where there are

spatial externalities and where the set of units generating and experiencing the spillovers is not

closed or, equivalently, �neighborhoods� are overlapping. The availability and use of GPS based

location data, an important ingredient of our analysis, are becoming increasingly common in quan-

titative social sciences. In some contexts, such as epidemiological studies, actuarial projections and

social network analysis, such data are indispensable. Our methods, therefore, are likely to have

applicability to many other empirical contexts, beyond the important policy-question of predicting

welfare e¤ects of health-product subsidies.

Turning to the speci�c application in this paper, our results contribute to the ongoing debate

regarding ITN subsidization. Our �ndings above suggest that the marginal impact of subsidies is

generally increasing and remains fairly high even when nearly half the population receives a subsidy.

Most of this increasing marginal e¤ect is brought about by behavioral externalities whereby high

13To be clear, we also de�ne the neighborhood of a household as the collection of all households which reside within

a �xed distance from it. However, this de�nition makes the neighborhoods overlapping and does not partition the

population of households into disjoint and collectively exhaustive "equivalent classes" of neighborhoods.
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subsidy levels in the neighborhood lead to higher ITN take-up, conditional on a household�s own

subsidy-status. The marginal e¤ect stops increasing beyond the point at which 50% of households

become eligible for the subsidy but remains positive throughout. In the light of these �ndings

and (a) given that the World Health Organization recommends that every community members

sleeps under an ITN,14 and (b) assuming means-testing remains politically feasible and practically

implementable, there is a strong case, based on behavioral externalities alone, for extending the

subsidy to at least the poorest 50% of the rural Kenyan population. If there are in addition some

epidemiological externalities (e.g. reduced malaria transmission probabilities when coverage is high

enough, as suggested in Hawley et al., 2003), the marginal returns in terms of public health may

continue increasing well beyond a subsidy incidence rate of 50%.

14See http://www.who.int/malaria/publications/atoz/itnspospaper�nal.pdf
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Note: The share subsidized in the experiment that generated the data used for estimation was 
43% (see Table 1).

Figure 1

Figure 2

Estimated aggregate outcome by share of the population subsidized,  
with and without taking into account the externality

95% Confidence interval for the difference between the two predictions 
(with and without externality)
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Figure 3
Average and Marginal Return, by share subsidized

Figure 4
Difference in estimated marginal returns, with and without externality

Notes: The average return is the ratio of the predicted take-up rate (col. 3 of Table 3) to the share of the population 
eligible for the subsidy. The (approximate) marginal return is the ratio of the change (between two rows) in 
predicted take-up rate to the change (between two rows) in the share eligible for the subsidy. 
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Obs Mean Std. Dev. Min Max
Regressors
Household wealth ('000 Ksh) 1094 21.98 21.12 0.00 1727.28
# of children 10 or younger 1094 5.46 2.82 0.00 35.00
Years of education of female head 1060 4.94 3.84 0.00 15.00
Share of subsidy recipients within 1000m 1094 0.43 0.22 0.00 1.00
Share of subsidy recipients within 500m 1094 0.41 0.25 0.00 1.00
Share of subsidy recipients within 250 m 1094 0.38 0.32 0.00 1.00

Randomized Treatment status
Received large subsidy (price <100 Ksh) 1094 0.43 0.49 0.00 1.00

Outcome of Interest
Household purchased ITN 1094 0.46 0.50 0.00 1.00

Coef. Std. Err. t-stat

Household wealth ('000 Ksh) 0.0001 0.0003 0.30
# of children 10 or younger -0.0010 0.0229 -0.04
Years of education of female head 0.0018 0.0160 0.11
Share of subsidy recipients within 1000m 1.8720 0.5170 3.62
Share of subsidy recipients within 500m -0.3500 0.4770 -0.73
Share of subsidy recipients within 250 m 0.3630 0.2620 1.39

Coef. Std. Err. t-stat
HH wealth 0.0050 0.0020 2.50
# of children 10 or younger 0.0033 0.0215 0.15
Years of education of female head 0.0115 0.0150 0.77
Share of subsidy recipients within 1000m 0.0180 0.4600 0.04
Share of subsidy recipients within 500m 0.3260 0.4620 0.71
Share of subsidy recipients within 250 m 0.1810 0.2470 0.73

Notes: Probit estimates. Dependent Variable: Household purchased ITN. N=634, Pseudo-Rsq= 0.02. p-
value for joint-significance of three neighborhood covariates=0.145

Table 1: Summary Statistics

Notes: Probit estimates. Dependent Variable: Household purchased ITN. N=486, Pseudo-Rsq= 0.06. p-
value for joint-significance of three neighborhood covariates<0.0001

Table 2B: Determinants of ITN Take-up among households that did not receive large 
subsidy

Table 2A: Determinants of ITN Take-up among households that received large subsidy

Note: Sample of Kenyan households surveyed in 2007.
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Table 3: Impact Estimates

(1) (2) (3) (4) (5) (6) (7)

…including 
externality

… ignoring 
externality Difference 95% CI, lower 95% CI, upper

1 0.014 0.2042 0.2636 -0.059 -0.115 -0.009
2 0.026 0.2104 0.2695 -0.059 -0.112 -0.009
3 0.059 0.2200 0.2853 -0.065 -0.113 -0.018
4 0.098 0.2376 0.3042 -0.067 -0.106 -0.025
5 0.133 0.2549 0.3230 -0.068 -0.108 -0.031
6 0.174 0.2767 0.3428 -0.066 -0.097 -0.034
7 0.236 0.3095 0.3708 -0.061 -0.085 -0.035
8 0.273 0.3336 0.3896 -0.056 -0.079 -0.032
9 0.316 0.3619 0.4099 -0.048 -0.067 -0.029
10 0.361 0.3958 0.4309 -0.035 -0.049 -0.019
11 0.391 0.4205 0.4464 -0.026 -0.038 -0.012
12 0.419 0.4410 0.4585 -0.017 -0.028 -0.006
13 0.447 0.4637 0.4721 -0.008 -0.018 0.003
14 0.467 0.4811 0.4820 -0.001 -0.011 0.010
15 0.494 0.5009 0.4944 0.007 -0.005 0.018
16 0.514 0.5181 0.5039 0.014 0.000 0.027
17 0.538 0.5378 0.5137 0.024 0.008 0.040
18 0.555 0.5550 0.5237 0.031 0.014 0.047
19 0.571 0.5680 0.5296 0.038 0.019 0.057
20 0.598 0.5913 0.5435 0.048 0.026 0.068

Bootstrapped Confidence Interval for 
Difference Estimate

Note: The poverty line is the threshold household wealth below which the household is eligible for the subsidy. 

Estimate of Aggregate ITN Take-up…Share of the 
population eligible 

for ITN subsidy
Poverty Line (ϒ)

(in '000s Ksh)
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Table 4: Average and (approximate) marginal returns

(1) (2) (3) (4) (5) (6)

Poverty Line (ϒ)
(in '000s Ksh)

Share of the population 
eligible for ITN subsidy

Average 
return

Marginal
 return

Marginal return 
w/o externality Difference

1 0.014 14.294 0.536 0.506 0.0305
2 0.026 8.127 0.290 0.480 -0.1894
3 0.059 3.734 0.447 0.481 -0.0345
4 0.098 2.419 0.497 0.537 -0.0406
5 0.133 1.916 0.530 0.483 0.0477
6 0.174 1.589 0.533 0.455 0.0780
7 0.236 1.313 0.642 0.499 0.1423
8 0.273 1.221 0.660 0.475 0.1853
9 0.316 1.145 0.760 0.470 0.2891

10 0.361 1.097 0.815 0.508 0.3060
11 0.391 1.075 0.741 0.438 0.3026
12 0.419 1.053 0.794 0.476 0.3179
13 0.447 1.037 0.887 0.503 0.3843
14 0.467 1.030 0.739 0.463 0.2756
15 0.494 1.015 0.836 0.467 0.3691
16 0.514 1.007 0.816 0.406 0.4107
17 0.538 0.999 1.015 0.591 0.4247
18 0.555 0.999 0.811 0.362 0.4496

Notes: The average return is the ratio of the predicted take-up rate (col. 3 of Table 3) to the share of the population eligible for the subsidy. The 
(approximate) marginal return is the ratio of the change (between two rows) in predicted take-up rate to the change (between two rows) in the 
share eligible for the subsidy. 
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A Appendix

This appendix is divided into two subsections �the �rst subsection dealing with Theorem 1 and the

second one with Theorem 2. In this Appendix, terminologies related to empirical process theory

follow those of van der Vaart and Wellner (1996), which is hereafter referred to as VW (1996).

A.1 Lemmas and proofs for Theorem 1

Step 1: Linearization of the nonparametric estimators ŝ (l) and ŝ (l).

Lemma 1 Suppose that Assumptions 1-2 hold. Then,

sup(l;r)2L�[r;1) jŝ (l; r)� s� (l; r)j = n�1
Xn

k=1
� (Zk; l; r) +Oa:s:((lnn) =n); (17)

sup(l;r)2L�[r;1)
��ŝ (l; r)� s� (l; r)�� = n�1

Xn

k=1
� (Zk; l; r) +Oa:s:((lnn) =n): (18)

where

� (Zk; l; r) : = 1fjjl � Lkjj � rg [Dk � s� (l; r)] =�� (l; r) ; (19)

� (Zk; l; r) : = 1fjjl � Lkjj � rg
�
1 fX1;k < g � s� (l; r)

�
=�� (l; r) ; (20)

�� (l; r) is de�ned in (5); and we note that Lk and Dk are subcomponents of Zk(= (Yk; X 0
k; Dk; L

0
k)
0).

Furthermore, it also holds that

sup(l;r)2L�[r;1) jŝ (l; r)� s� (l; r)j = Oa:s:(
p
(lnn) =n);

sup(l;r)2L�[r;1)
��ŝ (l; r)� s� (l; r)�� = Oa:s:(

p
(lnn) =n):

These linearized expressions have some resemblance to the Bahadur expression for kernel-based

estimation (see, e.g., Sections 3.3-3.4 of Pagan and Ullah, 1999; Kong, Linton and Xia, 2010).

However, we do not consider the localization, and therefore the convergence rates in (17) and (18)

are much faster. By this lemma, we have

p
n[̂s (l)� s� (l)] = (1=

p
n)
Xn

k=1
� (Zk; l) + oa:s: (1) ; (21)

p
n[̂s (l)� s� (l)] = (1=

p
n)
Xn

k=1
� (Zk; l) + oa:s: (1) ; (22)

uniformly over l 2 L, where

� (Zk; l) := (� (Zk; l; r1) ; : : : ; � (Zk; l; rJ))
0; � (Zk; l) := (� (Zk; l; r1) ; : : : ; � (Zk; l; rJ))

0:
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The former result (21) allows us to derive the linearized expression of �̂ � ��, while the latter (22)

is used to derive that of the nonparametric component of �̂ (x; l)� �� (x; l) in (12).

Proof of Lemma 1. Since we can show (17) and (18) exactly in the same manner, we only

consider the former. Let

�̂ (l; r) : = n�1
Pn
k=1 1fjjl � Lkjj � rg;

t̂ (l; r) : = n�1
Pn
k=1 1fjjl � Lkjj � rgDk; and t� (l; r) := E [1fjjl � Lkjj � rgDk] :

Then, we can write

ŝ (l; r)� s� (l; r) = t̂ (l; r)� �̂ (l; r) s� (l; r)
�� (l; r)

�
1 +

�� (l; r)� �̂ (l; r)
�̂ (l; r)

�
;

where �� (l; r) is de�ned in (5). By noting the fact that

t̂ (l; r)� �̂ (l; r) s� (l; r) = n�1
Pn
k=1 1fjjl � Lkjj � rg [Dk � s

� (rjl)]

and using the following results:

sup(l;r)2L�(0;1)
��t̂ (l; r)� �̂ (l; r) s� (l; r)�� = Oa:s:(

p
lnn=n); (23)

sup(l;r)2L�(0;1)
��t̂ (l; r)� t� (l; r)�� = Oa:s(

p
lnn=n); (24)

sup(l;r)2L�(0;1) j�̂ (l; r)� �� (l; r)j = Oa:s:(
p
lnn=n); (25)

sup(l;r)2L�[r;1) 1=�̂ (l; r) = Oa:s: (1) ; (26)

whose proofs are provided below, we can obtain the desired result (17).

We can easily check that (26) holds by the boundedness condition of (14) and the result (25).

We now show the three convergence results (23)-(25). Since these can be proved in the same

manner, we only consider the last one (25). Denote by F the following set of functions indexed

by (l; r) 2 L � (0;1): F := ff (pjl; r) j l 2 L and r > 0g, where L is a set of latitude-longitude

points on the earth surface; each f (�jl; r) is a function with the form f (pjl; r) := 1 fjjl � pjj � rg;

jjl � pjj = jjl � pjjL measures a distance between two points l and p on L. Recall that we have

assumed that the earth is a sphere and jjl � pjj measures the shortest distance between l and p on

the sphere (Footnote 5), and therefore, the number of all closed balls on L is bounded by that of

all closed balls in R3 (a ball in R3 is de�ned with respect to the standard Euclidean norm). By (ii)

of Lemma 9.12 of Kosorok (2008), the set of all closed balls in R3 is a VC-class of index 6.

Let A denote the set of all closed balls on L. Then, it obviously holds that F �f1A (�) j A 2 Ag

where 1A (�) is an indicator function (1A (p) = 1 if p 2 A and = 0 otherwise). Then, by using the
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fact that the VC index of A is bounded by 6, together with Theorem 9.2 of Kosorok (2008), the

covering number of the set of functions F satis�es

supQN (�;F ; Lr (Q)) � ���5r for � 2 (0; 1) ; (27)

where N (�;F ; Lr (Q)) stands for the Lr covering number of the set of function F (for the de�nition,

see Section 2.2.2 of Kosorok, 2008 or Section 2.2.1 of VW, 1996); the supremum is over all probability

measures on L; and � (> 0) is some constant independent of Q. Now, using (27), the Bernstein

exponential inequality (see, e.g., page 102 of VW, 1996) and the Borel-Cantelli lemma as in (Hansen,

2008, Proofs of Theorems 2 and 3) and Kanaya (2012, Proof of Theorem 4), we can easily show the

desired result (25), where we note that the number of Lr (Q) �-balls needed to cover F is �nite with

the polynomial order (at most) while the convergence of relevant probabilities has an exponential

decay. Now, the proof of Lemma 1 is completed.

Step 2: Quantifying e¤ects on �̂ of preliminary estimation of s�.

To investigate asymptotic behavior of the parametric component �̂ � ��, we de�ne our QML

estimator �̂ as the solution to the following equation (the �rst-order condition of the maximization

problem in (9)):

�̂ :=
n
� 2Rd�

�� n�1Pn
i=1m (Zi;�; ŝ (Li)) = 0

o
; (28)

where m is a d�-dimensional (column) vector of functions:

m (z;�; s (l)) = (@=@�) q (z;�; s (l)) :

By the convexity property of the function q, we can easily check the existence of �̂ and its uniqueness

(for given ŝ (�)) and we here de�ne the (pseudo) true parameter (��; s� (�)) as the one satisfying the

following population moment equation:

E [m (Zi;�
�; s� (Li))] = 0: (29)

The interpretation of �̂ as a moment-based estimator in (28) helps us to �nd a linearized

(asymptotic) expression of �̂ � ��. One can usually obtain linearized expressions for standard

parametric estimators by using Taylor expression arguments. This is also the case here. However,

our estimator �̂ depends up on the preliminary estimation of ŝ, and we need to quantify its e¤ect.

This can be done by Newey�(1994) pathwise derivative method, which allows us to obtain a so-

called correction term (i.e., a term capturing the e¤ect of preliminary estimation in the linearized

expression of �̂ � ��).
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Pathwise derivative method: Let F be the set of all distribution functions of Zi, and

fF� : F� 2 Fg be a one-dimensional subfamily of F, i.e., a path in F (indexed by � 2 R), and also let

E� [�] denote the expectation at the distribution F�. We let F = F0 = F�j�=0 the true distribution,

and E [�] (= E0 [�]) denote the expectation at the true F0. Suppose that F� has a density dF� (with

respect to some dominating measure which is common for all F�). Let S� (z) := @ ln (dF�) =@�.

Then, S0 (z) = @ ln (dF�) =@�j�=0 is called a score corresponding to dF�, where we also suppose

that E�[jS� (Zk)j2] <1 for each �.

Our nonparametric estimator ŝ (l; r) for each (l; r) is a moment estimator which solves the

moment condition: E [1 fjjLk � ljj � rg [Dk � s (l; r)]] = 0. Therefore, we can see ŝ (l; r) as the

sample counterpart of the following (population) quantity:

s (l; rjF�) :=
E� [1 fjjLk � ljj � rgDk]
E� [1 fjjLk � ljj � rg]

(30)

when Zk � F�.

When Zk � F�, our (�nite-dimensional) parameter of interest, �� = �� (�), solves the following

population moment equation:

E� [m (Zi;�; s (LijF�))] = 0;

which corresponds to equation (3.8) in Newey (1994). If we can �nd some function � such that

(@=@�)E [m (Zi;�
�; s (LijF�))]j�=0 = E [� (Zi)S0 (Zi)] and E [� (Zi)] = 0; (31)

then we can obtain the linear expression (or in�uence function) of the estimator �̂ (see equation

(3.10) in Newey, 1994). � (Zi) satisfying (31) is called a correction term (in Newey�s terminology).

We below present a way for deriving this correction term.

Given the expression (30) under Zk � F�, we are able to calculate

(@=@�) s (l; rjF�) = fE� [1 fjjLk � ljj � rg]g�2
�
E� [Dk1 fjjLk � ljj � rgS� (Zi)]E� [1 fjjLk � ljj � rg]

�E� [Dk1 fjjLk � ljj � rg]E� [1 fjjLk � ljj � rgS� (Zk)]
�
;

which quanti�es the in�uence of the in�nitesimal change of F� on s (l; rjF�) at F�. Let

� (Zk; l; r) = 1fjjLk � ljj � rg[Dk � s� (l; r)]=�� (l; r) ;

as de�ned in (19), then, we can write

(@=@�) s (l; rjF0) = (@=@�) s (l; rjF�)j�=0 = E [� (Zk; l; r)S0 (Zk)] : (32)
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For notational convenience, de�ne the following vectors of functions:

s (ljF�) := (s (l; r1jF�) ; : : : ; s (l; rJ jF�))0 and � (Zk; l) := (� (Zk; l; r1) ; : : : � (Zk; l; rJ))
0 :

We also de�ne a d�-by-J matrix of functions as

�D� (z) := (@=@s)m (z;��; s)js=s�(l) ;

where we note that s� (l) = s (ljF0).

Given these, we have

(@=@�)E [m (Zi;�
�; s (LijF�))]j�=0 = E

�
�D� (Zi) (@=@�) s (LijF�)j�=0

�
= E

�
�D� (Zi)E [� (Zk; Li)S0 (Zk) jLi]

�
= E

�
�D� (Zi)E [� (Zk; Li)S0 (Zk) jZi]

�
= E

�
E
�
�D� (Zi) � (Zk; Li) jZk

�
S0 (Zk)

�
= E [� (Zk)S0 (Zk)] ; (33)

where the second equality follows from (32) and the de�nition of the column vector � (Zk; l); and

the third holds since Li is a subcomponent of Zi; and the fourth holds due to the law of repeated

conditional expectations. The last equality in (33) holds with

� (z) : = E[�D� (Zi) � (z; Li)] = E

"
@

@s
m (Zi;�

�; s)

����
s=s�(Li)

� (z; Li)

#

= E

�
@

@s
m (Zi;�

�; s)

����
s=s�(Li)

�
�
1 fjjl � Lijj � r1g [d� s� (Li; r1)]

�� (Li; r1)
; : : : ;

1 fjjl � Lijj � rJg [d� s� (Li; rJ)]
�� (Li; rJ)

�0�
(34)

which is a d�-dimensional column vector of functions, where we note that l and d are subcomponents

of z (recall Zk = (Yk; X 0
k; Dk; L

0
k)
0). By the I.I.D. condition, we can check

(@=@�)E [m (Zi;�
�; s (LijF�))]j�=0 = E [� (Zk)S0 (Zk)] = E [� (Zi)S0 (Zi)] ;

and E [� (Zi)] (= E [� (Zk)]) = 0.

Remark 2 The calculation of the pathwise derivative (@=@�)E [m (Zi;��; s (LijF�))]j�=0 in (33) is

basically a chain rule. However, unlike a standard simple case for composite functions, we need to

consider an involved object, i.e., the expectation of a composite function. In this case, a derivative

calculation rule is still similar to a standard one, but we use the use of the law of conditional
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expectations. This calculation method seems to have general applicability to several other cases, as

long as a preliminary estimator a¤ects the next step only through its values at observations (ŝ (Li)

in our case). If one can obtain the pathwise derivative of the preliminary estimator, which is not

di¢ cult in many cases, we can almost immediately derive the form of the correction term by the

law of repeated conditional expectations.

Remark 3 Given the form of the correction term as in (34), we need to verify that it indeed

constitutes the asymptotic linear expression of [�̂ � ��]. This can be done by direct calculations as

in our proof of Lemma 3 below.

Step 3: Linearization of the parametric component �̂.

By the boundedness of relevant functions and their derivatives as well as the uniform convergence

of the nonparametric �rst step estimator ŝ (�), we can easily prove the consistency of �̂ for �� (note

that by the convexity, we can restrict the domain of � as some compact neighborhood of ��, which

we denote by C�(� Rd�)). By using the Taylor-expansion arguments, we can write

p
n[�̂ � ��] = � [M�]�1 (1=

p
n)
Xn

i=1
m (Zi;�

�; ŝ (Li)) + oP
�
1=
p
n
�

= � [M�]�1 (1=
p
n)
nXn

i=1
m (Zi;�

�; s� (Li)) +
Xn

i=1
�D� (Zi) [̂s (Li)� s� (Li)]

o
+ oP (1) ;(35)

where M� is the limit Hessian matrix of the objective function de�ned as

M� := E
��
@2=@�0@�

�
q (Zi;�

�; s� (Li))
�
= E

��
@=@�0

�
m (Zi;�

�; s� (Li))
�
; (36)

and �D� (�) is a matrix-valued function de�ned as

�D� (z) :=
�
@=@s0

�
m (z;��; s)

��
s=s�(l)

: (37)

This result (35) is formally stated below as Lemma 2.

We note that while the �rst term inside the curly brackets on the right-hand side (RHS) of

(35) is the score function for the fully parametric case with s� (�) known, the second term captures

the e¤ect due to the nonparametrically estimated component. We can verify that this second term

can be actually replaced with the correction term derived in Step 2, and as a result, the main

component on the RHS of (35) can be written as an empirical process. That is, we have

p
n[�̂ � ��] = (1=

p
n)
Xn

i=1
 (Zi) + oP (1) ; (38)
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where  is the in�uence function de�ned as

 (Zi) := �[M�]�1 fm (Zi;��; s� (Li)) +� (Zi)g : (39)

Lemma 3 (presented below), together with Lemma 2, formally proves the validity of this linearized

expression (38).

As stated previously, the term � in (39) is called a "correction term", since it corrects sampling

errors stemming from the preliminary nonparametric estimation, which are additional to usual

sampling errors in standard parametric estimation. The sum ofm and � left-multiplied by �[M�]�1

is called the in�uence function of �̂, which fully characterizes the (�rst-order) asymptotic properties

of the estimator �̂.

Lemma 2 Suppose that Assumptions 1-3 hold. Then,

p
n [�̂ � ��]

= � [M�]�1 (1=
p
n)
nXn

i=1
m (Zi;�

�; s� (Li)) +
Xn

i=1
�D� (Zi) [̂s (Li)� s� (Li)]

o
+ oP (1) ;(40)

where M� and �D� are de�ned in (36) and (37), respectively.

Proof. First, we claim the consistency of �̂, that is, j�̂���j = oP (1) (�� is de�ned in (29)).

The proof of this result is omitted for the sake of brevity (it can be easily shown by using arguments

similar to those in this proof and in the proof of Lemma 3.

By the de�nition of our semiparametric estimator �̂ and the Taylor expansion , we have

0 = (1=
p
n)
Xn

i=1
m (Zi; �̂; ŝ (Li))

= (1=
p
n)
Xn

i=1
m (Zi;�

�; ŝ (Li)) + n
�1
Xn

i=1

�
@=@�0

�
m (Zi; ~�; ŝ (Li))

p
n [�̂ � ��] ; (41)

where ~� is on the linesegment connecting to �̂ to �� (it may be di¤erent for a di¤erent element of

(@=@�0)m).

We now consider the limit of the component n�1
Pn
i=1 (@=@�

0)m (Zi; ~�; ŝ (Li)). To this end,

note that by the convexity property of the function q, which is induced by the functional form

of � (the C.D.F. of the standard normal), we may restrict the parameter space of � to some

compact neighborhood of �� in Rd� . We denote by C�� this compact neighborhood. For notational

simplicity, we write

h (Zi;�; s (Li))=
�
@=@�0

�
m (Zi;�; s (Li)) =

�
@2=@�0@�

�
q (Zi;�; s (Li)) ;
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and denote by ha;b (Zi;�; s (Li)) each element of the matrix h with 1 � a; b � d�. Then, by the

Taylor expansion again, we have

n�1
Xn

i=1
ha;b (Zi;�; ŝ (Li))

= n�1
Xn

i=1
ha;b (Zi;�; s

� (Li)) + n
�1
Xn

i=1

�
@=@s0

�
ha;b (Zi;�; s)

��
s=~s(Li)

[̂s (Li)� s� (Li)]

= n�1
Xn

i=1
ha;b (Zi;�; s

� (Li)) +Oa:s:(
p
(log n)=n); uniformly over � 2C�� ; (42)

for each (a; b) element, where ~s (Li) is on the linesegment connecting ŝ (Li) to s� (Li), and the

last equality holds since (@=@s0)ha;b(z;�; s) is uniformly bounded over z;� and s (recall that the

functional form of � and the linear speci�cation in (7) and (8)) and

ŝ (l)� s� (l) = Oa:s:(
p
(log n)=n) uniformly over l; (43)

(this can be easily shown by using arguments similar to those in the proof of Lemma 1).

Given the result (42), we next consider the uniform law of large numbers for n�1
Pn
i=1 ha;b (Zi;�; s

� (Li)).

By the speci�cation of q with the C.D.F. of the standard normal � (in (7) and (8)), as well as the

boundedness condition of the support of Xi (in Assumption 3), we can see that ha;b (Zi;�; s� (Li))

is Lipschitz continuous with respect to � (with a Lipschitz constant uniform over � 2C��). There-

fore, together with the I.I.D. condition, n�1
Pn
i=1 ha;b (Zi;�; s

� (Li)) is stochastically equicontinuous

(over � 2C��). Note also that E [ha;b (Zi;�; s� (Li))] is continuous uniformly over � 2C�� . Then,

by the law of large numbers (recall the I.I.D. condition) and the compactness of the parameter

space C�� , we have

sup�2C��

���n�1Xn

i=1
ha;b (Zi;�; s

� (Li))� E [ha;b (Zi;�; s� (Li))]
��� = oP (1) ; (44)

for each (a; b). By the consistency of �̂, (42) and (44), together with recalling the de�nition of

M� (Zi) (given in (36)) and that of ha;b (given earlier in this proof), we now obtain

n�1
Xn

i=1

�
@=@�0

�
m (Zi; ~�; ŝ (Li))

P!M�: (45)

Therefore, by this and (41), together with the Taylor expansion, we have

[M� + oP (1)]
p
n [�̂ � ��] = �(1=

p
n)
Xn

i=1
m (Zi;�

�; ŝ (Li))

= �(1=
p
n)
Xn

i=1

(
m (Zi;�

�; s� (Li)) +
@

@s0
m (z;��; s)

����
s=s�(Li)

[̂s (Li)� s� (Li)]
)
;

+OP

�p
nmax1�a;b�d� max1�i�n sups(�) jha;b (Zi;��; s (Li))j � [̂s (Li)� s� (Li)]

2
�
; (46)
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where the supremum in the last line is taken over the set of [0; 1]-valued functions on l 2 L. By

the speci�cation of q and the boundedness condition (in Assumption 3), ha;b (z;�; s) is uniformly

bounded (over (z;�; s)). Also, by (43), supl [̂s (l)� s� (l)]2 = Oa:s:((log n)=n). Therefore, the second

component on the RHS of (46) is Oa:s:((log n)=
p
n) = oa:s: (1). Finally, recalling the de�nition of

�D� (z) in (37) and noting the invertibility of M�, which follows from the convexity property of q

and the non linear-dependence condition in Assumption 1, we obtain the desired result (40). This

completes the proof of Lemma 2.

Lemma 3 Suppose that Assumptions 1-3. Then, it holds that

(1=
p
n)
Xn

i=1
�D� (Zi) [̂s (Li)� s� (Li)] = (1=

p
n)
Xn

i=1
� (Zi) + oP (1) ; (47)

with E [� (Zi)] = 0 and E[jj� (Zi)jj2] <1, where � (�) is a vector-valued function de�ned as

� (z) : = E
�
�D� (Zi) � (z; Li)

�
= E[

@

@s0
m (Zi;�

�; s)

����
s=s�(Li)

� (z; Li)]; (48)

� (z; Li) : = (� (z; Li; r1) ; : : : ; � (z; Li; rJ))
0 ; (49)

� (z; Li; r) : = 1 fjjLi � ljj � rjg [d� s� (Li; r)] =�� (Li; r) ;

and we note that d and l are subcomponents of z = (y; x0; d; l0)0 and the functional form of � (�; �; r)

de�ned here is the same as that de�ned in (19).

The proof of the lemma follows subsequently. Note that the left-hand side (LHS) of (47) includes

an in�nite-dimensional component, ŝ (l)� s� (l). To handle this sort of object (and verify a result

like (47)), we use some U-statistic-like arguments.

Proof of Lemma 3. First, we check the moment conditions of � (Zi). By the boundedness of

the support of Xi and the speci�cation of � (in Assumption 3), �D� (z) is uniformly bounded over

the support of Zi. Also, by Assumption 2, j� (z; �; r)j � 2=C uniformly over (z; �; r). Therefore,

� (z) is uniformly bounded over the support of Zi and E[jj� (Zi)jj2] < 1. By the de�nition of

� (z) and � (z; Lu) (given in (48) and (49)), we can easily see that E[� (Zi)] = 0 (recall also the

way we have derived the form of � (�) in (33)).

Next, we verify the equality in (47). By the uniform convergence result (17) in Lemma 1, we

have

�
1=
p
n
�Xn

i=1
�D� (Zi) [̂s (Li)� s� (Li)]

=
�
1=
p
n
�Xn

i=1
�D� (Zi) [n

�1
Xn

k=1
� (Zk; Li)] +OP ((lnn)=

p
n): (50)
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By the de�nition of � (�) given in (48), we can writeXn

i=1
� (Zi) =

Z
�D� (z) [n�1

Xn

k=1
� (Zk; l)]dF

�
Z (z) :

By using this and letting

a (i; k) := �D� (Zi) � (Zk; Li)�
Z
�D� (z) � (Zk; l) dF

�
Z (z) ;

we can also write�
1=
p
n
�nXn

i=1
�D� (Zi) [n

�1
Xn

k=1
� (Zk; Li)]�

Xn

i=1
� (Zi)

o
=

�
1=
p
n
�
n�1

Xn

i=1

Xn

k=1

�
�D� (Zi) � (Zk; Li)�

Z
�D� (z) � (Zk; l) dF

�
Z (z)

�
=

�
1=
p
n
�
n�1

nXn

i=1
a (i; i) +

XX
1�i;j�n; i6=j

a (i; k)
o
= OP

�
1=
p
n
�
= oP (1) ; (51)

where the last equality holds since E[jja (i; i)jj2] = O (1) (uniformly over any i, which follows from

the boundedness of relevant functions) and

E[jj
PP

1�i;j�n; i6=j a (i; j) jj
2] = O

�
n2
�
: (52)

We can see that this result (52) holds true by noting the following expansion:

E[jj
PP

1�i;j�n; i6=j a (i; j) jj
2] = n (n� 1) fE[a (1; 2)0 a (1; 2)] + E[a (1; 2)0 a (2; 1)]g

+n (n� 1) (n� 2) fE[a (1; 2)0 a (1; 3)] + E[a (1; 2)0 a (3; 1)] + E[a (1; 2)0 a (2; 3)] + E[a (1; 2)0 a (3; 2)]g

+n (n� 1) (n� 2) (n� 3)E[a (1; 2)0]E [a (3; 4)] ; (53)

where jj�jj stands for the usual Euclidean norm; the equality holds by the I.I.D. condition; the

second and third terms on the right-hand side are zero since E [a (i; k) jZk] = E [a (i; k) jZi] = 0

for any i 6= k; and it holds that E[a (1; 2)0 a (1; 2)] = O (1) and E[a (1; 2)0 a (2; 1)] = O (1) by the

boundedness of the relevant functions. Now, by (50) and (51), we obtain the desired result (47).

Step 4: Functional CLT of Ĝ and weak convergence of
p
n[�̂ � �� ].

Recall the de�nitions of �̂ and �
�
 stated in de�ning (12). Then, by (22) and (38) together

with the de�nition of the E.D.F., we have uniformly over (x; l) 2 X � L,
p
n[�̂ (x; l)� �� (x; l)] = Ĝ (x; l) + oP (1) ; (54)

where

Ĝ(x; l) : = (1=
p
n)

nX
i=1

0BBB@
 (Zi)

� (Zi; l)

g (Zi; x; l)

1CCCA ; (55)

g (Zi; x; l) : = 1fXi � x & Li � lg � F �X;L (x; l) ;
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From this expression, we can see that the asymptotic properties of
p
n[�̂ � �� ] are determined by

those of Ĝ . We below prove a functional CLT of this Ĝ , i.e., the weak convergence of Ĝ to a

tight Gaussian process. To formally prove the FCLT result, we hereafter work as if L (the range

of Li) is a bounded subset of R2, while L is in fact a set of latitude-longitude points on the sphere.

Accordingly, we regard s� (�; r), �� (�; r), F �X;L (x; �) and all relevant functions as functions on (the

subset of) R2. This way of treating L (and the functions on L) is possible by decimalizing a pair

of latitude-longitude �gures appropriately, if L does not include any band or ring surrounding the

sphere.15 Also, note that this way does not at all restrict a way of calculating/de�ning a distance

on L. We can still use a distance measured along a path on the sphere�s surface (say, one based on

the Haversine formula), but by (re-)de�ning the relevant function as functions on R2, we can easily

de�ne some continuity properties of functions.16

We now derive the weak convergence of Ĝ (as elements of l1(X � L), which denotes the

set of all bounded (2dX + 3J + 1)-dimensional vector-valued functions, X � L(� RdX � R2) !

R2dX+3J+1).17 While our main purpose is an inference on Û (), we are also interested in examining

whether it di¤ers from ~U (), i.e., the e¤ect of taking into account the externality. To implement

an econometric inference jointly on Û () and ~U (), we also consider the joint result of �̂ (x; l)

and (~�
0
0;
~�
0
1)
0, which is useful to derive the joint asymptotic distribution of (Û () ; ~U ())0.

Lemma 4 Suppose that Assumptions 1-5.

Then, (i) it holds that

Ĝ =) G�
 ; (56)

for each , where =) denotes the weak convergence; the weak convergence takes place in l1(X �L);

l1(X � L) is the set of all vector-valued bounded maps, X � L(� RdX � R2) ! R2dX+3J+1);
15For example, it is possible if L is the set of all points satisfying 45�N � latitude � 55�N and 5�S � longtitude �

15�E; but not if L is the set of all points satisfying 45�N � latitude � 55�N. For the latter, L is a latitude "band"

surrounding the sphere, and it is hard to think of its projection on R2 since the points of 180�E (+180) are also those

of 180�S (�180).
16For example, in de�ning the right continuity of FX;L (�; �), we should consider that FX;L (�; �) is a function on (a

subset of) RdX � R2.
17Note that in empirical process theory, it is often standard to consider a set of functions as an index set (rather

than X �L, a subset of RdX �R2, as here). To verify the desired weak convergence result in our subsequent proof, we

actually consider such a set of functions F (de�ned in (57)). However, the weak convergence in l1(F) (the space of

all bounded (2dX +3J +1)-dimensional vectors of maps, F ! R2dX+3J+1) implies that in l1(X �L) under standard

conditions (see Section 19.5 of van der Vaart, 1998). Therefore, we can work here without explicitly de�ning some

set of functions as an index set.
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Ĝ = fĜ (x; l)g(x;l)2X�L; and G�
 = fG�

 (x; l)g(x;l)2X�L is a tight mean-zero Gaussian process

(indexed by (x; l) 2 X � L, for each ) whose covariance kernel �� is given as

�� ((x1; l1) ; (x2; l2)) := E

26664
0BBB@

 (Zi)

�(Zi; l1)

g(Zi; x1; l1)

1CCCA
0BBB@

 (Zi)

�(Zi; l2)

g(Zi; x2; l2)

1CCCA
037775 :

(ii) It holds that
p
n[�̂ � �� ] =) G�

 ;

for each , where [�̂ ��� ] = f[�̂ (x; l)��� (x; l)]g(x;l)2X�L; and the weak convergence takes place

in the space l1(X � L).

(iii) It also holds that

p
n

0@ �̂ � ��
(~�
0
0;
~�
0
1)
0 � (���00 ; ���01 )0

1A =) H�
 ;

where the weak convergence takes place in the space of �l1(X � L), the set of all vector-valued

bounded maps, X � L(� RdX � R2)! R4dX+3J+1); and H�
 = fH�

 (x; l)g(x;l)2X�Lis a tight mean-

zero Gaussian process (indexed by (x; l) 2 X �L, for each ; the �rst 2dX + 3J + 1 components of

H�
 (x; l) coincide with G

�
 (x; l)) whose covariance kernel is given as

��
 ((x1; l1) ; (x2; l2)) := E

266666664

0BBBBBB@
 (Zi)

�(Zi; l1)

g(Zi; x1; l1)

� (Zi)

1CCCCCCA

0BBBBBB@
 (Zi)

�(Zi; l2)

g(Zi; x2; l2)

� (Zi)

1CCCCCCA

0377777775
;

� (Zi) := �
�
�M���1m (Zi; ���;0) ; �M� := E

��
@=@�0

�
m (Zi; ��

�;0)
�
:

Proof. We can check the (uniform) validity of the linear representation in (15) by the results

proved in Lemmas 1, 2 and 3. Therefore, given the part (i) of the lemma, the result (ii) follows

immediately by using standard results on stochastic convergence (see, e.g., (iv) of Theorem 18.10

in van der Vaart, 1998) and we omit details. We also omit the proof of the part (iii) for brevity,

which is quite analogous to the proof of the parts (i) and (ii).

To prove the result (i), we consider the following set of functions:

F = f( (�) ; � (�; l)0 ; g (�; x; l))0g(x;l)2X�L: (57)
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Given this, in order to obtain the weak convergence of fG�
 (x; l)g(x;l)2X�L in the space l1(X �L),

we follow the same strategy as in the proof of Theorem 19.28 of van der Vaart (1998) (or that as

in Theorem 2.11.22 of VW, 1996). While van der Vaart�s theorem deals with a set of univariate

(real-valued) functions, it can be easily extended to the multivariate (vector-valued) function case.

We omit the proof for the multivariate case (since it is a trivial modi�cation of van der Vaart�s

proof), but we can verify the weak convergence result for the multivariate case by checking the

following four conditions (in addition to the I.I.D. condition in Assumption 1): (I) There exists

some (pseudo) metric % with which the space T (= X � L) is a totally bounded. (II) For any

fs; ft2F , it holds that

sup%(s;t)<�n; s;t2T E[jjfs (Zi)� ft (Zi) jj
2]! 0 as �n ! 0; (58)

where jj�jj stands for the usual Euclid norm. (III) supf2F supz2Z jjf (z) jj <1, where Z denotes the

support of a random vector Zi. (IV) Let Fq be each q-th element of F (q 2 f1; : : : ; (d� + J + 1)g);

and then for each q, there exists some positive constants c1, c2 such that

max1�q�d�+J+1 supQ N (�;Fq; L2 (Q)) � c1��c2 ; (59)

where the supremum is taken over all probability measures on T (= X � L).

Now, we check the four conditions (I)-(IV). The condition (I) is trivially satis�ed by setting % as

the usual Euclidean metric, since T is a bonded subset of the dX +2 dimensional Euclidean space.

To verify (II), recall that by the continuity of Assumption 5, each element of E[Ĝ(x; l)Ĝ(x; l)
0]

is continuous. Since the domain X �L is totally bounded, this continuity actually holds uniformly

over (x; l) 2 X � L, leading to (58). The condition III) can be also easily checked by noting that

each component of Ĝ is uniformly bounded over (x; l) 2 X �L, i.e.,  (z), which is independent of

(x; l), is uniformly bounded over the support of Zi (see the proof of Lemma 3); j� (z; l) j � 2=C by

Assumption 2; and the uniform boundedness of g (Xi; Li; x; l) := 1fXi � x & Li � lg � F �X;L (x; l)

is also obvious by the de�nition of the C.D.F.

Finally, to verify the condition (IV), recall that for q 2 f1; : : : ; d�g, Fq consists of a single-

ton (the q-th element of the vector-valued function  (�)); for q 2 fd� + 1; : : : ; d� + Jg, Fq :=

f�
�
�; l; rq�d�

�
gl2L; and for q = d� + J + 1, Fq := fg (�; x; l)g(x;l)2X�L. Here, we verify (59) by

explicitly computing the covering number bound of f� (�; l; r)gl2L for each r 2 fr1; : : : ; rJg and

that of fg (�; x; l)g(x;;l)2X�L. Now, �x any r 2 fr1; : : : ; rJg (we here suppress the dependence of

variables/functions on r for notational simplicity), and recall that the form of the function de�ned
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in (20): � (Zi; l; r) = 1 fjjl � Lijj � rg
�
1 fX1;i < g � s� (l; r)

�
=�� (l; r). This may be regarded as

a composite of several functions, and we consider each subcomponent of � (�; l; r). First, we let

H1 be the set of functions: H1 := fh1 (�jl) j l 2 Lg with h1 (~zjl; r) = 1fjjl � ~ljj � rg. Then, by the

arguments as in the proof of Lemma 1,

supQN (�;H1; L2 (Q)) � �1��10 for � 2 (0; 1) ;

where the supremum is over all probability measures on X � L; and �1 (> 0) is some constant

independent of Q (note that jh1j � 1 for any h1 2 H1). Second, let H2 := fs� (l; r)gl2L and

H3 := f1=�� (l; r)gl2L. H2 is a set of constant functions (of Zi) since s� (l; r) is independent of

Zi. By the same token, F3 is also a set of constant functions. Therefore, by the de�nition of the

covering number, we can easily derive the following bounds:

supQN (�;H2; L2 (Q)) � �2��1 and supQN
�
C�1�;H3; L2 (Q)

�
� �3��1;

for � 2 (0; 1), where each supremum is over all probability measures on X �L; �2 and �3 are some

positive constants independent of Q (note that sup(l;r)2L�[r;1) s
� (l; r) � 1 by the de�nition of s�;

and sup(l;r)2L�[r;1)f1=�� (l; r)g � 1=C by Assumption 2). Third, look at

f� (�; l; r)gl2L � fh1 � [1 f� < g � h2]� h3 j h1 2 H1; h2 2 H2; h3 2 H3g :

Using this fact with (v) of Lemma 9.9, Lemmas 9.18 and 9.25 of Kosorok (2008), we can see that

the covering number of f� (�; l; r)gl2L satis�es

supQN(�c�; f� (�; l; r)gl2L; L2 (Q)) � �1�3�3��12 for � 2 (0; 1) ; (60)

where the supremum is over all probability measures on X �L, and �c is some constant independent

of Q.

We now turn to Fd�+J+1 = fg (�; x; l)g(x;l)2X�L. To bound its covering number, we use the

following two results:

supQN(�; f1f� � x & � � lgg(x;l)2X�L; L2 (Q)) � �4��2[(dX+4)�1] = �4��2(dX+3);

supQN(�; fF �X;L (x; l)g(x;l)2X�L; L2 (Q)) � �5��1;

where each supremum is over all probability measures on X � L; �4 and �5 are some positive

constants independent of Q; the former result follows from (i) of Lemma 9.12 and Lemma 9.2,

Kosorok (2008) (recall that we can regard L as a bounded subset of R2 by Assumption 4); and the
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latter follows from the fact that the functional set in question consists of only constant functions.

From these, we can obtain

supQN(�; fg (�; x; l)g(x;l)2X�L; L2 (Q)) � �4�5��2dX�7 for � 2 (0; 1) ; (61)

where the supremum is over all probability measures on X �L, and �c is some constant independent

of Q. By (60) and (61), we can obtain (59) and check the condition (IV). Thus, part (i) of the

theorem is veri�ed, completing the proof of Lemma 4.

Steps 5 & 6: Functional delta method.

Next, we use the functional delta method to �nd the asymptotic distribution of Û () (for each

). For our formal presentation, we need to de�ne the domain of the functional 	 precisely. For

this purpose, let C [L] be the set of all J-dimensional vector-valued functions, s : L ! (�1;1)J

with s =(s1; : : : ; sJ)
0 and each element sj being a càdlàg function: L ! (�1;1), and BV [X � L]

be the set of all càdlàg functions, X � L ! (�1;1), of variation bounded by some M(< 0).18

Given these, we can re-de�ne 	 as a functional D := Rd� � C [L]� BV [X � L]! (�1;1). This

re-formulation allows us to verify the following di¤erentiability condition required for the functional

delta method:

Lemma 5 Suppose that Assumptions 3-5 hold. Then, the functional 	(: D ! R) whose form is

given in (11) is Hadamard di¤erentiable at �� tangentially to the domain D, and its Hadamard

derivative ��(�)(: D! R) is given by

��(�) =

Z �
1 fx1 � g � �

�
x0��0 +

PJ
j=1 �

�
j;0s

�
 (l; rj)

�
�
h
x0(�0���0) +

PJ
j=1(�j;0 � �

�
j;0)s

�
 (l; rj) +

PJ
j=1 �

�
j;0(sj (l)� s� (l; rj))

i
+1 fx1 < g � �

�
x0��1 +

PJ
j=1 �

�
j;1s

�
 (l; rj)

�
�
h
x0(�1���1) +

PJ
j=1(�j;1 � �

�
j;1)s

�
 (l; rj) +

PJ
j=1 �

�
j;1(sj (l)� s� (l; rj))

i�
dF �X;L (x; l)

+

Z �
1 fx1 � g � �

�
x0��0 +

PJ
j=1 �

�
j;0s

�
 (l; rj)

�
+1 fx1 < g � �

�
x0��1 +

PJ
j=1 �

�
j;1s

�
 (l; rj)

��
d(FX;L (x; l)� F �X;L (x; l)); (62)

for each , where � is the probability density function of the standard normal; � := (�� ��) 2 D

with � = (�00; �
0
1; �1;0; : : : ; �J;0; �1;1; : : : ; �J;1; s1 (�) ; : : : ; sJ (�) ; F (�; �))0, a generic element of D.

18A càdlàg function is a function which is right-continuous and whose left limits exist at any points.
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Proof. Recall the functional form of �, the linear speci�cation in (7), and the form of the

likelihood function (8). Then, we can easily verify the existence of the Hadamard derivative and its

form (62) by using the standard chain rule for Hadamard di¤erentiable functionals and arguments

analogous to those in the proof of Lemma 20.10 of van der Vaart (1998). We omit details of the

proof for brevity.

Given these preparations, we can now prove Theorem 1.

Proof of Theorem 1. We here use the functional delta method (see, e.g., Theorem 20.8 of

van der Vaart, 1998). To do so, let ��� be the Hadamard derivative of the functional 	(: D ! R)

at ��� := (��
�0
0 ;
��
�0
1 ;0

0
3J ; F

� (�; �))0 with 03J being the 3J-dimensional vector of zeros. By the same

arguments as for Lemma 5, we can verify the existence of ��� and derive its form:

���(��) =

Z �
1 fx1 � g�

�
x0��

�
0

�
x0(�0����0) + 1 fx1 < g�

�
x0��

�
1

�
x0(�1����1)

�
dF �X;L (x; l)

+

Z �
1 fx1 � g�

�
x0��

�
0

�
+ 1 fx1 < g�

�
x0��

�
1

��
d(FX;L (x; l)� F �X;L (x; l)); (63)

for each , where a generic form of �� can be written as �� =(�� ���) 2 D.

Let �D := D� R2dX , and J� be a map from �D to R2:

J� (h) := (�
�
 (�) ;

���(��))
0;

where � (x; l) and �� (x; l) are 2dX + 3J + 1-dimensional vector (for each (x; l) 2 X �L); � (x; l) is

the �rst 2dX +3J+1 components of h (x; l); �� (x; l) consists of the last 2dX components of h (x; l),

003J and the (2dX + 3J + 1)-th component of h (x; l) (with the stated order).

Now, applying the functional delta method, together with the results of Lemmas 4, we can

obtain
p
n(Û ()� U� () ; ~U ()� �U� ())0

d! J� (H
�
):

Since H�
 is a mean-zero Gaussian process (as de�ned in Lemma 4) and J

�
 is a continuous linear

map (recall the forms of �� and ��
�
 given in (62) and (63)), �

�
(G

�
) is normally distributed with

mean zero, and the form of the variance matrix � () can be computed as in Section 3.9.2 of VW

(1996) (with the aid of the Riesz representation and Fubini theorems). This completes the proof.

A.2 Bootstrap validity

Step 7 Bootstrap validity: We here provide the proof the validity of our bootstrap inference

(Theorem 2) with two auxiliary lemmas which follow the proof of the theorem.
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Proof of Theorem 2. We below consider the bootstrap consistency result only for
p
n(Û# ()�

Û ()). The joint result for
p
n(Û# () � Û () ; ~U# () � ~U ())0 can be shown quite analogously,

and we omit details.

We �rst consider a convergence result for
p
n[�̂# (x; l)� �̂ (x; l)]. To this end, we de�ne

~G#
 (x; l) := (1=

p
n)

nX
i=1

0BBB@
 ̂(Z#i )

�̂(Z
#
i ; l)

ĝ(Z#i ; x; l)

1CCCA ; (64)

where

 ̂(Z#i ) : = �[M̂]�1
n
m(Z#i ; �̂; ŝ(L

#
i )) + �̂(Z

#
i )
o
;

M̂ : = n�1
Xn

i=1
E
�
(@=@�0)m(Zi; �̂; ŝ (Li))

�
;

�̂ (z) : = n�1
Xn

u=1
D̂ (Zu) �̂ (z; Lu) ; D̂ (z) := (@=@s0)m (z; �̂; s)

��
s=ŝ(l)

;

�̂ (z; Lu) : = (�̂ (z; Lu; r1) ; : : : ; �̂ (z; Lu; rJ))
0; (65)

�̂ (z; Lu; r) : = 1fjjLu � ljj � rg [d� ŝ (Lu; r)] =�̂ (Lu; r) ;

�̂(Z
#
i ; l) : = (�̂(Z

#
i ; l; r1); : : : ; �̂(Z

#
i ; l; rJ))

0; (66)

�̂(Z
#
i ; l; r) : = 1fjjl � L#i jj � rg

h
1fX#

1;i < g � ŝ (l; r)
i
=�̂ (l; r) ;

ĝ(Z#i ; x; l) : = 1fX#
i � x & L

#
i � lg � F̂X;L (x; l) :

We note that ~G#
 (x; l) is a bootstrap counterpart of Ĝ (x; l) (i.e., it is constructed by replacing

all the true parameters in Ĝ (x; l) with their empirical estimates, and that by the de�nitions,

E#[ ̂(Z#i )] = 0; E
#[�̂(Z

#
i ; l)] = 0; and E#[ĝ(Z#i ; x; l)] = 0; (67)

where E# denotes the mathematical expectation with respect to the E.D.F., e.g., E#[ ̂(Z#i )] =

(1=n)
Pn
i=1  ̂ (Zi).

Now, we can easily show that

sup(x;l)2X�L

���pn[�̂# (x; l)� �̂ (x; l)]� ~G#
 (x; l)

��� P
=)
#
0; (68)

whose proof proceeds in the same way as the proof of (15) (but with replacing the true C.D.F. and

estimators replaced by the E.D.F. and their bootstrap counterparts, respectively), and we omit

details. We further consider the following object:

Ĝ#
 (x; l) :=

1p
n

nX
i=1

0BBB@
 (Z#i )

�(Z
#
i ; l)

g(Z#i ; x; l)

1CCCA� Ĝ(x; l); (69)

49



which is a bootstrap counterpart of Ĝ(x; l) (note that Ĝ
#
 (x; l) is re-centered and E[Ĝ (x; l)] = 0).

Then, we show the following convergence result:

sup(x;l)2X�L

���~G#
 (x; l)� Ĝ#

 (x; l)
��� P
=)
#
0: (70)

To prove this, recall the zero-mean conditions in (67), as well as the de�nitions of ~G#
 and Ĝ

#
 in

(64) and (69), respectively. Then, we can write

~G#
 (x; l)� Ĝ#

 (x; l)

=
1p
n

nX
i=1

0BBB@
 ̂(Z#i )� (Z

#
i )

�̂(Z
#
i ; l)� �(Z

#
i ; l)

ĝ(Z#i ; x; l)� g(Z
#
i ; x; l)

1CCCA� 1p
n

nX
k=1

0BBB@
 ̂ (Zk)� (Zk)

�̂(Zk; l)� � (Zk; l)

ĝ (Zk; x; l)� g (Zk; x; l)

1CCCA ; (71)

where the convergence results of the components involving  ̂(Z#i ),  (Z
#
i ), �̂ and � are presented

in Lemmas 7; and the convergence of the last row component can be shown analogously and its

proof is omitted (recall the fact that the (usual) convergence in probability implies the conditional

weak convergence in probability).

Note that Ĝ#
 is simply in the form of a bootstrapped empirical process, to which we can

directly apply the bootstrap CLT (e.g., Theorem 3.6.1 of VW, 1996; or Theorem 2.6 of Kosorok,

2008). That is, by the weak-convergence/Donsker result of Ĝ ((i) of Lemma 4), it holds that

Ĝ#


P
=)
#
G�
 ;

where the conditional weak convergence in probability take places in the space l1(X � L) (given

the original observations fZigni=1). This, together with (68) and (70), implies that

p
n[�̂# � �̂ ]

P
=)
#
G�
 : (72)

Now, we have obtained the weak convergence of
p
n[�̂ ��� ] ((ii) of Lemma 4), the conditional

weak convergence of
p
n[�̂# ��̂ ] (the result (72)), and the Hadamard di¤erentiability of 	 (Lemma

5). By these three results, we can apply the functional delta method for bootstrap (Theorem 3.9.11

of VW, 1996), which veri�es that
p
n(Û# ()� Û ()) P

=)
#
N (0;� ()) as n!1, as desired (note

that the separability requirement of Theorem 3.9.11 of VW (1996) is trivially satis�ed since G�
 is

a Gaussian process and X � L is a subset of RdX � R2). This completes the proof of the theorem.
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Lemma 6 Suppose that the same conditions hold as in Theorem 2. Then,

sup(x;l)2X�L(1=
p
n)
nXn

i=1
[ ̂(Z#i )� (Z

#
i )]�

Xn

k=1
[ ̂ (Zk)� (Zk)]

o
= oP (1) :

Proof. Let (Mn;1; : : : ;Mn;n) be a vector of multinomial-distributed random variables with the

parameter n, and the probability vector (1=n; : : : ; 1=n) which is independent of fZigni=1. Then, by

the de�nition of our bootstrap procedure, we can write

Xn

i=1
[ ̂(Z#i )� (Z

#
i )] =

Xn

i=1
Mn;i[ ̂ (Zi)� (Zi)]: (73)

By the (uniform) law of large numbers, which follows from the same arguments for deriving (45) in

Lemma 2, we can write M̂�1 = [M�]�1 + en with en = oP (1). Therefore, recalling the de�nition

of  ̂, we can also write

 ̂ (Zi) = �[M�]�1 fm(Zi; �̂; ŝ (Zi)) + �̂ (Zi)g � en fm(Zi; �̂; ŝ (Li)) + �̂ (Zi)g : (74)

Now, by these expressions (73)-(74), we have

(1=
p
n)
nXn

i=1
[ ̂(Z#i )� (Z

#
i )]�

Xn

k=1
[ ̂ (Zk)� (Zk)]

o
= (1=

p
n)
Xn

i=1
(Mn;i � 1)[ ̂ (Zi)� (Zi)]

= �(1=
p
n)[M�]�1

Xn

i=1
(Mn;i � 1)[m (Zi; �̂; ŝ (Li))�m (Zi;�

�; s� (Li))];

+(1=
p
n)[M�]�1

Xn

i=1
(Mn;i � 1)[�̂ (Zi)�� (Zi)];

�(1=
p
n)en

Xn

i=1
Mn;i[m (Zi; �̂; ŝ (Li)) + �̂ (Zi)]:

= [M�]�1[�Jn;1 + Jn;2]� Jn;3;

where

Jn;1 : = (1=
p
n)
Xn

i=1
(Mn;i � 1) [m (Zi; �̂; ŝ (Li))�m (Zi;��; s� (Li))] ;

Jn;2 : = (1=
p
n)
Xn

i=1
(Mn;i � 1) [�̂ (Zi)�� (Zi)] ;

Jn;3 : = (1=
p
n)en

Xn

i=1
Mn;i [m (Zi; �̂; ŝ (Li)) + �̂ (Zi)] :

We can show that

Jn;1 = OP ((lnn) =
p
n); (75)

Jn;2 = OP ((lnn) =
p
n); (76)

Jn;3 = oP (1) ; (77)
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whose proofs are below provided. These results imply the conclusion of the lemma.

To derive the convergence result for Jn;1, observe that

m (Zi; �̂; ŝ (Li))�m (Zi;��; s� (Li))

= (@=@s0)m (Zi;�
�; s� (Li)) [̂s (Li)� s� (Li)] + (@=@�0)m (Zi;��; s� (Li)) (�̂ � ��)

+O(supl2L jĵs (l)� s� (l) jj2) +O(jj�̂ � ��jj2)

= (@=@s0)m (Zi;�
�; s� (Li)) [n

�1
Xn

u=1
� (Zu; Li)] + (@=@�

0)m (Zi;�
�; s� (Li)) [�̂ � ��]

+OP ((lnn) =n); (78)

uniformly over i, where the equalities follow from the Taylor expansion, the (uniform) boundedness

of the derivatives ofm, the
p
n-consistency of �̂, and the result (18) in Lemma 1. This implies that

Jn;1 = (1=
p
n)
Xn

i=1
(Mn;i � 1)

�
@=@s0

�
m (Zi;�

�; s� (Li)) [n
�1
Xn

u=1
� (Zu; Li)]

+(1=
p
n)
Xn

i=1
(Mn;i � 1)

�
@=@�0

�
m (Zi;�

�; s� (Li)) (�̂ � ��) +OP ((lnn) =
p
n)

= n�3=2
nXn

i=1
b (i; i) +

XX
1�i;u�n; i6=u

b (i; u)
o
+OP (1=

p
n) +OP ((lnn) =

p
n)

= OP ((lnn) =
p
n); (79)

where

b (i; u) := [Mn;i � 1]
�
@=@s0

�
m (Zi;�

�; s� (Li)) � (Zu; Li) :

The second equality in (79) holds since

jj
Pn
i=1 (Mn;i � 1)

�
@=@�0

�
m (Zi;�

�; s� (Li)) (�̂ � ��)jj2

= OP (jj�̂ � ��jj2)�
Pn
i=1(Mn;i � 1)2 +

PP
1�i;k�n; i6=k (Mn;i � 1) (Mn;k � 1)

�(�̂ � ��)0
�
(@=@�0)m (Zi;�

�; s� (Li))
�0
(@=@�0)m (Zi;�

�; s� (Li)) (�̂ � ��)

= OP (1) ;

which follows from the uniform boundedness of (@=@�0)m, the
p
n-consistency of �̂, the indepen-

dence between (Mn;1; : : : ;Mn;n) and fZigni=1, and the facts that

E[(Mn;i � 1)2] = Var[Mn;i] = n (1=n) [1� (1=n)] = 1� 1=n;

E [(Mn;i � 1) (Mn;k � 1)] = Cov [Mn;i;Mn;k] = �1=n (for i 6= k):
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To see the validity of third equality in (79), we observe that
Pn
i=1 b (i; i) = OP (n) and

E[jj
PP

1�i;u�n; i6=u b (i; u) jj
2] =

PP
1�i;u�n; i6=ufE[b (i; u)

0 b (i; u)] + E[b (i; u)0 b (u; i)]g

+
PPP

1�i;u;v�n; i6=u6=vfE[b (i; u)
0 b (u; v)] + E[b (i; u)0 b (v; i)]

+E[b (i; u)0 b (u; v)] + E[b (i; u)0 b (v; u)]g

+
PPPP

1�i;u;v;w�n; i6=u6=v 6=w E[b (i; u)
0 b (v; w)]

=
PP

1�i;u�n; i6=ufE[b (i; u)
0 b (i; u)] + E[b (i; u)0 b (u; i)]g

+
PPP

1�i;u;v�n; i6=u6=v E[b (i; u)
0 b (v; u)]

= n2 �O(1) + n3 �O(1=n) = O(n2); (80)

where the equalities use the following facts: E [b (i; u) jZi] = 0 for i 6= u;

E[b (i; u)0 b (i; u)] = O (1) and E[b (i; u)0 b (u; i)] = O (1) ;

uniformly over i and u; and

E[b (i; u)0 b (v; u)]

= Cov[Mn;i;Mn;v]� E[� (Zu; Li)0
��
@=@s0

�
m(Zi;�

�; s� (Li))
�0 �
@=@s0

�
m(Zi;�

�; s� (Lv))� (Zu; Lv)]

= �(1=n)�O (1) ; uniformly over i; u and v (i 6= u 6= v);

which follows from the independence between (Mn;1; : : : ;Mn;n) and fZigni=1, and the uniform

boundedness of (@=@s0)m and �. Now, we have proved the desired result (75)

We now look at Jn;2. Analogously to (83) and (84), we can write

�̂ (Zi; l; r) = � (Zi; l; r) + �n (Zi; Lu; r) +OP ((lnn) =n);

uniformly over Zi, Lu, l and r, where

�n(~z; l; r) := ["n (l; r) =�
� (l; r)]1fjjl � ~ljj � rg+ [�n (l; r) =�� (l; r)]1fjjl � ~ljj � rg

�
d� s� (l; r)

�
;

"n (l; r) and �n (l; r) are the same components used in (82), and �n (~z; l; r) = OP (
p
(lnn) =n) uni-

formly over ~z; l and r. Let �n (~z; l) := (�n (~z; l; r1) ; : : : ; �n (~z; l; rJ))0. Then, we can write

�̂(Zi; Lu) = �(Zi; Lu) + �n (Zi; Lu) +OP ((lnn) =n): (81)
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For notational simplicity, we denote by w� (z;�; s) the �-th row vector of the by the d�-by-J matrix

(@=@s0)m (z;�; s) (1 � � � d�), i.e., each w� (z;�; s) is a 1-by-J vector with

(@=@s0)m(z;�; s) =

0BBB@
w1 (z;�; s)

...

wd� (z;�; s)

1CCCA :
Then, by using the Taylor expansion (as in 78)), the boundedness of the derivatives of w� , and the

expression (81),

w� (Zu; �̂; ŝ (Lu)) �̂ (Zi; Lu) = w� (Zu;�
�; s� (Lu)) �̂ (Zi; Lu)

=
�
@=@s0

� h
w� (Zu;�

�; s� (Lu)) �̂ (Zi; Lu)
i
[̂s (Lu)� s� (Lu)] +O(supl2L jĵs (l)� s� (l) jj2)

+
�
@=@�0

� h
w� (Zu;�

�; s� (Lu)) �̂ (Zi; Lu)
i
(�̂ � ��) +O(jj�̂ � ��jj2)

= w� (Zu;�
�; s� (Lu)) [� (Zi; Lu) + �n (Zi; Lu)]

+
�
@=@s0

�
[w� (Zu;�

�; s� (Lu)) � (Zi; Lu)] [̂s (Lu)� s� (Lu)]

+
�
@=@�0

�
[w� (Zu;�

�; s� (Lu)) � (Zi; Lu)] (�̂ � ��) +OP ((log n) =n);

uniformly over u and i, for � = 1; : : : ; d�. Therefore, recalling the following expression:

�̂ (Zi)�� (Zi)

= n�1
Xn

u=1
(@=@s0)m (Zu; �̂; ŝ (Lu)) �̂ (Zi; Lu)�

Z
(@=@s0)m (z;��; s� (l)) � (Zi; l) dFZ (z) ;

we can write

the �-th element of the column vector Jn;2

= Kn;1 (�) +Kn;2 (�) +Kn;3 (�) +Kn;4 (�) +OP ((log n) =
p
n);

where

Kn;1 (�) : = (1=n3=2)
nP
i=1

nP
u=1
(Mn;i � 1)

�
�
w� (Zu;�

�; s� (Lu)) � (Zi; Lu)�
R
w� (z;�

�; s� (l)) � (Zi; l) dFZ (z)
�
;

Kn;2 (�) : = (1=n3=2)
nP
i=1

nP
u=1
(Mn;i � 1)w� (Zu;��; s� (Lu))�n (Zi; Lu) ;

Kn;3 (�) : = (1=n3=2)
nP
i=1

nP
u=1
(Mn;i � 1)

@

@s0
[w� (Zu;�

�; s� (Lu)) � (Zi; Lu)] [̂s (Lu)� s� (Lu)];

Kn;4 (�) : = (1=n3=2)
nP
i=1

nP
u=1
(Mn;i � 1)

@

@�0
[w� (Zu;�

�; s� (Lu)) � (Zi; Lu)] (�̂ � ��):
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We can show that E[jKn;1 (�)j2] = O (1=n) by considering its expansion as in (80) and using the

facts that

E
�
w� (Zu;�

�; s� (Lu)) � (Zi; Lu)�
R
w� (z;�

�; s� (l)) � (Zi; l) dFZ (z)
��Zi� = 0;

E
�
w� (Zu;�

�; s� (Lu)) � (Zi; Lu)�
R
w� (z;�

�; s� (l)) � (Zi; l) dFZ (z)
��Zu� = 0;

where the latter follows from the de�nition of � (Zi; l) (given in (19)). We can also show that

Kn;2 (�) = OP (
p
(lnn) =n) and Kn;3 (�) = OP (

p
(lnn) =n) for each �. To prove these two, we

expand each of E[jKn;2 (�)j2] and E[jKn;3 (�)j2] as in (80) (both exist since w� and its derivatives,

�n (Zi; Lu), � (Zi; Lu) and [̂s (Lu) � s� (Lu)] are uniformly bounded), and then use the results:

� (Zi; Lu) = OP (
p
(lnn) =n) and [̂s (Lu)�s� (Lu)] = OP (

p
(lnn) =n) are OP (

p
(lnn) =n) uniformly

over i and u; the independence condition between (Mn;1; : : : ;Mn;n) and fZigni=1; and the following

fact:

E [(Mn;i � 1)(Mn;u � 1)(Mn;v � 1)(Mn;w � 1)] = 3 (n� 2) =n3 = O
�
1=n2

�
;

for 1 � i 6= u 6= v 6= w � n, which follows from the generalized factorial moment formula for

multinomial distributions (page 67, Mosimann, 1962). By using analogous arguments with the
p
n-consistency of �̂ and the fact that

E[
@

@�0
[w� (Zu;�

�; s� (Lu)) � (Zi; Lu)]

����Zu] = 0;
we can also show jKn;4 (�)j2 = OP (1=n). From these, we can obtain the desired result (76).

Finally, we look at Jn;3. Using the fact that en = OP (1=
p
n), we can write

Jn;3 = OP (1=n)�
nXn

i=1
Mn;i [m(Zi;�

�; s� (Li)) +� (Zi)]

+
Xn

i=1
Mn;i [m(Zi; �̂; ŝ (Li))�m(Zi;��; s� (Li))] +

Xn

i=1
Mn;i[�̂ (Zi)�� (Zi)]

o
:

The �rst term within the curly braces is OP (1=
p
n) since E [m (Zi;��; s� (Li)) +� (Zi)] = 0 and

thus

E[j
Pn
i=1Mn;i [m (Zi;�

�; s� (Li)) +� (Zi)]j2] = O(n):

The second and third terms within the curly braces are oP (n) since we have the uniform convergence

of [m (z; �̂; ŝ (l))�m (z;��; s� (l))] and [�̂ (z)�� (z)] (over z; in probability), which can be easily

shown by using the Taylor expansion arguments with (uniform) convergence results of �̂ and ŝ (l).

Therefore, we have obtained Jn;3 = OP (1=n)� fOP (
p
n) + oP (n)g = oP (1), as desired. Now, the

proof of Lemma 6 is completed.
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Lemma 7 Suppose that the same conditions hold as in Theorem 2. Then,

sup
(x;l)2X�L

(1=
p
n)
nXn

i=1
[�̂(Z

#
i ; l)� �(Z

#
i ; l)]�

Xn

k=1
[�̂(Zk; l)� � (Zk; l)]

o
P
=)
#
0:

Proof. Noting the uniform convergence results of �̂ (l; r) and ŝ (l; r) in Lemma 1, and the

boundedness condition of �� (l; r) in Assumption 2, we can write

ŝ (l; r) = s
� (l; r) + "n (l; r) and 1=�̂ (l; r) = [1=�� (l; r)] + �n (l; r) ; (82)

where sup(l;r)2X�[r;1)maxfj"n (l; r) j; j�n (l; r) jg = OP (
p
(lnn) =n), andmaxfj"n (l; r) j; j�n (l; r) jg <

C for some C 2 (0;1) (the existence of such C follows from the boundedness of the relevant func-

tions and estimators). Given these (with recalling the de�nition of � and �̂ in (49) and (66), we

can write each component of the J � 1 vector [�̂(Z
#
i ; l)� �(Z

#
i ; l)] as

�̂(Z
#
i ; l; r)� �(Z

#
i ; l; r) = 1fjjl � L

#
i jj � rg

h
1fX#

1;i < g � ŝ (l; r)
i
=�̂ (l; r)

�1fjjl � L#i jj � rg
h
1fX#

1;i < g � s
�
 (l; r)

i
=�� (l; r)

= �[1=�� (l; r)]
�
"n (l; r) 1fjjl � L#i jj � rg+ �n (l; r) 1fjjl � L

#
i jj � rg

h
1fX#

1;i < g � s
�
 (l; r)

i
+"n (l; r) �n (l; r) 1fjjl � L#i jj � rg

�
;

for each r 2 fr1; : : : ; rJg. This leads to the following expression:

�̂(Z
#
i ; l; r)� �(Z

#
i ; l; r) = �["n (l; r) =�

� (l; r)]1fjjl � L#i jj � rg

+[�n (l; r) =�
� (l; r)]1fjjl � L#i jj � rg

h
1fX#

1;i < g � s
�
 (l; r)

i
+OP ((lnn) =n); (83)

uniformly over i 2 f1; : : : ; ng and l 2 L. In the same way, we can also write

�̂(Zk; l; r)� �(Zk; l; r) = �["n (l; r) =�� (l; r)]1 fjjl � Lkjj � rg

+[�n (l; r) =�
� (l; r)]1 fjjl � Lkjj � rg

�
1fX1;k < g � s� (l; r)

�
+OP ((lnn) =n); (84)

uniformly over i 2 f1; : : : ; ng and l 2 L. Therefore, for each r,

(1=
p
n)
Xn

i=1
f�̂(Z

#
i ; l; r)� �(Z

#
i ; l; r)g �

�
1=
p
n
�Xn

k=1
f�̂ (Zk; l; r)� � (Zk; l; r)g

= �["n (l; r) =�� (l; r)](1=
p
n)
nXn

i=1
1fjjl � L#i jj � rg �

Xn

k=1
1fjjl � Lkjj � rg

o
+[�n (l; r) =�

� (l; r)]
�
1=
p
n
�nXn

i=1
1fjjl � L#i jj � rg[1fX

#
1;i < g � s

�
 (l; r)]

�
Xn

k=1
1fjjl � Lkjj � rg

�
1fX1;k < g � s� (l; r)

�o
+OP ((lnn) =

p
n): (85)
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Recall the Donsker property of the two sets of functions, f1fjjl � �jj � rg j l 2 L & r > 0g and

f1fjjl � �jj � rg
�
1 f� < g � s� (l; r)

�
j l 2 L & r > 0g (argued in the proof of Lemma 1). By

applying the functional CLT for bootstrap empirical processes (e.g., Theorem 3.6.1 of VW, 1996;

or Theorem 2.6 of Kosorok, 2008), each of two parts within the curly braces on the RHS of (85),

normalized by (1=
p
n), conditionally weakly converges to some tight random function in probability.

Therefore, we have

the LHS of (85) P
=)
#
0 uniformly over (l; r) 2 L � fr1; : : : ; rJg ;

where we also have used the boundedness of 1=�� (l; r) (Assumption 2), the convergence property of

"n (l; r) and �n (l; r), and the fact that the (usual) convergence in probability implies the conditional

weak convergence in probability. This completes the proof of Lemma 7.
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