TRADUCIENDO LA INVESTIGACION EN ACCION ## Evaluación de Programas Sociales # **Course Syllabus** Bogotá, Colombia 12–16 de julio del 2010 Day 1 Monday, July 12th | Activity | Topic | Group Work | Teaching point | |--|--|--|--| | Arrival and inscription | | | | | 9:00 – 9:30
Lecture 1
9:30-11:00 | 1) Why evaluate? What is evaluation? (Dan Levy) a) What do we hope to learn? b) Different levels of evaluation c) Understanding the program d) Impact evaluation e) Defining impact (preview) | | Why is evaluation necessary Different levels of evaluation Where randomized evaluation fits in What levels are part of an impact evaluation What an impact evaluation is | | Case Study 1
11:15-1:00 | Women as Policymakers: Thinking about measurement and outcomes | Case study discussion topics | Measuring a program or policy This case starts with a policy and thinks about its purpose Although this should be reversed (purpose first, then policy), this is not always the case Developing a logical framework | | Lecture 2
2:00 – 3:30 | 2) Outcomes, indicators and measuring impact (Juan Saavedra) a) Outcomes and Indicators b) Logical Model c) Measuring Impact (preview) | | An understanding of program goals and strategy is best achieved through a structured, systematic process; not just for evaluator, but implementer! how randomization is used in sampling; how it works mechanically (brief preview) | | Group
project
4:00 – 6:00 | Choose project Theory of change | Deconstruct program into a logical framework, determine outcome measures | | ## **Curriculum Outline** ExecEd Bogota, 2010 Day 2 Tuesday, July 13 | Activity | Topic | Group Work | Teaching point | |-----------------------------|---|---|---| | Case Study 2
9:30-11:15 | Learn to Read Evaluations: How to read and evaluate evaluations? Why Randomize? | Comparing different evaluations | Learn to identify evaluation methods without being told the specific method To explore the problem of causal inference, and the various ways of estimating the impact of a program using comparison group designs. To introduce the concept of selection bias | | Lecture 3
11:30 – 1:00 | 3) Impact evaluation – why randomize (Dan Levy) a) Defining impact b) Measuring impact c) Methods for measuring impact d) Bias | | different methods give different results, what the other methods are and their short-comings randomized evaluations are the most reliable | | Lecture 4
2:30-4:00 | 4) How to randomize (Francisco Gallego) a) Unit and method of randomization b) Real-world constraints c) Revisiting unit and method d) Variations on simple treatment-control | | Introduce randomization designs as well as some of the mechanics of actually randomizing With creativity, barriers can be overcome | | Exercise 1
4:15 – 5:00 | Mechanics of Randomization | Use excel to randomize | Understand how to implement a
stratified randomized sample | | Case Study 3
5:00 – 6:00 | Extra Teacher Program | Discussion topics urse Professors, TAs and Staff | Concrete example with multiple units of
randomization, Answering multiple research questions
with one evaluation | Dinner for Course Professors, TAs and Staff (By invitation of Escuela del Gobierno, Universidad de los Andes) [Time and Location To Be Determined] #### **Curriculum Outline** ExecEd Bogota, 2010 Day 3 Wednesday, July 14 | Activity | Topic | Group Work | Teaching point | |---|--|---|---| | Group
project
9:00 – 9:45 | Unit and method of randomization | Develop method of randomization in group project | | | Exercise 2
9:45 – 11:00 | Random Sampling and Law of Large Numbers | | Greater sample sizes more closely approximates the population distribution that in any given sample, treatment and control can be unbalanced, but the more you sample, the more balanced you'll be | | Lecture 5 11:15-1:30 (10-minute break in between) | 5) Sampling and sample size (Francisco Gallego) a) Intro to the scientific method b) Estimation c) Hypothesis testing d) Statistical significance e) Effect size f) Power g) Factors that influence power | | Understand why sample size is important That sample size is typically THE largest constraint the various determinants of sample size Sample size is sample of randomized units, NOT measured units; | | Lecture 6
2:30 – 4:00 | 6) Implementing an evaluation (Ernesto Schargrodsky) a) Data collection b) Attrition c) Compliance and contamination | | Give students the practical tools to implement an evaluation Learn to design a data collection strategy under financial and other constraints Learn how to collect quality data Understand threats to the integrity of the experimental design | | Group
Exercise/
Project
4:15-6:00 | Exercise 3: Sample size Sample size for your own project | Determining sample size (OD software and MS Excel®) | Learn Sample size calculations in practice | ### **Curriculum Outline** ExecEd Bogota, 2010 Day 4 Thursday, July 15 | Day 4 | | - | Illuisuay, July 15 | |---------------------------------|---|--|--| | Group
Project
9:00-9:30 | Sample size for your own project (continued) | | | | Case Study 4
9:30 – 11:00 | <u>Deworming in Kenya</u> : Managing threats to experimental integrity Group Work | | To explore how common threats to experimental integrity can be managed | | Lecture 7
11:15 – 12:45 | 7) Analysis and inference (Juan Saavedra) a) Subgroup analysis b) Attrition, spillovers, crossovers c) ITT, Treatment on treated d) External validity | | Learn how to analyze and
<u>interpret</u> data under various
conditions | | Lecture 8
2:00 – 3:30 | 8) Randomized Evaluation: Start-to-finish (Claudia Martínez) | | Give students a big picture overview of how many of the topics taught throughout the week fit into the timeline of an evaluation. Planning for an Randomized Evaluation often needs to start early, not as an afterthought. | | Group
project
3:45 – 6:00 | | Finalize project | | | | | Course Dinner
8:00 pm
Hotel de la Opera
<i>No. 5-72 La Candelaria</i> | | # **Curriculum Outline** *ExecEd Bogota, 2010* Day 5 – PRESENTATIONS Friday, July 16 | -u, | | ,,, | |---------------|---|-----| | Group Project | Finalize Group Project; | | | 9:00-10:00 | Practice Presentations | | | Presentations | Six groups will present | | | 10:00-1:00 | (20 minute presentation + 10 minutes of | | | (café a las | comments) | | | 11:00) | | | | Presentations | The final two groups will present | | | 2:30 - 3:30 | (20 minute presentation + 10 minutes of | | | | comments) | | | Closing | By Ryan Cooper, Executive Director, | | | statement | JPAL Latin America | | | 3:30p | | |