Why Randomize? Lecture & Case Study

Ben Morse
Senior Research, Education, and Training Manager
J-PAL Global

June 9, 2020
Session Overview

I. Background

II. Why randomize case study
 I. Non-experimental methods
 II. Randomized evaluations

III. Conclusions
I - BACKGROUND
What is the impact of this program?

Program starts
What is the impact of this program?

Primary Outcome

Time

Program starts

Impact

Counterfactual
How to measure impact?

Impact is defined as the difference between:

1. the outcome some time after the program has been introduced (the “factual”)

2. the outcome at that same point in time had the program not been introduced (the “counterfactual”)

\[\text{factual} - \text{counterfactual} = \text{impact} \]
Impact: What is it?

Primary Outcome

Time

Program starts

Counterfactual

Impact

J-PAL | WHY RANDOMIZE
Impact: What is it?

- **Primary Outcome**
- **Time**
- **Program starts**
- **Impact**
- **Counterfactual**

J-PAL | Why Randomize
Counterfactual

The *counterfactual* represents the world that program participants would have experienced in the absence of the program.

Problem: Counterfactual cannot be observed

Solution: We need to “mimic” or construct the counterfactual.
Constructing the counterfactual

- Usually done by selecting a group of individuals that did not participate in the program.

- This group is usually referred to as the control group or comparison group.

- How this group is selected is a key decision in the design of any impact evaluation.
Selecting the comparison group

• **Idea:** Comparability

• **Goal:** Attribution
3 Key Ideas about Impact

1 - Counterfactual

2 – Comparison group mimics the counterfactual

3 - Goal of Impact Evaluations: Attribution
Session Overview

I. Background

II. Why randomize case study
 I. Non-experimental methods
 II. Randomized evaluations

III. Conclusions
II – Why randomize case study
Workplace Wellness Programs

Problem: Medical spending has risen rapidly over the past several decades, especially in the U.S.

Proposed solution: Employer-sponsored workplace wellness programs

- **Goal:** reduce costs by improving employee health
- **Activities include:**
 - Health screenings
 - Fitness programs
 - Classes on leading healthy lifestyles

Source: Illinois Workplace Wellness Study
Relevance to other settings

• This is a U.S.-based example, but the takeaways translate to any setting where some people participate in a program, and some do not

• Examples include evaluations of:
 – Low-interest microfinance loans on business growth
 – Vouchers for fertilizer on crop yields
 – Subsidized meals for school children on learning
 – Subsidized chlorine dispenses on water quality and child health
 – Subsidized vaccination programs on child health
 – Subsidized bed-nets on malaria

• Challenge is the same: find a valid counterfactual for participants
In 2016, University of Illinois launched the iThrive Wellness Program

- Biometric screening and health risk assessment
- Wellness activities such as:
 - Exercise classes
 - WeightWatchers
 - Smoking cessation
 - Stress management
Research team focused on three key questions:

- Do wellness programs help employees live healthier lifestyles?
- Are these changes sufficient to lower medical spending?
- Can they also improve employee productivity?
The Illinois Workplace Wellness Study

2016: Invitation to participate in study and baseline survey (N=12,459 employees)

Study sample (N=4,834 respondents)

Random assignment

Comparison Group (N = 1,534)

Access to Workplace Wellness (N=3,300)

Participants (N=1,848)

Non-participants (N=1,452)

2017 follow-up survey

2017 follow-up survey
Outcomes and Data

- **Employee fitness**
 - Campus gym visits per month

- **Medical spending**
 - Insurance claims of in-patient, out-patient, and pharmaceutical spending

- **Employee productivity**
 - Index of: Promotion, job retention, sick leave taken, hours worked per week, and self-reported job satisfaction and productivity

- **Background data**
 - Age, gender, race, and socio-economic status
The Illinois Workplace Wellness Study

2016: Invitation to participate in study and baseline survey (N=12,459 employees)

Study sample (N=4,834 respondents)

Random assignment

Comparison Group (N = 1,534)

Access to Workplace Wellness (N=3,300)

Participants (N=1,848)

Non-participants (N=1,452)

2017 follow-up survey

2017 follow-up survey

2017 follow-up survey
Simple difference

Compare employees who participated in the program to those that did not
Simple Difference

Counterfactual: Non-participants’ frequency of gym visits, levels of spending, and productivity

Key assumption: Participants’ would have had the same levels of these outcomes as non-participants* if they had not received the program*
Which of these scenarios would make the simple difference comparison misleading? (select all that apply)

- A: Healthcare costs tend to increase overtime
- B: Participants *live closer to campus* than non-participants
- C: Participants are *younger* than non-participants
Simple Difference

Counterfactual: Non-participants' frequency of gym visits, levels of spending, and productivity

Key assumption: Participants' would have had the same levels of these outcomes as non-participants *if they had not received the program*

What might threaten this assumption: Any systematic difference between participants and non-participants that influences our outcomes

Statisticians call this *selection bias*, because those who "select in" to a program are different from those who do not in terms of their pre-program outcomes
Pre-Post (Before vs. After)

Compare participants’ outcomes before the program to their outcomes after the program.

Avg. Monthly Spending

- Pre-intervention (July 2016)
- Post-intervention (July 2017)

Program participants

Counterfactual

Impact
Pre-Post (Before vs. After)

Gym visits / month

Pre-intervention (July 2016) Post-intervention (July 2017)

Program participants Counterfactual

Productivity Index

Pre-intervention (July 2016) Post-intervention (July 2017)

Program participants Counterfactual
Pre-Post (Before vs After)

Counterfactual: Participants’ average levels of fitness, spending, and productivity before the program

Avg. Monthly Spending

Program participants
Counterfactual

Impact
Pre-Post (Before vs After)

Counterfactual: Participants’ average levels of fitness, spending, and productivity before the program

Assumptions: Participants’ fitness, spending, and productivity would not have changed over time in the absence of the program
Which of these scenarios would make the pre-post comparison misleading? (select all that apply)

- A: Healthcare costs tend to increase overtime
- B: Participants live closer to campus than non-participants
- C: Participants are younger than non-participants
Pre-Post (Before vs After)

Counterfactual: Participants’ average levels of fitness, spending, and productivity before the program

Assumptions: Participants’ fitness, spending, and productivity would not have changed over time in the absence of the program

What might threaten this assumption: Any factor that influences these outcomes overtime
Difference-in-differences

Medical spending
(parallel pre-program trends)

Note: Figure is illustrative and not based on actual study data
Difference-in-differences

Medical spending
(parallel pre-program trends)

Note: Figure is illustrative and not based on actual study data
Difference-in-differences

Medical spending (parallel pre-program trends)

Note: Figure is illustrative and not based on actual study data
Difference-in-differences

Medical spending (parallel pre-program trends)

Impact = Difference in differences over time

Note: Figure is illustrative and not based on actual study data
Difference-in-differences

What’s the counterfactual? Pre / post change over time in medical spending among non-participants

Assumptions: Absent the program, participants and non-participants would have the same trajectory over time with respect to medical spending ("parallel trends" assumption)
Difference-in-differences

Medical Spending
(non-parallel pre-program trends)

Note: Figure is for instructional purposes only and not based on actual study data
Which of these scenarios would lead to non-parallel trends? (select all that apply)

- A: Healthcare costs tend to increase overtime
- B: Participants are older than non-participants
- C: An effective but expensive drug for a common chronic condition among older adults enters the market in 2014
- D: Options B and C at once
Difference-in-differences

Medical Spending (non-parallel pre-program trends)

Note: Figure is for instructional purposes only and is not based on actual study data
Difference-in-differences

Note: Figure is illustrative and not based on actual study data
Difference-in-differences

What’s the counterfactual? Pre / post change over time in medical spending among non-participants

Assumptions: Absent the program, participants and non-participants would have the same trajectory over time with respect to medical spending ("parallel trends" assumption)

What might threaten this assumption: Any change over time that disproportionally impacts either group
Difference-in-differences - results

Avg. Monthly Spending

- $400
- $450
- $500
- $550
- $600
- $650

Pre-intervention (July 2016) Post-intervention (July 2017)

- Participants
- Non-participants
- Counterfactual

Impact
Difference-in-differences - results

![Graph showing gym visits per month pre- and post-intervention for participants, non-participants, and counterfactual.](image)

- **Gym visits / month**
- **Impact**
- **Pre-intervention (July 2016)**
- **Post-intervention (July 2017)**
- **Participants**
- **Non-participants**
- **Counterfactual**
Difference-in-differences - results

Productivity Index

Impact

Pre-intervention (July 2016) Post-intervention (July 2017)

Participants Non-participants Counterfactual

0.35 0.40 0.45 0.50 0.55
Recap of results so far

<table>
<thead>
<tr>
<th>Method</th>
<th>Gym visits / month</th>
<th>Medical Spending</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pre-Post</td>
<td>3.5**</td>
<td>-$137**</td>
<td>0.01</td>
</tr>
<tr>
<td>(2) Simple Difference</td>
<td>-0.4</td>
<td>$100**</td>
<td>-.15**</td>
</tr>
<tr>
<td>(3) Difference-in-Differences</td>
<td>1.34**</td>
<td>-$9.6</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Statistical Control - Matching

Motivation: Before the intervention, participants were different from non-participants in various ways

Table 1 - Pre-intervention characteristics by participation status, before matching

<table>
<thead>
<tr>
<th></th>
<th>Non-participants</th>
<th>Participants</th>
<th>Difference</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. monthly spending (pre-intervention)</td>
<td>$527</td>
<td>$423</td>
<td>$103**</td>
<td>2188</td>
</tr>
<tr>
<td>Gym visits per month (pre-intervention)</td>
<td>5.6</td>
<td>7.7</td>
<td>-2.2**</td>
<td>3300</td>
</tr>
<tr>
<td>Productivity index (pre-intervention)</td>
<td>0.55</td>
<td>0.54</td>
<td>0.01*</td>
<td>3251</td>
</tr>
<tr>
<td>Male</td>
<td>46%</td>
<td>40%</td>
<td>6%**</td>
<td>3300</td>
</tr>
<tr>
<td>Age</td>
<td>44.1</td>
<td>43.6</td>
<td>0.4</td>
<td>3300</td>
</tr>
<tr>
<td>Caucasian</td>
<td>84%</td>
<td>84%</td>
<td>0%</td>
<td>3300</td>
</tr>
<tr>
<td>Above median salary</td>
<td>48%</td>
<td>51%</td>
<td>3%*</td>
<td>3300</td>
</tr>
<tr>
<td>Faculty</td>
<td>23%</td>
<td>18%</td>
<td>5%*</td>
<td>3300</td>
</tr>
</tbody>
</table>

Notes: ***, **, and * indicate significance at the p-value < .01, .05, and .10 levels. Sample sizes vary across outcomes due to missing data.
After matching, participants look more similar to non-participants, but sample size is smaller

| Table 2 - Pre-intervention characteristics by participation status, after matching |
|---|----------------|-----------|-----|-----|
| | Non-participants | Participants | Difference | N |
| Avg. monthly spending (pre-intervention) | $203 | $184 | $19 | 1109 |
| Gym visits per month (pre-intervention) | 0.47 | 0.33 | 0.14| 1109 |
| Productivity index (pre-intervention) | 0.54 | 0.54 | 0.0 | 1109 |
| Male | 0.45 | 0.39 | 6%** | 1109 |
| Age | 43.1 | 42.7 | 0.4 | 1109 |
| Caucasian | 91% | 93% | 2% | 1109 |
| Above median salary | 48% | 48% | 0% | 1109 |
| Faculty | 11% | 8% | 3% | 1109 |

Notes: ***, **, and * indicate significance at the p-value < .01, .05, and .10 levels. Sample sizes vary across outcomes due to missing data.
Statistical Control – Matching

Gym visits / month

Avg. Monthly Spending

Productivity Index

Non-participants

Participants

Non-participants

Participants

Non-participants

Participants

$100

$150

$200

$250

$300

$350

$400

$450

$500

$550

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

$0.40

$0.45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Statistical Control - Matching

Counterfactual: Gym visits, levels of spending, and productivity among non-participants for whom there was a comparable participant match.
Statistical Control - Matching

Counterfactual: Gym visits, levels of spending, and productivity among non-participants for whom there was a comparable participant match.

Key assumption: Participants’ would have had the same levels of these outcomes as their non-participant matches *if they had not received the program.*
Which of these scenarios would make participant vs. non-participant comparisons within the matched sample misleading? (select all that apply)

- A: Healthcare costs tend to increase overtime
- B: Participants are older than non-participants
- C: Participants are more intrinsically motivated to improve their health than non-participants
Statistical Control - Matching

Counterfactual: Gym visits, levels of spending, and productivity among non-participants for whom there was a comparable participant match.

Key assumption: Participants’ would have had the same levels of these outcomes as their non-participants matches if they had not received the program.

What might threaten this assumption: Any systematic difference between participants and non-participants that we can’t measure (or forget to measure), that also influences outcomes.
Randomized Evaluation

2016: Invitation to participate in study and baseline survey (N=12,459 employees)

Study sample (N=4,834 respondents)

Random assignment

Comparison Group (N = 1,534)

Access to Workplace Wellness (N=3,300)

Participants (N=1,848)

Non-participants (N=1,452)

2017 follow-up survey

2017 follow-up survey

2017 follow-up survey
2016: Invitation to participate in study and baseline survey (N=12,459 employees)

Study sample (N=4,834 respondents)

Random assignment

Comparison Group (N = 1,534)

Access to Workplace Wellness (N=3,300)

Participants (N=1,848)

Non-participants (N=1,452)

2017 follow-up survey

2017 follow-up survey

2017 follow-up survey
Randomized Evaluation

Key advantage: Because members of the groups (treatment and comparison) do not differ systematically at the outset of the evaluation, any difference that subsequently arises between them can be attributed to the program rather than to other factors.
2016: Invitation to participate in study and baseline survey (N=12,459 employees)

Study sample (N=4,834 respondents)

Random assignment

Comparison Group (N = 1,534)

Access to Workplace Wellness (N=3,300)

Participants (N=1,848)

Non-participants (N=1,452)

2017 follow-up survey

2017 follow-up survey

2017 follow-up survey
Randomized Evaluation

- **Gym visits / month**
 - Not offered program
 - Offered program

- **Avg. Monthly Spending**
 - Not offered program
 - Offered program

- **Productivity Index**
 - Not offered program
 - Offered program
Comparison of results across methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Gym visits / month</th>
<th>Medical Spending</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pre-post</td>
<td>3.5**</td>
<td>-$137**</td>
<td>0.01</td>
</tr>
<tr>
<td>(2) Simple difference</td>
<td>-0.4</td>
<td>$100**</td>
<td>-0.15**</td>
</tr>
<tr>
<td>(3) Difference-in-differences</td>
<td>1.34**</td>
<td>-$9.6</td>
<td>0.01</td>
</tr>
<tr>
<td>(4) Matching</td>
<td>0.61</td>
<td>-$146</td>
<td>0.00</td>
</tr>
<tr>
<td>(5) Randomized evaluation</td>
<td>0.06</td>
<td>$10</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: *, **, and *** indicate statistical significance at the p-value < .10, .05 and .01.
Session Overview

I. Background

II. Why randomize case study
 I. Non-experimental methods
 II. Randomized evaluations

III. Conclusions
IV – CONCLUSIONS
Conclusions – Why Randomize?

- There are many ways to estimate a program’s impact
- This lecture highlights the advantages one: randomized evaluations

 - **Conceptual argument:** If properly designed and conducted, randomized evaluations are the most credible method to estimate the impact of a program

 - **Empirical argument:** Different methods can generate different impact estimates

- When randomized evaluations are impractical, non-experimental methods may be the best option. But being clear about the counterfactual and its underlying assumptions is key.
Thank you!
References

J-PAL Evaluation Summary: [The Impact of a Workplace Wellness Program in Illinois](#)

J-PAL Evaluation Summary: [Workplace Wellness Programs to Improve Employee Health Behaviors in the United States](#)

[The Illinois Workplace Wellness Study Project Page](#)