Sampling and Sample Size

Rohit Naimpally
Research \& Training Manager
J-PAL Global

Course Overview

1. What is Evaluation?
2. Outcomes, Impact, and Indicators
3. Why Ra ndomize?
4. How to Randomize
5. Sampling and Sample Size
6. Threats and Analysis
7. Evaluation from Sta it to Finish
8. Evidence from Community-Driven Development, Health, and Education Programs
9. Using Evidence from Randomized Evaluations

What's the average result?

- If you were to roll a die once, what is the "expected result"? (i.e. the average)

Possible results \& probability: 1 die

Rolling 1 die: possible results \& average

What's the average result?

- If you were to roll two dice once, what is the expected average of the two dice?

Rolling 2 dice: Possible tota Is \& likelihood

Rolling 2 dice: possible totals 12 possible totals, 36 pemutations

	Die 1					
	-	-	\bigcirc	!:	\because	88
-	2	3	4	5	6	7
	3	4	5	6	7	8
N	4	5	6	7	8	9
- 1:	5	6	7	8	9	10
\because	6	7	8	9	10	11
88	7	8	9	10	11	12

Rolling 2 dice: Average score of dice \& likelihood

Outcomes and Permutations

- Putting together permutations, you get:

1. All possible outcomes
2. The likelihood of each of those outcomes

- Each column represents one possible outcome (average result)
Each block within a column represents one possible permutation (to obtain that average)
2.5

Rolling 3 dice:
 16 results $3 \rightarrow 18$, 216 permutations

Rolling 4 dice:
 21 results, 1296 permutations

Rolling 5 dice:
 26 results, 7776 permutations

12\%

Rolling 10 dice: 50 results, $=60$ million permutations

Looks like a bell curve, or a nomal distribution

Rolling 30 dice:
 150 results, $2 \times 10{ }^{23}$ permutations*

>95\% of all rolls will yield a n average between 3 a nd 4

Rolling 100 dice: 500 results, 6×1077 permutations

>99\% of a ll rolls will yield an a verage between 3 a nd 4

Rolling dice: 2 lessons

1. The more dice you roll, the closermost averages are to the true average (the distribution gets "tighter")
-THE LAW OF LARG E NUMBERS-
2. The more dice you roll, the more the distribution of possible a verages (the sampling distribution) looks like a bell curve (a nomal distribution)
-THE CENTRAL LIMITTHEO REM-

Which of these is more accurate?

A. I.
B. II.
C. Don't know

Acc uracy versus Prec ision

Accuracy (Randomization)

Ac c uracy versus Prec ision

THE basic questions in statistic s

- How confident can you be in your results?
- \rightarrow How big does your sample need to be?

That was just the introduction

Outline

- Sampling distributions
- population distribution
- sampling distribution
- law of large numbers/ central limit theorem
- standard deviation and standard error

Detecting impact

Outline

- Sampling distributions
- population distribution
- sampling distribution
- law of large numbers/ central limit theorem
- standard deviation and standard error Detecting impact

Ba seline test sc ores

Mean $=26$

Standard Deviation $=20$

Let'sdo an experiment

- Take 1 Random test score from the pile of 16,000 tests
- Write down the value
- Put the test back
- Do these three steps again
- And again
- 8,000 times
- This is like a random sample of 8,000 (with replacement)

What can we say about this sample?

Good, the average of the sample is a bout $26 . .$.

But...

- ... I remember that as my sample goes, up, isn't the sampling distribution supposed to tum into a bell curve?
- (Central Limit Theorem)
- Is it that my sample isn't large enough?

One limitation of statistic al theory is that it assumes the population distribution is norma lly distributed

A. True
B. False
C. Depends
D. Don't know

The sampling distribution may not be normal if the population distribution is skewed

A. True
B. False
C. Depends
D. Don't know

Population v. sampling distribution

This is the distribution of my sa mple of 8,000 students

Outline

- Sampling distributions
- population distribution
- sampling distribution
- law of large numbers/ central limit theorem
- standard deviation and standard error

Detecting impact

How do we get from here...

To here...
This is the distribution of Means from all Random Samples (Sa mpling distribution)

Draw 10 random students, take the average, plot it: Do this 5 \& 10 times.

Frequency of Means With 5 Samples

Frequency of Means With 10 Samples

Draw 10 random students: 50 and 100 times

Frequency of Means With 50 Samples

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 Frequency of Means with 100 Samples

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
J-PAL | Sampling and Sample Size

Draws 10 random students: 500 and 1000 times

Frequency of Means With 500 Samples

Frequency of Means With 1000 Samples

Draw 10 Random students

- This is like a sample size of 10
- What happens if we ta ke a sample size of 50 ?

What happens to the sampling distribution if we draw a sample size of 50 instead of 10 , and take the mean (thousands of times)?

A. We will approach a bell curve faster (than with a sa mple size of 10)
B. The bell curve will be na rrower
C. Both $A \& B$
D. Neither. The underlying sa mpling distribution does not change.

$\mathrm{N}=10$
 $N=50$

Frequency of Means With 5 Samples

Frequency of Means With 10 Samples

Frequency of Means With 5 Samples

Frequency of Means With 10 Samples

Draws of 10 Draws of 50

Frequency of Means With 50 Samples

Frequency of Means With 50 Samples

Frequency of Means with 100 Samples

Frequency of Means With 100 Samples

Draws of 10 Draws of 50

Frequency of Means With 500 Samples

Frequency of Means With 1000 Samples200

Outline

- Sampling distributions
- population distribution
- sampling distribution
- law of large numbers/ central limit theorem
- standard deviation and standard error

Detecting impact

Population \& sampling distribution: Draw 1 random student (from 8,000)

Sampling Distribution: Draw 4 random students ($\mathrm{N}=4$)

Law of Large Numbers: N=9

Law of Large Numbers: $\mathrm{N}=100$

Central Limit Theorem: $\mathrm{N}=1$

The yellow line is a theoretical distribution

Central Limit Theorem : $\mathrm{N}=4$

Central Limit Theorem : $\mathrm{N}=9$

Central Limit Theorem : $\mathrm{N}=100$

Outline

- Sampling distributions
- population distribution
- sampling distribution
- law of large numbers/ central limit theorem
- standard deviation and standard error Detecting impact

Standard deviation/error

- What's the difference between the standard deviation and the standard emor?
- The standard error = the standard deviation of the sampling distributions

Variance and Standard Deviation

- Variance $=400$

$$
\sigma^{2}=\frac{\sum(\text { Observation Value }- \text { Average })^{2}}{N}
$$

- Standard Deviation $=20$

$$
\sigma=\sqrt{\text { Variance }}
$$

- Standard Error $=20 / \sqrt{N}$

$$
\mathrm{SE}=\sigma / \sqrt{N}
$$

Standard Deviation/ Standard Error

Sample size $\uparrow \times 4$, SE $\downarrow 1 / 2$

Sample size \uparrow x9, SE \downarrow ?

Sample size $\uparrow \times 100$, SE \downarrow ?

Outline

- Sampling distributions
- Detecting impact
- significance
- effect size
- power
- baseline and covariates
- clustering
- stratification

We implement the Ba Isakhi Program

Control Group end line test scores

After the balsakhi programs, these are the end line test sc ores

Endline test sc ores: c ontrol \& trea tment

Stop! That was the c ontrol group.
The treatment group is yellow.

Is this impa ct sta tistic a lly sig nific a nt?

Average Difierence $=6$ points

A. Yes
B. No
C. Don't know

One experiment: 6 points

One experiment

\square

Two experiments

A few more...

A few more...

J-PAL| Sampling and Sample Siz

Many more...

J-PAL| Sampling and Sample Siz

A whole lot more...

J-PAL| Sampling and Sample Size

A whole.. lot more...

Running the experiment thousands of times...

By the Central Limit Theorem, these a re noma lly distributed

Hypothesis Testing

- In criminal law, most institutions follow the rule: "innocent until proven guilty"
- The presumption is that the accused is innocent and the burden is on the prosecutor to show guilt
- The jury or judge starts with the "null hypothesis" that the accused person is innocent
- The prosecutorhas a hypothesis that the accused person is guilty

Hypothesis Testing

- In program evaluation, instead of "presumption of innocence," the rule is: "presumption of insignific ance"
- The "Null hypothesis" (HO) is that there was no (zero) impact of the program
- The burden of proof is on the evaluatorto show a signific ant effect of the program

Hypothesis Testing: C onclusions

- If it is very unlikely (less than a 5% probability) that the difference is solely due to chance:
- We "reject our null hypothesis"
- We may now say:
- "our program has a statistic ally signific ant impact"

Hypothesis Testing: Steps

1. Determine the (size of the) sampling distribution a round the null hypothesis H_{0} by calculating the standard error
2. Choose the confidence interval, e.g. 95% (or signific ance level: a) $(a=5 \%)$
3. Identify the critical value (boundary of the confidence interval)
4. If our observation falls in the critical region we can reject the null hypothesis

What is the signific ance level?

- Type I error: rejecting the null hypothesis even though it is true (false positive)
- Signific ance level: The probability that we will reject the null hypothesis even though it is true

Hypothesis testing: 95\% c onfidence

		You Conclude	
		Effective	No Effect
	Effective	\because	Type II Error (low power) ©
Tuth	No Effect	Type I Emor (5\% of the time) ©	\because

What is Power?

- Type II Error: Failing to reject the null hypothesis (concluding there is no difference), when indeed the null hypothesis is false.
- Power: If there is a measureable effect of our intervention (the null hypothesis is false), the probability that we will detect an effect (reject the null hypothesis)

Hypothesis Testing: Steps

1. Determine the (size of the) sampling distribution a round the null hypothesis H_{0} by calculating the standard error
2. Choose the confidence interval, e.g. 95% (or signific ance level: a) $(a=5 \%)$
3. Identify the critical value (boundary of the confidence interval)
4. If our observation falls in the critical region we can reject the null hypothesis

Determining Power: Steps

1. Determine the (size of the) sampling distribution a round the null hypothesis H_{0} by calc ulating the standard error
2. Hypothesize an effect size H_{β}
3. Determine the (size of the) sampling distribution a round the altemate hypothesis
4. Choose the confidence interval, e.g. 95\% (or signific ance level: a) ($a=5 \%$)
5. Identify the critical value (boundary of the confidence interval)
6. Determine where in the H_{β} sampling distribution, the critic al value lies.
7. Calculate the proportion of the mass under the H_{β} sampling distribution that lies on the other side of the critic al value (away from the null hypothesis)

Before the experiment

ASSUME TWO EFFECTS: no effect a nd treatment effect β

Impose signific ance level of 5%

Anything between linescannot be distinguished from 0

Can we distinguish $\mathrm{H} \beta$ from HO ?

Shaded a rea shows \% of time we would find $H \beta$ true if it was

What influences power?

- What are the factors that change the proportion of the research hypothesis that is shaded-i.e. the proportion that falls to the right (or left) of the null hypothesis curve?
- Understanding this helps us design more powerful experiments

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

Effect Size: 1*SE

Effect Size $=1 *$ SE

Power: 26\% If the true impact was $1 *$ SE...

The Null Hypothesis would be rejected only 26\% of the time

Effect Size: 3*SE

Bigger hypothesized effect size \rightarrow distrib utio ns fa rther a part

Effect size 3*SE: Power=91\%

Bigger Effect size means more power

What effect size should you use when designing your experiment?

A. Smallest effect size that is still cost effec tive
B. Largest effect size you expect your program to produce
C. Both
D. Neither

Effect size and take-up

- Let's say we believe the impact on our participants is " 3 "
- What happens if take up is $1 / 3$?
- Let's show this graphically

Effect Size: 3*SE

Let's say we believe the impact on our partic ipants is " 3 "

Take up is 33%. Effect size is $1 / 3$ rd

Back to: Power = 26\%

Take-up is reflected in the effect size

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

A. Accuracy
B. Precision
C. Both
D. Neither
E. Don't know

J-PAL | SAMPLING AND SAMPLE SIZE

Power: Effect size = 1SD, Sample size $=\mathrm{N}$

Power: Sample size $=4 \mathrm{~N}$

Power: 64\%

Power: Sample size $=9 \mathrm{~N}$

Power: 91\%

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

What are typical ways to reduce the underlying (population) variance

A. Include covariates
B. Increase the sample
C. Do a baseline survey
D. All of the above
E. A and B
F. A and C

Variance

- There is sometimes very little we can do to reduce the noise
- The underlying variance is what it is
- We can try to "absorb" variance:
- using a baseline
- controlling forothervariables
- In practice, controlling for other variables (besides the baseline outcome) buys you very little

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

Sample split: 50\% C , 50\% T

Equal split gives distributions that a re the same "fatness"

Power: 91\%

J-PAL| Sampling and Sample Size

If it's not 50-50 split?

- What happens to the relative fatness if the split is not 5050.
- Say 25-75?

Sample split: 25\% C, 75\%T

Uneven distributions, not effic ient, i.e. less power

Power: 83\%

Allocation to Tv C

$\operatorname{sd}\left(X_{1}-X_{2}\right)=\sqrt{\frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}$
$\operatorname{sd}\left(X_{1}-X_{2}\right)=\sqrt{\frac{1}{2}+\frac{1}{2}}=\sqrt{\frac{2}{2}}=1$
$\operatorname{sd}\left(X_{1}-X_{2}\right)=\sqrt{\frac{1}{3}+\frac{1}{1}}=\sqrt{\frac{4}{3}}=1.15$

Power: main ingredients

1. Effect Size
2. Sample Size
3. Variance
4. Proportion of sample in Tvs. C
5. Clustering

Clustered design: definition

- In sampling:
- When clusters of individuals (e.g. schools, communities, etc.) a re randomly selected from the population, before selecting individuals for observation
- In randomized evaluation:
- When clusters of individuals are randomly assigned to different treatment groups

Clustered design: intuition

- You want to know how close the upcoming national elections will be
- Method 1: Randomly select 50 people from entire Indian population
- Method 2: Randomly select 5 families, a nd ask ten members of each fa mily their opinion

Low intra-c luster correlation (ICC) aka ρ (mo)

HIG H intra-c luster c orrelation (م)

All uneducated people live in one village. People with only primary education live in a nother. College grads live in a third, etc. ICC (م) on education will be..
A. High
B. Low
C. No effect on mo
D. Don't know

If ICC (ρ) is high, what is a more effic ient way of inc reasing power?
A. Include more clusters in the sample
B. Include more people in clusters
C. Both
D. Don't know

Testing multiple treatments

END!

