

# Threats and Analysis

Lina Marliani
Executive Director
J-PAL Southeast Asia



## Course Overview

- What is Evaluation?
- 2. Outcomes, Impact, and Indicators
- 3. Why Randomize?
- How to Randomize
- 5. Sampling and Sample Size
- 6. Threats and Analysis
- Evaluation from Start to Finish
- Evidence from Community-Driven Development, Health, and Education Programs
- 9. Using Evidence from Randomized Evaluations

## Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

j-pal | threats and analysis 3

## Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

### **Attrition**

- Is it a problem if some of the people in the experiment vanish before you collect your data?
  - It is a problem if the type of people who disappear is correlated with the treatment.
- Why is it a problem?
- Why should we expect this to happen?

## Attrition bias: an example

- The problem you want to address:
  - Some children don't come to school because they are too weak (undernourished)
- You start a school feeding program and want to do an evaluation
  - You have a treatment and a control group
- Weak, stunted children start going to school more if they live next to a treatment school
- First impact of your program: increased enrollment.
- In addition, you want to measure the impact on child's growth
  - Second outcome of interest: Weight of children
- You go to all the schools (treatment and control) and measure everyone who is in school on a given day
- Will the treatment-control difference in weight be over-stated or understated?

|            | Before Treatment |     |         | After Treament |    |
|------------|------------------|-----|---------|----------------|----|
| _          | -                |     |         | -              |    |
|            |                  | С   |         |                | С  |
|            | 20               | 20  |         | 22             | 20 |
|            | 25               | 25  |         | 27             | 25 |
|            | 30               | 30  |         | 32             | 30 |
| Ave.       |                  |     |         |                |    |
| /\\C.      |                  |     |         |                |    |
| Difference |                  | Dif | ference |                |    |
|            |                  |     |         |                |    |

|      | Before Tred | atment |   | After Treament |    |
|------|-------------|--------|---|----------------|----|
|      | T           | С      |   | T              | С  |
|      | 20          | 20     |   | 22             | 20 |
|      | 25          | 25     |   | 27             | 25 |
|      | 30          | 30     |   | 32             | 30 |
|      |             |        |   |                |    |
| Ave. | 25          | 25     |   | 27             | 25 |
| D    | ifference   | 0      | D | ifference      | 2  |
|      |             |        |   |                |    |

J-PAL | THREATS AND ANALYSIS

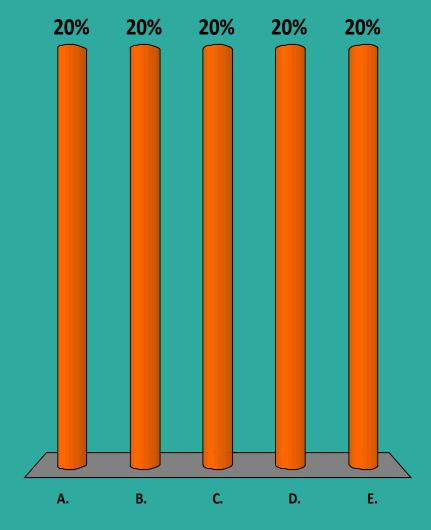
8

# What if only children > 21 Kg come to school?

# What if only children > 21 Kg come to school?

| Before Treatment |    |  | After Treament |    |
|------------------|----|--|----------------|----|
|                  |    |  |                |    |
| T                | С  |  | T              | С  |
|                  |    |  |                |    |
| 20               | 20 |  | 22             | 20 |
| 25               | 25 |  | 27             | 25 |
| 30               | 30 |  | 32             | 30 |

- A. Will you underestimate the impact?
- B. Will you overestimate the impact?
- C. Neither
- D. Ambiguous
- E. Don't know



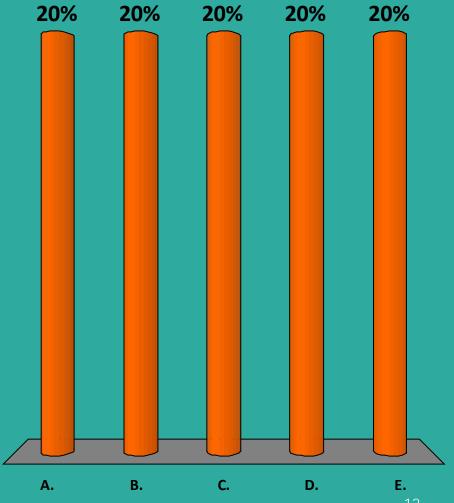
j-pal | threats and analysis 10

# What if only children > 21 Kg come to school?

|      | <b>Before Tree</b> | atment   |   | <b>After Trear</b> | ment     |
|------|--------------------|----------|---|--------------------|----------|
|      | T                  | С        |   | Т                  | С        |
|      |                    |          |   |                    |          |
|      | [absent]           | [absent] |   | 22                 | [absent] |
|      | 25                 | 25       |   | 27                 | 25       |
|      | 30                 | 30       |   | 32                 | 30       |
|      |                    |          |   |                    |          |
| Ave. | 27.5               | 27.5     |   | 27                 | 27.5     |
|      |                    |          |   |                    |          |
| D    | ifference          | 0        | D | ifference          | -0.5     |
|      |                    |          |   |                    |          |

# When is attrition not a problem?

- A. When it is less than 25% of the original sample
- B. When it happens in the same proportion in both groups
- C. When it is correlated with treatment assignment
- D. All of the above
- E. None of the above



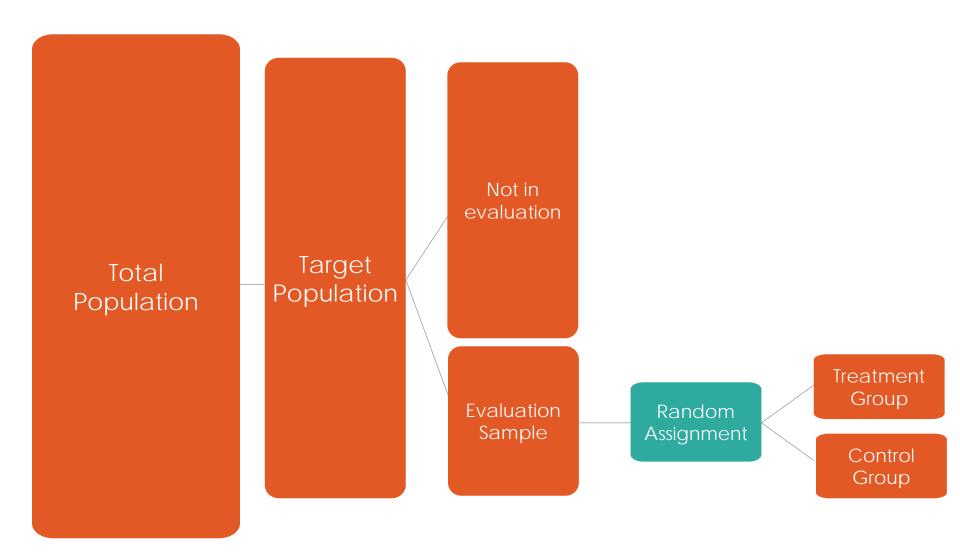
## **Attrition Bias**

- Devote resources to tracking participants after they leave the program
- If there is still attrition, check that it is not different in treatment and control. Is that enough?
- Also check that it is not correlated with observables.
- Try to bound the extent of the bias
  - suppose everyone who dropped out from the treatment got the lowest score that anyone got; suppose everyone who dropped out of control got the highest score that anyone got...
  - Why does this help?

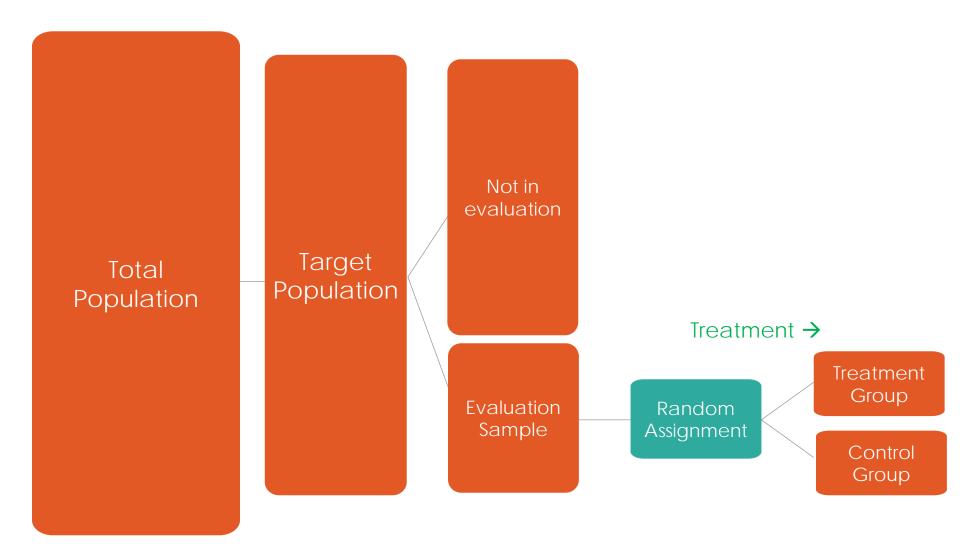
## Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

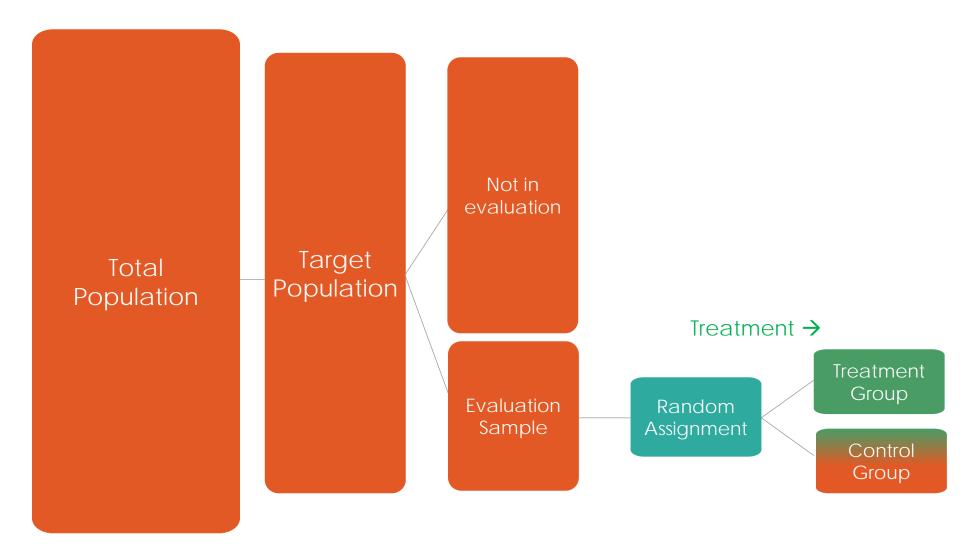
# What else could go wrong?



# Spillovers, contamination



# Spillovers, contamination



# Example: Vaccination for chicken pox

- Suppose you randomize chicken pox vaccinations within schools
  - Suppose that prevents the transmission of disease, what problems does this create for evaluation?
  - Suppose externalities are local? How can we measure total impact?

#### **Externalities Within School**

|          | Without Exte | rnalities      |                                     |  |
|----------|--------------|----------------|-------------------------------------|--|
| School A | Treated?     | Outcome        |                                     |  |
| Pupil 1  | Yes          | no chicken pox | Total in Treatment with chicken pox |  |
| Pupil 2  | No           | chicken pox    | Total in Control with chicken pox   |  |
| Pupil 3  | Yes          | no chicken pox |                                     |  |
| Pupil 4  | No           | chicken pox    | Treament Effect                     |  |
| Pupil 5  | Yes          | no chicken pox |                                     |  |
| Pupil 6  | No           | chicken pox    |                                     |  |

#### With Externalities

Suppose, because prevalence is lower, some children are not re-infected with chicken pox

| School A | Treated? | Outcome        |                                     |  |
|----------|----------|----------------|-------------------------------------|--|
| Pupil 1  | Yes      | no chicken pox | Total in Treatment with chicken pox |  |
| Pupil 2  | No       | no chicken pox | Total in Control with chicken pox   |  |
| Pupil 3  | Yes      | no chicken pox |                                     |  |
| Pupil 4  | No       | chicken pox    | Treatment Effect                    |  |
| Pupil 5  | Yes      | no chicken pox |                                     |  |
| Pupil 6  | No       | chicken pox    |                                     |  |

-pal | threats and analysis 19

#### **Externalities Within School**

|          | Without Exte | rnalities      |                                     |       |
|----------|--------------|----------------|-------------------------------------|-------|
| School A | Treated?     | Outcome        |                                     |       |
| Pupil 1  | Yes          | no chicken pox | Total in Treatment with chicken pox | 0%    |
| Pupil 2  | No           | chicken pox    | Total in Control with chicken pox   | 100%  |
| Pupil 3  | Yes          | no chicken pox |                                     |       |
| Pupil 4  | No           | chicken pox    | Treament Effect                     | -100% |
| Pupil 5  | Yes          | no chicken pox |                                     |       |
| Pupil 6  | No           | chicken pox    |                                     |       |

#### With Externalities

| Suppose, because prevalence is lower, some children are not re-infected with chicken pox |          |                |                                     |      |  |
|------------------------------------------------------------------------------------------|----------|----------------|-------------------------------------|------|--|
| School A                                                                                 | Treated? | Outcome        |                                     |      |  |
| Pupil 1                                                                                  | Yes      | no chicken pox | Total in Treatment with chicken pox | 0%   |  |
| Pupil 2                                                                                  | No       | no chicken pox | Total in Control with chicken pox   | 67%  |  |
| Pupil 3                                                                                  | Yes      | no chicken pox |                                     |      |  |
| Pupil 4                                                                                  | No       | chicken pox    | Treatment Effect                    | -67% |  |
| Pupil 5                                                                                  | Yes      | no chicken pox |                                     |      |  |
| Pupil 6                                                                                  | No       | chicken pox    |                                     |      |  |
|                                                                                          |          |                |                                     | 20   |  |

# How to measure program impact in the presence of spillovers?

- Design the unit of randomization so that it encompasses the spillovers
- If we expect externalities that are all within school:
  - Randomization at the level of the school allows for estimation of the overall effect

## **Example: Price Information**

- Providing farmers with spot and futures price information by mobile phone
- Should we expect spillovers?
- Randomize: individual or village level?
- Village level randomization
  - Less statistical power
  - "Purer control groups"
- Individual level randomization
  - More statistical power (if spillovers small)
  - Ability to measure spillovers

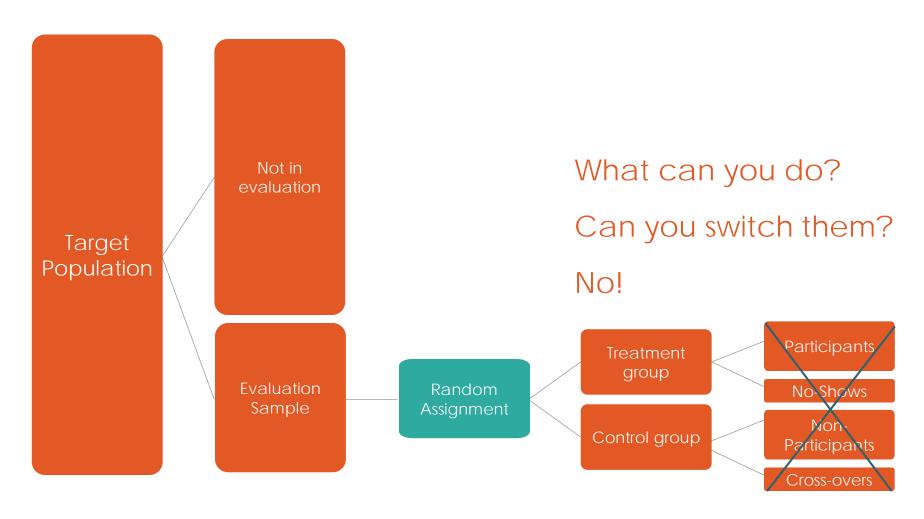
## **Example: Price Information**

- Can we do both?
- Randomly assign villages into one of four groups, A, B, C, & D
- Group A Villages
  - SMS price information to all individuals with phones
- Group B Villages
  - SMS price information to randomly selected 75% of individuals with phones
- Group C Villages
  - SMS price information to randomly selected 25% of individuals with phones
- Group D Villages
  - No SMS price information

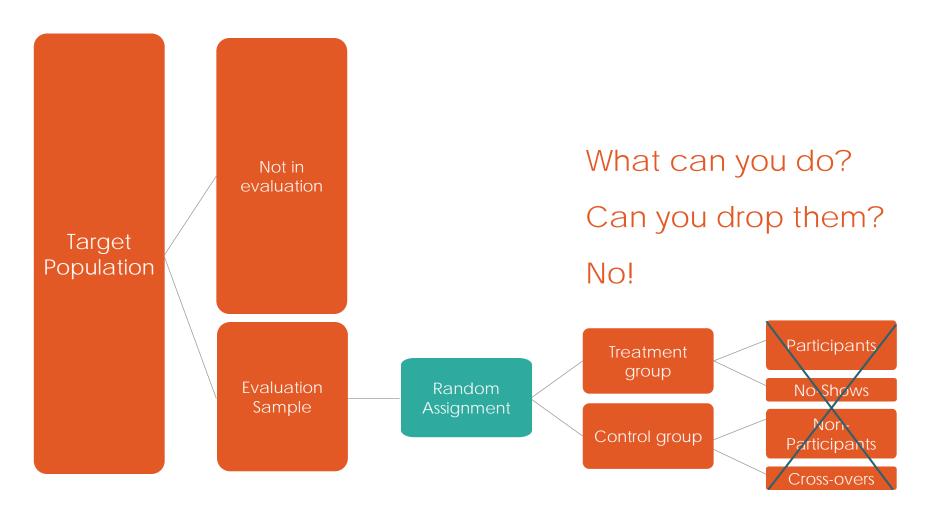
## Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

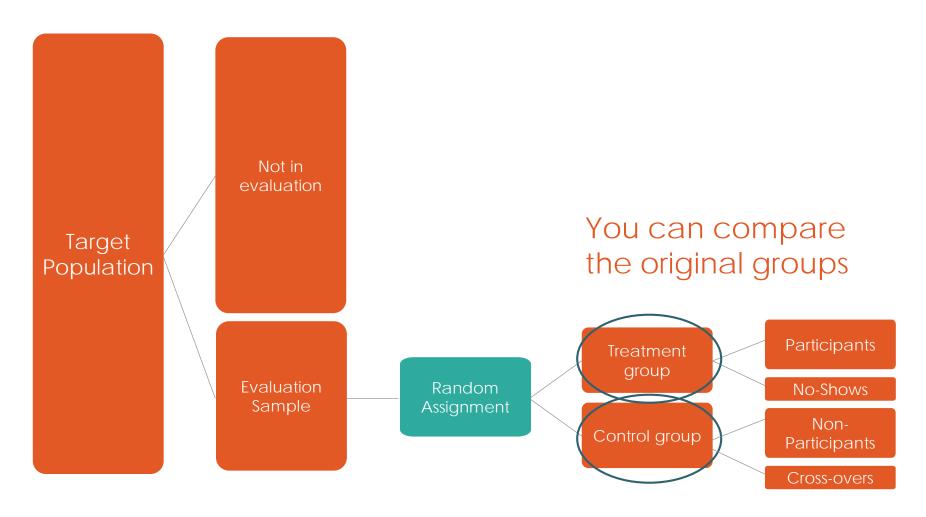
# Non compliers



## Non compliers



# Non compliers



# Sample selection bias

- Sample selection bias could arise if factors other than random assignment influence program allocation
  - Even if intended allocation of program was random, the actual allocation may not be

# Sample selection bias

- Individuals assigned to comparison group could attempt to move into treatment group
  - School feeding program: parents could attempt to move their children from comparison school to treatment school
- Alternatively, individuals allocated to treatment group may not receive treatment
  - School feeding program: some students assigned to treatment schools bring and eat their own lunch anyway, or choose not to eat at all.

## Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

### ITT and ToT

- Vaccination campaign in villages
- Some people in treatment villages not treated
  - 78% of people assigned to receive treatment received some treatment
- What do you do?
  - Compare the beneficiaries and non-beneficiaries?
  - Why not?

# Which groups can be compared?

Treatment Group: Control Group
Vaccination

TREATED

NON-TREATED

**NON-TREATED** 

# What is the difference between the 2 random groups?

| Treatment Group                                                                 | Control Group                                                                                                        |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1: treated – not infected<br>2: treated – not infected<br>3: treated – infected | 5: non-treated – infected<br>6: non-treated – not infected<br>7: non-treated – infected<br>8: non-treated – infected |
| 4: non-treated – infected                                                       |                                                                                                                      |

## Intention to Treat - ITT

Treatment Group: 50% infected

Control Group: 75% infected

- Y(T)= Average Outcome in Treatment Group
- Y(C)= Average Outcome in Control Group

$$ITT = Y(T) - Y(C)$$

• ITT = 50% - 75% = -25 percentage points

## Intention to Treat (ITT)

- What does "intention to treat" measure?
   "What happened to the average child who is in a treated school in this population?"
- Is this difference the causal effect of the intervention?

## When is ITT useful?

- May relate more to actual programs
- For example, we may not be interested in the medical effect of deworming treatment, but what would happen under an actual deworming program.
- If students often miss school and therefore don't get the deworming medicine, the intention to treat estimate may actually be most relevant.

| School 1 Pupi Pupi Pupi Pupi Pupi Pupi Pupi Pupi | il 1 yes<br>il 2 yes<br>il 3 yes<br>il 4 yes<br>il 5 yes<br>il 6 yes<br>il 7 yes<br>il 8 yes<br>il 9 yes |                 | Observed Change in weight 4 4 4 0 4 2 0 6 6 0 |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|
| · up                                             | •                                                                                                        | e among Treated | A=                                            |

| School 1:                     |     |
|-------------------------------|-----|
| Avg. Change among Treated     | (A) |
| School 2:                     |     |
| Avg. Change among not-treated | (B) |

| School 2                         |    |     |   |  |  |
|----------------------------------|----|-----|---|--|--|
| Pupil 1                          | no | no  | 2 |  |  |
| Pupil 2                          | no | no  | 1 |  |  |
| Pupil 3                          | no | yes | 3 |  |  |
| Pupil 4                          | no | no  | 0 |  |  |
| Pupil 5                          | no | no  | 0 |  |  |
| Pupil 6                          | no | yes | 3 |  |  |
| Pupil 7                          | no | no  | 0 |  |  |
| Pupil 8                          | no | no  | 0 |  |  |
| Pupil 9                          | no | no  | 0 |  |  |
| Pupil 10                         | no | no  | 0 |  |  |
| Avg. Change among Not-Treated B= |    |     |   |  |  |

A-B

| 7 trg: Gridings among Trouted 7. | School 1 Pupil 1 Pupil 2 Pupil 3 Pupil 4 Pupil 5 Pupil 6 Pupil 7 Pupil 8 Pupil 9 Pupil 10 | Intention to Treat ?     yes     yes | Treated? yes yes yes no yes no no yes yes | Observed Change in weight 4 4 4 0 4 2 0 6 6 0 |
|----------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|
| School 2                         |                                                                                           | J                                                                                                                                                                    | J.                                        | 1 3                                           |

| School 2                         |    |     |     |
|----------------------------------|----|-----|-----|
| Pupil 1                          | no | no  | 2   |
| Pupil 2                          | no | no  | 1   |
| Pupil 3                          | no | yes | 3   |
| Pupil 4                          | no | no  | 0   |
| Pupil 5                          | no | no  | 0   |
| Pupil 6                          | no | yes | 3   |
| Pupil 7                          | no | no  | 0   |
| Pupil 8                          | no | no  | 0   |
| Pupil 9                          | no | no  | 0   |
| Pupil 10                         | no | no  | 0   |
| Avg. Change among Not-Treated B= |    |     | 0.9 |

| School 1:                     |         |
|-------------------------------|---------|
| Avg. Change among Treated     | (A)     |
| School 2:                     |         |
| Avg. Change among not-treated | 0.9 (B) |
|                               |         |

2.1 A-B

## From ITT to effect of treatment on the treated (TOT)

- The point is that if there is leakage across the groups, the comparison between those originally assigned to treatment and those originally assigned to control is smaller
- But the difference in the probability of getting treated is also smaller
- Formally this is done by "instrumenting" the probability of treatment by the original assignment

## Estimating ToT from ITT: Wald



## Interpreting ToT from ITT: Wald



## Estimating TOT

- What values do we need?
- Y(T)
- Y(C)

- Prob[treated | T]
- Prob[treated | C]

## Treatment on the treated (TOT)

- Starting from a simple regression model:
- $\bullet \quad Y_i = a + B * S_i + e_i$
- [Angrist and Pischke, p. 67 show]:

$$B = \frac{E[Y_i|z_i = 1] - E[Y_i|z_i = 0]}{E[s_i|z_i = 1] - E[s_i|z_i = 0]}$$

## Treatment on the treated (TOT)

$$B = \frac{E[Y_i|z_i = 1] - E[Y_i|z_i = 0]}{E[s_i|z_i = 1] - E[s_i|z_i = 0]}$$

$$\frac{Y(T) - Y(C)}{Prob[treated|T] - Prob[treated|C]}$$

J-PAL | THREATS AND ANALYSIS

44

### TOT estimator

| School 1 | Intention to Treat ? | Treated?          | Observed<br>Change in<br>weight |
|----------|----------------------|-------------------|---------------------------------|
| Pupil 1  | yes                  | yes               | 4                               |
| Pupil 2  | yes                  | yes               | 4                               |
| Pupil 3  | yes                  | yes               | 4                               |
| Pupil 4  | yes                  | no                | 0                               |
| Pupil 5  | yes                  | yes               | 4                               |
| Pupil 6  | yes                  | no                | 2                               |
| Pupil 7  | yes                  | no                | 0                               |
| Pupil 8  | yes                  | yes               | 6                               |
| Pupil 9  | yes                  | yes               | 6                               |
| Pupil 10 | yes                  | no                | 0                               |
|          |                      | Avg. Change Y(T)= |                                 |

A = Gain if Treated B = Gain if not Treated

ToT Estimator: A-B

A-B = 
$$Y(T)-Y(C)$$
  
 $Prob(Treated|T)-Prob(Treated|C)$ 

| School 2 |    |                    |   |
|----------|----|--------------------|---|
| Pupil 1  | no | no                 | 2 |
| Pupil 2  | no | no                 | 1 |
| Pupil 3  | no | yes                | 3 |
| Pupil 4  | no | no                 | 0 |
| Pupil 5  | no | no                 | 0 |
| Pupil 6  | no | yes                | 3 |
| Pupil 7  | no | no                 | 0 |
| Pupil 8  | no | no                 | 0 |
| Pupil 9  | no | no                 | 0 |
| Pupil 10 | no | no                 | 0 |
|          |    | Avg. Change Y(C) = |   |

| Y(T)            |  |
|-----------------|--|
| Y(C)            |  |
| Prob(Treated T) |  |
| Prob(Treated C) |  |
|                 |  |

Y(T)-Y(C)
Prob(Treated|T)-Prob(Treated|C)

A-B

### TOT estimator

| School 1 Pupil 1 Pupil 2 Pupil 3 Pupil 4 Pupil 5 Pupil 6 Pupil 7 Pupil 8 | Intention<br>to Treat ?<br>yes<br>yes<br>yes<br>yes<br>yes<br>yes | Treated?  yes  yes  yes  no  yes  no  yes  no  ves | Observed Change in weight 4 4 0 4 2 0 6 |
|--------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| Pupii 8<br>Pupil 9                                                       | yes<br>yes                                                        | yes<br>yes                                         | 6                                       |
| Pupil 10                                                                 | yes                                                               | no Avg. Change Y(T)=                               | 0                                       |

A = Gain if Treated B = Gain if not Treated

ToT Estimator: A-B

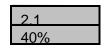
A-B = 
$$Y(T)-Y(C)$$
  
 $Prob(Treated|T)-Prob(Treated|C)$ 

| School 2 |    |                    |     |
|----------|----|--------------------|-----|
| Pupil 1  | no | no                 | 2   |
| Pupil 2  | no | no                 | 1   |
| Pupil 3  | no | yes                | 3   |
| Pupil 4  | no | no                 | 0   |
| Pupil 5  | no | no                 | 0   |
| Pupil 6  | no | yes                | 3   |
| Pupil 7  | no | no                 | 0   |
| Pupil 8  | no | no                 | 0   |
| Pupil 9  | no | no                 | 0   |
| Pupil 10 | no | no                 | 0   |
|          |    | Avg. Change Y(C) = | 0.9 |

| Υ(Τ)            |  |
|-----------------|--|
| Y(C)            |  |
| Prob(Treated T) |  |
| Prob(Treated C) |  |

|   | 3   |
|---|-----|
|   | 0.9 |
|   | 60% |
|   | 20% |
| ٠ |     |

Y(T)-Y(C) Prob(Treated|T)-Prob(Treated|C)



A-B

5.25

## Generalizing the ToT Approach: Instrumental Variables

1. First stage regression:

$$T_{Actual} = \alpha_0 + \alpha_1 T_1 + \alpha_i X_i + e$$

2. Predict treatment status using estimated coefficients

$$\widehat{T}_{predicted} = \widehat{a}_0 + \widehat{a}_1 T_1 + \widehat{a}_i X_i$$

3. Regress outcome variable on predicted treatment status

$$Y_i = \beta_0 + \beta_1 \hat{T}_{predicted} + \beta_X X_i + \varepsilon$$

4.  $\hat{\beta}_1$  gives treatment effect

### Requirements for Instrumental Variables

#### First stage

 Your experiment (or instrument) meaningfully affects probability of treatment

#### Exclusion restriction

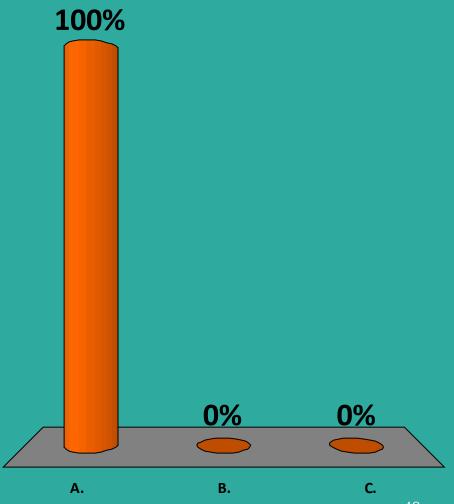
 Your experiment (or instrument) does not affect outcomes through another channel

## The ITT estimate will always be smaller (e.g., closer to zero) than the ToT estimate

A. True

B. False

C. Don't Know



## TOT not always appropriate...

- Example: send 50% of MIT staff a letter warning of flu season, encourage them to get vaccines
- Suppose 50% in treatment, 0% in control get vaccines
- Suppose incidence of flu in treated group drops 35% relative to control group
- Is (.35) / (.5 0) = 70% the correct estimate?
- What effect might letter alone have?

### Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

## Multiple outcomes

- Can we look at various outcomes?
- The more outcomes you look at, the higher the chance you find at least one significantly affected by the program
  - Pre-specify outcomes of interest
  - Report results on all measured outcomes, even null results
  - Correct statistical tests (Bonferroni)

### Covariates

- Why include covariates?
  - May explain variation, improve statistical power
- Why not include covariates?
  - Appearances of "specification searching"
- What to control for?
  - If stratified randomization: add strata fixed effects
  - Other covariates

### Lecture Overview

- Attrition
- Spillovers
- Partial Compliance and Sample Selection Bias
- Intention to Treat & Treatment on Treated
- Choice of outcomes
- External validity

## Threat to external validity:

Behavioral responses to evaluations

Generalizability of results

# Threat to external validity: Behavioral responses to evaluations

- One limitation of evaluations is that the evaluation itself may cause the treatment or comparison group to change its behavior
  - Treatment group behavior changes: Hawthorne effect
  - Comparison group behavior changes: John Henry effect
- Minimize salience of evaluation as much as possible
- Consider including controls who are measured at endline only

## Generalizability of results

- Depend on three factors:
  - Program Implementation: can it be replicated at a large (national) scale?
  - Study Sample: is it representative?
  - Sensitivity of results: would a similar, but slightly different program, have same impact?

### Conclusion

- There are many threats to the internal and external validity of randomized evaluations...
- ...as are there for every other type of study
- Randomized trials:
  - Facilitate simple and transparent analysis
    - Provide few "degrees of freedom" in data analysis (this is a good thing)
  - Allow clear tests of validity of experiment

### Further resources

- Using Randomization in Development Economics Research: A Toolkit (Duflo, Glennerster, Kremer)
- Mostly Harmless Econometrics (Angrist and Pischke)
- Identification and Estimation of Local Average Treatment Effects (Imbens and Angrist, Econometrica, 1994).