Impact Evaluation Methods

April 9, 2012

Diva Dhar
CLEAR Regional Center
J-PAL South Asia

povertyactionlab.org
Impact evaluation methods

a. Pre-Post
b. Simple Difference
c. Differences-in-Differences
d. Multivariate Regression
e. Statistical Matching
f. Instrumental Variables
g. Regression Discontinuity
h. Randomized Evaluations
Example: Pratham’s Balsakhi Program
What was the problem?

- Many children in 3rd and 4th standard were not even at the 1st standard level of competency
- Class sizes were large
- Social distance between teacher and some of the students was large
Context and Partner

- 124 Municipal Schools in Vadodara (Western India)
- 2002 & 2003: Two academic years
- ~17,000 children

- Pratham – “Every child in school and learning well”
- Works with most states in India reaching millions of children
Proposed solution

• Hire local women (balsakhis) from the community
• Train them to teach remedial competencies
 – Basic literacy, numeracy
• Identify lowest performing 3rd and 4th standard students
 – Take these students out of class (2 hours/day)
 – Balsakhi teaches them basic competencies
Possible outcomes

Pros
- Reduced social distance
- Reduced class size
- Teaching at appropriate level
- Improved learning for lower-performing students
- Improved learning for higher-performers

Cons
- Less qualified
- Teacher resentment
- Reduced interaction with higher-performing peers
- Increased gap in learning
- Reduced test scores for all kids

What was the impact?
We conduct a test at the end

- Balsakhi students score an average of 51%
1 - Pre-post (Before vs. After)

Average change in the outcome of interest before and after the programme
• Look at average change in test scores over the school year for the balsakhi children
• **QUESTION**: Under what conditions can this difference (26.42) be interpreted as the impact of the balsakhi program?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average post-test score for children with a balsakhi</td>
<td>51.22</td>
</tr>
<tr>
<td>Average pretest score for children with a balsakhi</td>
<td>24.80</td>
</tr>
<tr>
<td>Difference</td>
<td>26.42</td>
</tr>
</tbody>
</table>
Pre-post

Method 1: Before vs. After

Impact = 26.42 points?

What would have happened without the balsakhi program?
How to measure impact?

Impact is defined as a comparison between:

1. the outcome some time after the program has been introduced

2. the outcome at that same point in time had the program not been introduced

the "*counterfactual*"
Impact: What is it?

- Primary Outcome
- Time

Intervention

Impact

Counterfactual
Impact: What is it?

- Primary Outcome
- Time

Intervention

Counterfactual

Impact
Impact: What is it?

Primary Outcome

Time

Intervention

Impact

Counterfactual
What else can we do to estimate impact?

Pre-Post:

• Limitations of the method: No comparison group, doesn’t take time trend into account
2 - Simple difference

A post-programme comparison of outcomes between the group that received the programme and a “comparison” group that did not

• Example:
 – programme is rolled out in phases leaving a cohort for comparison, even though the assignment of the program is not random
2 - Simple difference

Compare *post-program test scores* of...

Children who *got* balsakhi

With test scores of...

Children who *did not get* balsakhi
QUESTION: Under what assumptions can this difference (-5.05) be interpreted as the impact of the balsakhi program?
3 – Difference-in-Differences

Compare gains in test scores of...

Children who got balsakhi

With gains in test scores of...

Children who did not get balsakhi
3 – Difference-in-Differences (or Double Difference)

Comparison of outcome between a treatment and comparison group (1st difference) and before and after the programme (2nd difference)

- Suitability:
 - programme is rolled out in phases leaving a cohort for comparison, even though assignment of treatment is not random
3 - Difference-in-differences

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Post-test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average score for children with a balsakhi</td>
<td>24.80</td>
<td>51.22</td>
<td>26.42</td>
</tr>
</tbody>
</table>
What would have happened without balsakhi?

Method 3: Difference-in-differences

- 2002
- 2003
- 0
- 25
- 50
- 75

26.42
3 - Difference-in-differences

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Post-test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average score for children with a balsakhi</td>
<td>24.80</td>
<td>51.22</td>
<td>26.42</td>
</tr>
<tr>
<td>Average score for children without a balsakhi</td>
<td>36.67</td>
<td>56.27</td>
<td>19.60</td>
</tr>
</tbody>
</table>
What would have happened without balsakhi?

Method 3: Difference-in-differences

| Year | Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>25.00</td>
</tr>
<tr>
<td>2003</td>
<td>50.00</td>
</tr>
</tbody>
</table>

The difference is 25.00, and without balsakhi, it would be 26.42.

What's the difference? 19.60 and 6.82 points?
3 - Difference-in-differences

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Post-test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average score for children with a balsakhi</td>
<td>24.80</td>
<td>51.22</td>
<td>26.42</td>
</tr>
<tr>
<td>Average score for children without a balsakhi</td>
<td>36.67</td>
<td>56.27</td>
<td>19.60</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td>6.82</td>
</tr>
</tbody>
</table>

QUESTION: Under what conditions can 6.82 be interpreted as the impact of the balsakhi program?

Issues:
- failure of “parallel trend assumption”, i.e. impact of time on both groups is not similar
4 - Accounting for other factors
Impact of Balsakhi - Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Impact Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pre-post</td>
<td>26.42*</td>
</tr>
<tr>
<td>(2) Simple Difference</td>
<td>-5.05*</td>
</tr>
<tr>
<td>(3) Difference-in-Difference</td>
<td>6.82*</td>
</tr>
<tr>
<td>(4) Regression with controls</td>
<td>1.92</td>
</tr>
</tbody>
</table>

*: Statistically significant at the 5% level
5 – Other Methods

• There are more sophisticated non-experimental and quasi-experimental methods to estimate program impacts:
 – Multivariable Regression
 – Matching
 – Instrumental Variables
 – Regression Discontinuity

• These methods rely on being able to “mimic” the counterfactual under certain assumptions

• Problem: Assumptions are not testable
Constructing the counterfactual

• Counterfactual is often constructed by selecting a group not affected by the program

• Non-randomized:
 – Argue that a certain excluded group mimics the counterfactual.

• Randomized:
 – Use random assignment of the program to create a control group which mimics the counterfactual.
Randomized Evaluations

- Individuals, clients, firms, villages are *randomly* selected to receive the treatment, while other units serve as a comparison.

Groups are statistically identical before program.

Any differences at endline can be attributed to program.
Basic set-up of a randomized evaluation

- **Total Population**
- **Target Population**
- **Not in evaluation**
- **Evaluation Sample**
- **Random Assignment**
 - **Treatment Group**
 - **Control Group**
Randomly sample from area of interest
Randomly sample from area of interest

Randomly assign to treatment and control

Randomly sample from both treatment and control
Basic setup of a randomized evaluation

Total Population

Target Population

Not in evaluation

Evaluation Sample

Random Assignment

Treatment Group

Control Group

\[\beta_T = \mu_T - \mu_C \]

\[Y_i = \beta_0 + \beta_1 T + \beta_X X_i + \varepsilon \]
Impact of Balsakhi - Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Impact Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pre-post</td>
<td>26.42*</td>
</tr>
<tr>
<td>(2) Simple Difference</td>
<td>-5.05*</td>
</tr>
<tr>
<td>(3) Difference-in-Difference</td>
<td>6.82*</td>
</tr>
<tr>
<td>(4) Regression with controls</td>
<td>1.92</td>
</tr>
<tr>
<td>(5) Randomized Experiment</td>
<td>5.87*</td>
</tr>
</tbody>
</table>

*: Statistically significant at the 5% level
Impact of Balsakhi - Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Impact Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pre-post</td>
<td>26.42*</td>
</tr>
<tr>
<td>(2) Simple Difference</td>
<td>-5.05*</td>
</tr>
<tr>
<td>(3) Difference-in-Difference</td>
<td>6.82*</td>
</tr>
<tr>
<td>(4) Regression with controls</td>
<td>1.92</td>
</tr>
<tr>
<td>(5) Randomized Experiment</td>
<td>5.87*</td>
</tr>
</tbody>
</table>

*: Statistically significant at the 5% level

Bottom Line:
Which method we use matters
Be aware of the assumptions and possible biases
Conditions required

<table>
<thead>
<tr>
<th>Method</th>
<th>Comparison</th>
<th>Works if....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Post</td>
<td>Program participants before program</td>
<td>The program was the only factor influencing any changes in the measured outcome over time</td>
</tr>
<tr>
<td>Simple Difference</td>
<td>Individuals who did not participate (data collected after program)</td>
<td>Non-participants are identical to participants except for program participation, and were equally likely to enter program before it started.</td>
</tr>
<tr>
<td>Differences in</td>
<td>Same as above, plus: data collected before and after</td>
<td>If the program didn’t exist, the two groups would have had identical trajectories over this period.</td>
</tr>
<tr>
<td>Differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Same as above plus: Also have additional “explanatory” variables</td>
<td>Omitted (because not measured or not observed) variables do not bias the results because they are either: uncorrelated with the outcome, or do not differ between participants and non-participants</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propensity Score</td>
<td>Non-participants who have mix of characteristics which predict that they would be as likely to participate as participants</td>
<td>Same as above</td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized</td>
<td>Participants randomly assigned to control group</td>
<td>Randomization “works” – the two groups are statistically identical on observed and unobserved characteristics</td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qualitative vs Quantitative
Qualitative methods

- Focus Group Discussions
- Case Studies
- Interviews – semi-structured, structured
- Participatory methods - Participatory Rural Appraisal (PRA), Rapid Rural Appraisal (RRA)
- Most Significant Change
- Observations
- We have this indicator that measures...

...let me tell you a story...