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Abstract

We conduct a large scale experiment to investigate peer effects in computer assisted

learning (CAL). Identification relies on three levels of randomization. We find an average

0.17 standard deviation improvement in math scores among primary school students. This

average effect is the same for students treated individually or in pairs, implying that peer

effects double the learning benefit from a given equipment. Among paired students, poor

performers benefit more from CAL when paired with good performers and vice versa. Aver-

age performers benefit equally irrespective of who they are paired with. This suggests that

the treatment is dominated by knowledge exchange betwen peers. We also find that CAL

treatment reduces the dispersion in math scores and that the beneficial effects of CAL can

be strengthened if weak students are systematically paired with strong students.
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1. Introduction

Team work has attracted a lot of attention in experimental economics — see for instance the

seminal contributions of Sugden (1993) and Bacharach (2006). Regarding peer effects, the liter-

ature distinguishes different types depending on the channel through which they occur. Cooper

and Rege (2011) divide peer effects into two broad categories: those that affect agents’informa-

tion set through social learning; and those that affect their utility or payoff function directly.

These authors also distinguish social learning coming from the direct sharing of information and

advice, from inference based on others’actions. A variety of authors have studied social learn-

ing experimentally, often choosing games in which strategic choices are complex and observing

whether teams outperform individual players. Cooper and Kagel (2005), for instance, show that

teams play more strategically than isolates. They show that much of this difference operates

through the accumulation of experience which strengthens strategic response to a change in

payoff. In a similar vein, Kocher et al (2005) show that teams in a beauty contest do not on

average outperform individual players, but they learn faster and perform better than individual

players when experimental conditions change. To disentangle the respective roles of inference

and information sharing, Kocher et al (2014) combine treatments in which players can advise

each other, and treatments in which they only observe others’actions. Using a beauty contest

experimental design, they find that sharing advice has a more permanent effect on subjects’

performance. They speculate that advice helps subjects better understand the strategic nature

of the game, something that simple observation is less able to deliver. Inference-based social

learning may also be less effective because of cognitive biases. One such example for peer effects

is provided by Boughias et al (2015), who find reverse confirmation bias: subjects update their

own beliefs by weighting conflicting information from peers more than agreeing information.

Other peer effects operate through the changes they induce in payoffs and utility functions

(Cooper and Rege 2011). Falk and Ichino (2005), for instance, present experimental evidence

that subjects produce more when teamed up with a peer. Given the simplicity of the task,

they interpret the evidence as suggesting strategic complementarity in effort. Cooper and Rege

(2011) detail different mechanisms through which strategic complementarity can arise: payoff

complementarities, but also imitation/conformity, envy/rivalry, and adherence to social norms.
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Lahno and Serra-Garcia (2015), for instance, contrast relative consideration based on envy from

strategic complementarities driven by conformity. Using a structural model to disentangle the

two, they find evidence of both. Fafchamps et al. (2016) find evidence of keeping-up-with-the-

Joneses behavior in a risk taking experiment. In a similar vein, Cooper and Rege (2011) find

evidence of social regret, which they define as imitation caused by the fear of regretting a decision

when a peer who took a different decision fared better. A few experiments have attempted to

disentangle social learning from peer effects. Apart from the already cited works of Cooper

and Rege (2011), Burztyn et al (2014) conduct an experiment to contrast inference-based social

learning with keeping-up-with-the-Joneses effects; they find evidence of both.

Heterogeneous peer effects have been empirically investigated primarily by researchers inter-

ested in matching peers to optimize peer effects. Examples include natural experiments in: the

assignment of roommates or squadron members in institutions of higher education (Sacerdote

2001; Zimmerman, 2003; Lyle, 2007 & 2009; Carrell, Fullerton and West, 2009; Shue, 2012); the

assignment of students to schools through busing (Angrist and Lang, 2004); and the random

assignment of students to classes within schools (Vigdor and Nechyba, 2007; Graham, 2008).

Other examples include situations in which the objective is to reduce peer effects (e.g., Lee et al.

2012) or to induce specific effects (e.g., reduce racial bias —Burns et al 2013). There is also some

evidence from randomized experiments where the peer group composition is randomly varied by

the researchers (Duflo, Dupas and Kremer, 2011; Carrel, Sacerdote and West, 2013). Much of

this literature, however, does not specifically seek to investigate the strength of peer effects as a

function of their past performance —the emphasis remains primarily on average peer effects.

A handful of papers have nonetheless investigated the topic. Using random assignment to

work teams, Bandiera et al. (2010) estimate the effect on individual effort of being assigned to

work with a peer. They find convergence in effort between low and high productivity individuals.

They attribute this finding to high productivity workers slowing down —and low productivity

workers speeding up —so as to work side by side. While the study is exemplary in many respects,

this finding appears specific to the particular study setting. In the context of beauty contests,

Kocher et al. (2014) discuss how less able subjects learn sophisticated play from more able

peers, and conclude that the effect is stronger with direct exchange of knowledge.

There is a large literature examining whether how students learn depends on the behavior
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and characteristics of their school peers (see Epple and Romano 2011 for an excellent review).

In this literature, learning relates to the acquisition of specific academic knowledge or skills, not

to the diffusion of information that is directly useful for strategic play or technology adoption.

There is, however, a natural link between both types of learning. Many studies of peer effects

in schools adopt a linear-in-means model that assumes homogenous peer effects across students

(Hoxby and Weingarth, 2005). The evidence that exists about heterogeneous peer effects in

school learning is disparate and studies vary largely in estimates (Epple and Romano 2011,

Sacerdote, 2011). The diffi culty is in estimating heterogeneous learning in a convincing manner.

In this paper we investigate a computer-assisted learning (CAL) experiment in which treated

students pursue a learning task conducted weekly on a specially designed computer software.

The focus is on math among primary school children.1 To maximize external validity, the

experiment is conducted over an entire academic year in a large number of schools, and involves

real tasks relevant for student learning. We already know from other work that CAL has a

strong positive average effect on test scores, including in our study (e.g., Lai et al., 2011, 2012

and 2013; Mo et al., 2013 and 2014).

Most students are assigned a random peer with whom they share the same computer through-

out the year. Some students undertake the task individually and do not have to share the com-

puter with anyone. In the absence of positive peer effects, we expect knowledge acquisition to

be less for students treated in pairs because they have to share equipment and software. But

treating two students with a single computer reduces costs by half and could be justified from a

cost-benefit point of view. Given the nature of the treatment, we do not observe learning effort

and knowledge exchange between peers. But since exams are taken individually, effort at the

exam itself is not subject to peer effects.2 This ensures that test scores measure the effect of

CAL on knowledge acquisition.

To better identify the peer effects at work in our study, we examine whether students improve

their test score differently depending on the prior knowledge of the peer with whom they are

matched. If learning occurs primarily through knowledge transmission between peers —e.g., via

1Since simple math skills are an essential part of the strategic calculations needed in simple strategic games,our
results should provide insights that are complimentary to those, e.g., of Cooper and Kagel (2005) and Kocher et
al. (2005, 2014).

2 In particular, social regret is unlikely since subjects do not in principle observe the action of others at the
exam (Cooper and Rege 2011).
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advice or observational inference (as in Kocher et al. 2014) —we expect weaker students to

converge (fully or partially) to the knowledge level of a better able peer. To the extent that

even strong students retain gaps in knowledge, they too will learn more if matched with a strong

student who can fill these gaps.3 Hence if peer effects arise due to shared knowledge, we expect

learning in pairs to increase monotonically with the initial knowledge level of the peer: everyone

benefits from being matched with a strong student. We nonetheless expect a bigger increase for

weaker students because they initially have more gaps in knowledge (akin to Cooper and Kagel

2005).

In contrast, if the presence of a peer affects learning effort (as in Falk and Ichino 2005), there

is little a priori reason to expect learning to be affected by whether the peer is weak or strong.

Peer effects on effort could be either positive —e.g., students energize each other (as in Cooper

and Kagel 2005) —or negative — e.g., they distract each other. Rivalry between students (as

in Lahno and Serra-Garcia 2015) may lead them to compete for control over the computer, in

which case one student would learn and the other not. If this were the case, we would observe

less learning on average when students take CAL in pairs.4 Alternatively, stronger students may

slow down to wait for weaker students, as in Bandiera et al. (2010), in which case learning levels

should converge: weak students would learn more —and strong students learn less —from taking

CAL in pairs. It is also possible that weaker students are induce to exert more effort so as to

keep up with their stronger peer, as in Burztyn et al (2014).

What do we find? We first note that average treatment effects are identical for students

treated individually or in pairs, implying that peer effects on learning are positive and fully

make up for having to share equipment. Based on this finding, we reject the hypothesis that

peer effects are dominated by students distracting each other or competing for control of the

equipment and software. Secondly, we find that peer effects do vary by level of initial knowledge.

Contrary to Bandiera et al. (2010), we see no evidence of averaging between peers. What we

find instead is that the largest learning gains occur for matches involving a weak and a strong

student. In such matches, both students appear to gain, although weak students gain the

3Reverse confirmation bias (Boughias et al 2015) could potentially create some confusion among strong students
matched with weaker students. The computer software is designed to minimize this occurence, however.

4One of them enjoys the same treatment level as someone treated individually, while the other receives no
treatment at all.
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most. This suggests some form of knowledge transmission in which peer interactions fill gaps

in knowledge for both students, including strong ones — perhaps because giving advice helps

student understand the material better. For this to happen, strong students must behave in

a somewhat altruistic way towards their weaker peer. In contrast, students of average ability

benefit equally from CAL treatment irrespective of the initial ability of the student they are

paired with. Taken together, the results suggest that the treatment is dominated by knowledge

exchange between peers, and that this effect is large enough to compensate for having to share

equipment and software. These findings have important and encouraging implications for policy.

The paper is organized as follows. The experimental design is summarized in Section 2. In

Section 3 we present our testing strategy in detail, contrasting what can — and cannot — be

inferred with different types of data. The student data are described in Section 4. Estimation

results are detailed in Section 5.

2. The experiment

During the 2011-2012 academic year, we conducted a randomized controlled trial to study peer

effects in Computer Assisted Learning (or CAL) in China. The main focus of the CAL inter-

vention is remedial tutoring in mathematics to complement the regular school curriculum. CAL

is not intended to help top student performers advance faster and learn more than the school

curriculum. It aims instead at helping weaker students keep up with the rest of the class. What

is unclear is whether it is capable of reaching this objective.

2.1. Experimental design

One of the objectives of the study is to identify interventions that can bridge the educational

gap between rich and poor Chinese counties. For this reason, we implement the randomized

controlled trial in a poor area of China. We select the Shaanxi Province, a province with one

of the greatest number of nationally designated poor counties (CNBS, 2013). Within Shaanxi,

we choose to focus on the Ankang prefecture because it is the poorest prefecture in the province

(CNBS, 2013). Of the eight counties in Ankang that are nationally-designated as poor (CNBS,

2013), we randomly select four. With an average per capita income of 4000 RMB ($650) per

year in 2011, the four selected counties have an average income that is far below the rural China
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average, which was 6977 RMB in 2011 (CNBS, 2011). All 72 six-year primary schools in the four

selected counties are included in the experiment. Within sample schools, we work with students

in grades three to six because the CAL software was produced for these grades.5 All classes in

these grades are included. None of our sample students had ever participated in a CAL program

prior to the 2011-12 academic year. A total of 7881 grade students were involved in the study.

Half of the 72 sample schools were randomly assigned to receive the CAL treatment and the

other half were assigned to the control group. When dividing schools into treatment and control,

we pre-balanced on the student and family characteristics reported in Table 2, following the

methodology suggested by Bruhn and McKenzie (2009). The CAL intervention was implemented

during over the entire 2011-2012 academic year. Students in treated schools received two 40-

minute CAL sessions per week. The sessions took place in the school and they were mandatory

for all students in treated schools.

Protocols are designed to ensure that the control schools provide a true counterfactual.

Students in the 36 control schools took their regular math classes as usual, without any CAL

intervention. To avoid spillover effects across schools, the principal, teachers, students, and

parents in the control schools were not informed of the CAL project. The research team did

not visit the control schools except for the baseline and endline surveys. No placebo activity

was organized in control schools. Treatment thus represents additional teaching time. The

possibility of accidental spillover is minimized by the fact that there was only one sample school

per town. This means that the average distance between control and treatment schools is more

than 30 kilometers. No student in a treatment school lived in a village with a student from a

control school.

During CAL sessions, students played math games designed to help them review and practice

the material taught during their regular math classes. The instructional videos and games that

make up the content of the CAL software are all based on the material in text books that

use rural China’s most common curriculum, the uniform national curriculum. The content is

grade-specific and is the same across all treated schools for students in the same grade. In a

typical session, the students first watch an animated video that reviews the material taught by

their math teacher during that week. The students then play games containing various math

5Grade 1 and 2 students are not included because they can not read at levels high enough to use software.
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exercises. The games have cartoon characters and story lines that make the exercises fun.

Many CAL students were randomly assigned a peer who was a student in the same class. The

pair shared a computer during the CAL sessions. Peers were assigned randomly by the research

team from among the students in the same class. Peer assignment was decided once and for

all at the beginning of the academic year after the baseline survey, and it remained unchanged

over the duration of treatment. To keep a log of which students shared a computer in each CAL

session, students were required to log in using their unique username and password. According

to log records, there was almost no switching of peers across sessions. Furthermore, less than

one percent of paired students participated in a session alone due to their peer’s absence on the

day of the session.

Because some classes have an odd number of students, six percent of students in treated

schools were not assigned a peer. As as result, the sample includes both paired and unpaired

students. Unpaired students participated in the same CAL sessions as the paired students, but

they did not have to share their computer with anyone. In addition, some students lost their

peer when the peer left the school in the middle of the school year. These students were not

reassigned a peer. If a student participated to more than half of the CAL sessions without

sharing a computer, this student is categorized as unpaired for the purpose of our analysis. This

only affects 23 students in 7 schools.

The experimental protocol was designed to minimize interaction with students other than

one’s peer. During CAL sessions, paired students were allowed to interact freely, but no dis-

cussion or interaction was allowed with other students. Sharing a pair of earphones also helped

paired students focus their attention and conversations on their own computer, and limit con-

versations with others. The teacher who supervised a CAL session was only allowed to help

students with scheduling, computer hardware issues, and software operation. The main duty

of the teacher-supervisor was to ensure that each weekly CAL sessions matched the pace of

regular math classes. According to our own in-class observations, the sessions were so intense

that the students had little time or interest to interact with other student pairs or with the

teacher-supervisor.
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2.2. Data collection

We conducted two survey rounds in the 72 sample schools —one at baseline in June 2011 and

one at endline in June 2012. All students in grades three to six participated in the two rounds

of surveys. The baseline survey was conducted at the end of the spring semester, before any

implementation of the CAL intervention had begun. The endline survey was conducted in June

2012 after the intervention had been running for an entire academic year. The two survey rounds

are almost identical in terms of design and questionnaire. Information includes the gender of

the student, whether the student is an only child, whether the student had prior computer

experience, and whether the student’s mother and father are illiterate.

During each survey round, the enumeration team visited each school and gave all students

a standardized math test. The test is a grade-specific multiple choice test and is identical for

all students in the same grade. The questions are all chosen from the TIMSS test data bank.

Elementary teachers in rural schools of Shaanxi Province screened the questions to ensure that

they were appropriate, i.e., neither too diffi cult nor too easy for the average student. None of the

questions repeat questions used as exercises in the CAL software. The test takes 25 minutes and

was administered using pen and paper so as not to advantage CAL students. Since students take

a grade-specific test, scores are not directly comparable across baseline and endline. To make

test scores comparable, they have been standardized using grade-specific test scores obtained

by control students. Throughout the analysis, math scores are measured in terms of standard

deviation units relative to the average score of control students.

3. Testing strategy

The identification of peer effects is made diffi cult by different types of biases detailed in Manski’s

(1993) seminal paper. Manski distinguishes between exogenous and endogenous peer effects. In

the context of learning, an exogenous peer effect is when what a student learns depends on pre-

determined peer characteristics, such as what her peers know. In contrast, an endogenous peer

effect arise when what a student learns depends on what her peers learn. Endogenous peer effects

are particularly diffi cult to estimate because they combine a wide range of potential identification

problems, including reflection bias. They are not the topic of this paper. Exogenous peer effects
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have received more attention, but are subject to self-selection bias: when peers are not randomly

assigned, what a student learns may be correlated with what her peers know simply because

academically gifted students befriend other academically gifted students.6 We deal with this

issue by randomly assigning peers.

Our aim is to obtain consistent estimates of the heterogeneous effect of CAL treatment on

paired students. A major challenge in properly identifying heterogenous peer effects is to suitably

control for all possible effects of treatment that are not driven by peer effects themselves. We

tackle this challenge by taking advantage of the fact that randomization takes place at three

levels: (1) assignment of schools to CAL treatment and control; (2) assignment of students to

CAL treatment either individually or in pairs; and (3) random assignment of a peer for those

students assigned to treatment in pairs. We have baseline data on all students, including results

from a standardized academic test. We show that these different pieces of information are

needed to identify the heterogeneous effect of receiving the CAL treatment in pairs. Although

it is possible with less data to draw inference about how the effect of treatment varies by peer

type, it is not possible to establish the sign of the effect itself —and thus it is not possible to

draw policy conclusions —without suitable control groups. This problem is common to studies

in which all subjects are paired, including several of the studies cited above.

Formally, we distinguish between three types of treatment effects: (a) the average treatment

effect of CAL; (b) the average treatment effect of taking CAL in pairs rather than individually;

and (c) the effect of having been assigned a particular peer, conditional on being paired. The

first effect (a) is the focus of earlier work by Lai et al. (2011, 2012 & 2013) and Mo et al.

(2013 & 2014). These studies estimate the average treatment effects of CAL in different regions

of China and among different rural populations. The estimated program impacts range from

0.12 standard deviations of a one-semester program among migrant students to 0.26 standard

deviations of a three-semester program among rural students. The third effect (c) is what we

focus on here. The question is whether we can obtain a consistent estimate of (c) without also

consistently estimating (a) and (b).

6 It has also be observed that increasing the number of high-achieving students in a group may induce low-
achieving students to form subgroups among each other, something they might not have done if high-achieving
students are less available (Carrel, Sacerdote and West, 2013).
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3.1. Unpaired students

Control students measure the average performance of children without CAL treatment, while

unpaired CAL students measure the average performance of CAL without peer effects. For

unpaired students, the effect of CAL treatment can be written:

yit+1 = yit + h(yit) + f(yit)Tt + uit+1 (3.1)

where yit denotes the performance of student i in the math test at time t, Ti = {0, 1} is a

dummy for being assigned to CAL treatment, and Pi = {0, 1} is a dummy for receiving the CAL

treatment in pairs.

In model (3.1) h(.) denotes the learning that takes place without treatment. This is estimated

from the control population, and in general it varies with the initial level of the student yit. For

instance, if a student has already learned a topic, further instruction in that topic will not

improve his/her knowledge of that subject. We expect h(.) to be positive on average because

students above the mean at baseline have a higher likelihood of being above the average at

endline, except for regression to the mean due to measurement error or random performance

variation on the test. The yet-to-be-defined function f(.) captures the heterogeneous effect of

treatment conditional on initial knowledge. For instance, if treatment has a stronger effect on

initially weak students, then f(.) is an decreasing function.

With a suffi ciently large number of observations, we could in principle estimate a flexible

version of model (3.1). Unfortunately we do not have that luxury. A linear version of model

(3.1) is of the form:

yit+1 = k + ρyit + (α+ γ(yit − yt))Tt + uit+1 (3.2)

where we have explicitly demeaned yit in the interaction term so that α can be interpreted as

the average treatment effect (Wooldridge, 2003).

The intercept k is the average unconditional level of knowledge at t+ 1 without treatment,

ρ − 1 is the average growth rate in knowledge, α is the average effect of the CAL treatment

on all students, and γ is the heterogeneous effect of treatment depending on initial knowledge.

If the treatment helps weaker students catch up, then γ < 0: initially knowledgeable students
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benefit less from treatment.

3.2. Paired students

For paired students, the total effect of treatment can be written as:

yit+1 = yit + h(yit) + f(yit)Tt + g(yjt|yit)Pt + uit+1 (3.3)

where g(.) is an unknown function that captures peer effects. By experimental design Tt = 1

whenever Pt = 1 —i.e., only students who take CAL are paired. In our estimation, we posit g(.)

to be of the form:

g(yjt|yit) = β0 + β1(yit − yt) + β2(yjt − yt) + β3(yit − yt)(yjt − yt) (3.4)

where we have demeaned all y’s to facilitate interpretation of the parameters. The interpretation

of each coeffi cient is as follows: β0 > 0 is the average incremental gain in learning for a student

of average initial knowledge paired with an average peer, compared to an unpaired student of

similar ability; β1 < 0 means that a student i with high initial knowledge benefits from CAL less

if paired than if not paired; β2 > 0 means that a student i benefits more from CAL if paired to

a student j with high initial knowledge than if paired with an average peer; and β3 < 0 means

that a student i of high initial knowledge benefit less from CAL if paired with another high

knowledge student j compared to being paired with an average peer. More formally, we have:

∂g

∂yit
= β1 + β3(yjt − yt)

∂g

∂yjt
= β2 + β3(yit − yt)

∂2g

∂yit∂yjt
= β3

Combining (3.2) with (3.4) the estimated model is:

yit+1 = k + ρyit + (α+ γ(yit − yt))Tt (3.5)

+(β0 + β1(yit − yt) + β2(yjt − yt) + β3(yit − yt)(yjt − yt))Pt + uit+1

12



Coeffi cient α measures (a), the average treatment effect of CAL and coeffi cient β0 measures

(b), the average treatment effect of being paired for treatment. Peer effects (c) are captured by

coeffi cients β1, β2 and β3.
7

3.3. Class effects

So far we have assumed that CAL and pairing have an effect that depends on the absolute level

of initial knowledge of students and their peers. It is also possible that what matters is the

initial knowledge of a student relative to others in the class. This could arise, for instance, if

teachers teach to the class, i.e., go through the curriculum faster or deeper if the average student

is stronger/is learning faster. In this case, CAL may help laggard students to catch up.8

To capture this possibility, we include yct, the average initial knowledge of the class, as

additional regressor, and we enter all interaction terms as deviation to the class mean yct.
9 The

estimated model becomes:

yit+1 = k + ρ0yit + ρ1yct + (α+ γ(yit − yct))Tt (3.6)

+(β0 + β1(yit − yct) + β2(yjt − yct) + β3(yit − yct)(yjt − yct))Pt + uit+1

Estimating this model is the focus of the empirical part of the paper.

3.4. Identification

It is useful to compare our preferred model (3.6) to an alternative model used by Guryan,

Kroft, and Notowidigdo (2009) to estimate peer effects among golfers. Indeed there are many

similarities between their experimental design and ours, given that golfers are randomly assigned

to play in small groups of two or three. Guryan et al. wish to estimate whether a golfer plays

7The β coeffi cients should be understood as capturing both exogenous and endogenous peer effects (Manski
1993), i.e., the effect of being paired with a treated student j, and the multiplier effect of j’s CAL-induced learning
on i’s own learning. To estimate endogenous and exogenous effects separately, we would either need to observe
paired students who did not to receive CAL treatment, or observe students paired with different numbers of peers
(e.g., Fafchamps and Vicente 2014; Fafchamps, Vaz and Vicente 2014). Neither of these is possible here given the
design of our intervention.

8Even if relative performance does not matter, we still may want to include average class performance as
regressor to control for class differences that may, in a small sample, be correlated with treatment.

9The reader may wonder whether, in model (3.6), α can still be interpreted as the ATE of the CAL intervention
even though we have not subtracted the mean of (yit−yct) from each interaction term. The answer is yes because
the mean of (yit − yct) is, by construction, equal to 0.
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better if paired with a good golfer than if paired with a bad golfer. Let yit+1 be the performance

of golfer i in the tournament, and let yjt be the past performance of the paired player. The

model that Guryan et al. estimate is of the form:

yit+1 = β0 + β1yit + β2yjt + uit+1 (3.7)

only using data on grouped subjects, i.e., with Pi = 1.10

Our model (3.5) can be seen as an extension of (3.7) to allow β to depend on the initial

ability of golfer i. If we limit the estimation sample to paired subjects, model (3.5) can be

rewritten as:11

yit+1 = (k + β0 + (ρ+ γ)yt) + (ρ+ γ + β1)(yit − yt)

+β2(yjt − yt) + β3(yit − yt)(yjt − yt) + uit+1 (3.8)

where we preserved the original notation.

The above shows that, if we only use observations on paired students we cannot estimate

ρ, γ and β1 separately from each other. In other words, we cannot distinguish whether better

able students perform better when paired (β1), from whether students perform play better with

CAL (γ), and from whether students who did well at baseline also perform better at endline

(ρ). We can, however, still obtain consistent estimates β2 and β3. But without an estimate of

β1 we cannot compute the correct marginal effects of treatment. We will illustrate this in the

10 If yit is omitted from regression (3.7), β2 is affected by exclusion bias (Caeyers and Fafchamps 2016). This bias
arises because yit is positively correlated with yit+1 but negatively correlated with yjt. This negative correlation
arises mechanically because high ability individuals are, on average, paired with individuals of lower ability, and
vice versa.
11This is obtained by using:

yit+1 = k + ρyit + γyitTit

+(β0 + β1(yit − yt) + β2(yjt − yt) + β3(yit − yt)(yjt − yt))Pt + uit+1

= (k + β0 − β1yt) + (ρ+ γ + β1)yit + β2(yjt − yt) + β3(yit − yt)(yjt − yt) + uit+1

from which we get our model in Guryan form:

yit+1 = (k + β0 − (β1 + β2)yt + β3y
2
t ) + (ρ+ γ + β1 − β3yt)yit

+(β2 − β3yt)yjt + β3yityjt + uit+1
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empirical section.12

4. The data

A total of 7881 students from 72 primary schools were involved in the study. This total can be

broken down into 1555 grade three students, 1927 grade four students, 2115 grade five students,

and 2284 grade six students (Figure 1). There are 3852 students in the CAL schools and 4029

students in the control schools. Ninety-six percent of the students (3679) in the CAL schools

have a peer with whom they shared a computer during the CAL sessions. The rest, i.e., 173

students sat alone without sharing a computer. As stated above, unpaired students arise mostly

in classes with an odd number of students. On average, there was one student who had no peer

in every two classes.

Table 1 presents information about balance across the three different types of treatments

implemented in our experiment. We compute balance with respect to performance on the June

2011 math test and for the student characteristics collected in the baseline survey. The first two

columns of Table 1 report regression coeffi cients of the variables listed on the left on treatment

dummies. The comparison is between treated and control students and the dummy is 1 in treated

schools and 0 in control schools. Results show that random assignment of CAL treatment across

schools produced balanced groups of students in the CAL and control schools along all available

variables.

The next two columns of Table 1 compare paired and unpaired students. Here the comparison

is between students who are treated individually and those who are treated in pairs. The dummy

is 1 for those treated in pairs, and 0 for those treated individually. We do not find any significant

difference between the two groups in terms of baseline characteristics. From this we conclude

that randomization was successful and balanced is achieved on baseline characteristics.

The last two columns check random peer assignment for those treated in pairs. This is

important given our emphasis on estimating heterogenous peer effects: if, in spite of our best

efforts, peers are not assigned randomly, we worry that paired students may have been matched

on unobservables, a feature that may introduce correlated unobservable effects and contaminate

12Model (3.8) can be modified to include class effects as in (3.6). The same observation holds: since the mean
of (yit − yct) is always 0 by construction, the interpretation of the coeffi cients is the same as above.
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our inference. The methodology used to perform this test is detailed in Appendix 1, together

with attrition analysis. All p-values are above the 10% level. From this we conclude that the

random assignment of peers was implemented in a satisfactory manner.

5. Empirical analysis

In the first column of Table 2 we report coeffi cient estimates for model (3.8), the model in which

we only use data on paired students. The mean math score of the class at baseline yct is included

as control. The other estimate coeffi cient are shown interacted with Pi since, by construction,

only paired students are used in the regression. As explained in Section 2, coeffi cient [6] estimates

ρ+γ+β1, the combined effect of past performance on its own ρ, interacted with CAL treatment

γ, and interacted with being paired β1. This coeffi cient is statistically significant, but we do not

know which of the three effects it captures. Coeffi cient [8] is an estimate of β2 while coeffi cient

[10] is an estimate of β3. We note that β3 is significant and negative, which suggests that a low

ability student benefits more from CAL if paired with a high ability student —or vice versa.

Without an estimate of β1 we cannot compute g(.) in (3.4) and thus we cannot tell whether the

absolute effect of CAL treatment is higher for high or low ability students.

By using data on control and unpaired students, we are able to separately estimate ρ, γ

and β1. This is done in the third column of Table 2, which estimates model (3.6) on the

entire population of non-attriting students. Coeffi cient [1] is an estimate of ρ, which measures

the extent to which performance in the June 2011 math test helps predict performance in the

June 2012 math test. Since ρ < 1, this indicates math test scores exhibit a strong element

of regression to the mean. This might arise because math test scores are noisy measures of

math ability. Another possibility is that it signals convergence towards an average level of math

proficiency. Since the purpose of our experiment is not to distinguish between the two, we do

not pursue this issue any further. Coeffi cient [3] is an estimate of the average treatment effect of

the CAL intervention, which is positive, statistically significant, and large in magnitude. This

estimate is discussed in detail in Mo et al. (2014).

More of interest here is coeffi cient [4], which is an estimate of γ. This coeffi cient is indistin-

guishable from 0, indicating that the average positive effect of CAL on math performance is the

same across students, irrespective of past performance. If this coeffi cient had been negative, we
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would have concluded that CAL helped laggard students catch up with their better performing

peers. This is not what we find. A zero γ implies that, by itself, CAL is unable to reduce the

performance gap between students in a class. We observe a similar finding regarding β1, which

corresponds to coeffi cient [6] in column 3: the coeffi cient is slightly positive, but nowhere near

statistically significant. In other words, students who did poorly on the June 2011 math test

did not benefit more from CAL when paired than students who did well on that test. Taken

together, these findings indicate that coeffi cient [6] in column 1 is entirely driven by ρ, that is,

by coeffi cient [1] in column 3. This is exactly what we find: the coeffi cients are identical in

magnitude and in significance.

Using coeffi cient estimates from column 3, we report in Table 3 the predicted performance of

paired students at the June 2012 math test. Predictions are calculated for various hypothetical

pairings of students with different levels of initial ability. The first row of the Table reports

the predicted June 2012 performance of students who did quite poorly on the June 2011 test,

that is, who received mark that is two standard deviation below the average. The first column

is the predicted performance of such a student if he/she were paired with a student who did

equally poorly on the June 2011 test. This predicted performance is -0.95, that is, just shy of

one standard deviation below the average June 2012 test score. As emphasized earlier, there is

random variation in test results for the same student over time, and thus considerable regression

to the mean: someone who did exceptionally poorly in June 2011 must have had an unusually

bad day, and their performance is predicted to improve in June 2012.

Moving to the other columns of row 1, we see that the predicted performance of an unusually

poorly performing student improves if this student is paired with a better performing student

during the CAL intervention: if such a student were paired with a top performer in 2011, their

predicted performance would rise to -0.63, that is, 0.63 standard deviations below the 2012

test score average. We test whether the difference between columns 1 (-0.95) and 5 (-0.63) is

statistically significant and we report the p-value of this test in the last column of Table 3. We

find that the difference is significant at the 2% level, implying that a poorly performing student

benefits more from CAL if paired with a high performer. A statistically significant effect of being

paired with a good performer is also found in the second row of Table 3, that is, for students

who received a score one standard deviation below average in June 2011.
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In contrast, for a student who received an average score in 2011, we find no statistically

significant relationship between predicted performance and the performance of the paired stu-

dent. In other words, the predicted performance of an average student is the same irrespective of

the past performance of the student they are paired with during the CAL treatment. A similar

result is found for students who received a mark one standard deviation above the average in the

June 2011. For students who performed exceptionally well in 2011, we find that their predicted

2012 performance is, if anything, higher if they were paired with a poorly performing student:

+1.21 compared to +0.99 standard deviation above the mean. This difference, however, is not

statistically significant at conventional levels (p-value of 14%).

To test the robustness of our findings to alternative functional form assumptions, we reesti-

mate models (3.8) and (3.6) with additional quadratic terms (coeffi cients [7] and [9]). Results

are shown in columns 2 and 4 of Table 2, respectively. We find some evidence of non-linearity

for paired students with respect to own 2011 scores. Other coeffi cients are largely unaffected.

We report in Table 4 the performance predictions obtained using coeffi cient estimates reported

in column 4 of Table 2. These calculations confirm the findings from Table 3. Students who

performed one or two standard deviation below average in 2011 do better in 2012 if they are

paired with high performers (significant at the 6% and 8% level, respectively). In contrast, high

performers in 2011 do not do less well in 2012 if paired with poor performers; this difference is

large in magnitude, albeit not statistically significant.

Tables 3 and 4 demonstrate that treatment effects vary across pairings. In Table 5 we present,

for each of the pairings in Table 3, the predicted effect of CAL treatment relative to control

students. The Table also reports pairing-specific p-values for the significance of the effect relative

to controls. What the Table shows is that significant benefits from CAL are concentrated on

two groups: (1) average and below-average students paired with above average-students; and (2)

above-average students paired with below average students. The first group corresponds to the

last two columns of the first three rows, where the estimated treatment effects of paired CAL are

all positive and statistically significant at the 10% or better. The second group corresponds to

the last two rows in columns one and two, with p-values less than 0.1. For weak students paired

with weak students, the point estimate of the ATE is negative (row 1, column 1), although it is

not statistically significant.
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5.1. Improved pairing

Table 5 has shown that peer effects are stronger for some pairings than others. This suggests

that it may be possible to increase the average treatment effect of CAL on math scores by

assorting students in a particular way. In general, mixed integer problems of this kind are

impossible to solve algebraically and are diffi cult to solve numerically.13 Fortunately, in our

case, the pattern of peer effects displayed in Table 5 suggests an improved pairing that delivers

a stronger treatment effect but is easy to implement —and thus easy to delegate to a school

teacher. The idea is to first pick the pair that generates the highest gain in learning, which is by

pairing the weakest student with the strongest student in the class. Then, among the remaining

students, we similarly achieve the highest gain by pairing the weakest of the remaining students

with the strongest, and so on. This is known as negative assorting.14 We calculate the predicted

effect of CAL using the coeffi cients estimated in Table 2 (column 3).

To implement this idea in our sample, we proceed as follows. We begin by sorting all the

students in a class by their 2011 math score. We then pair the first student from the top with

the first from the bottom, then the second from the top with the second from the bottom, and

so on until every student is paired (if the number of students in the class is even) or until the

median student is left to be treated individually (if the number of students in the class is odd).

We then compute the predicted treatment effect for each individual in the sample conditional on

negative assorting. Finally we aggregate these predicted effects to obtain the average predicted

effect of the optimal match.

To recall, in the data the average treatment effect of CAL is a 0.17 SD improvement in math

score. Based on our calculations, negative assorting would further improve the math test scores

of paired students by another 0.03 SD relative to random pairing. This is equivalent to an 18%

13Finding an algebraic solution is not feasible given that the optimization problem is not differentiable —each
classroom contains a finite number of students with different abilities. A numerical approach is thus necessary. In
general, the numerical optimum can only be found with certainty by complete enumeration, that is, by computing
the welfare gain for each possible way of pairing all the students in the class. Even for a small classroom, the
total number of possible matches is a very large number and is impractical to compute. For instance, for a class
size of 30, the number of possible pairings is 8.0949E+27. To illustrate how large this number is, imagine that
we could compute the educational gain of one million class pairings per second. Enumerating all the possible
combinations would take 256 quadrillion years, which amounts to 20,000 times the age of the universe. Moreover,
this calculation would have to be done for each classroom separately.
14There are other possible pairing rules, depending on the nature of peer effects. See for instance, Booij, Leuven

and Oosterbeek (2014) who discuss a variety of assignment rules in the context of the assignment of university
students to tutorial groups.
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increase in treatment effectiveness on average. The difference between improved and random

pairing is even larger —0.04 SD —for weaker students, that is, for those with a 2011 math score

below the class average. Improved pairing could thus be particularly beneficial to weak students.

5.2. Dispersion in math scores

We have seen from Tables 3 to 5 that students at both extremes of the score distribution gain

more from CAL, especially if they are optimally matched. By itself, however, this does not tell

us whether CAL leads to a reduction or an increase in the dispersion of math scores in treated

classes. In other words, it does not tell us whether the improvement in math scores is achieved

by helping weak students to catch up or by helping strong students to get further ahead of their

peers.

To investigate this important issue from a policy point of view, we first note that the average

improvement in math scores is 0.16 SD for students who scored higher than or equal to the class

median in 2011. In contrast, the average improvement in scores is 0.19 SD for the students who

scored lower than the class median in 2011. We further note that 9% of the average treatment

effect of 0.17 is attributable to the “catching up”of the poorer performing students. From this

we suspect that CAL reduces the dispersion in math scores for paired students compared to

controls.

We can also look at the dispersion in scores directly. To this effect, we present in Table 6

various interdecile ranges for control and paired students. The first row reports the difference

in standardized math scores between the 90th percentile (Q9) and the 10th percentile (Q1)

students. This difference is 2.67 standard deviations for control students and 2.61 for paired

students. Similar findings are shown in row 2 —which compares the 80th to the 20th percentiles

—and in row 3 —which compares the 70th to the 30th percentiles. These results suggest that

CAL reduced the dispersion in math scores among the treated population. In other words,

students who were initially weak benefitted more than students who were initially strong.

Because interdecile differences are small in magnitude, we wonder whether they are statisti-

cally significant. To obtain a p-value for each of the three columns of Table 6, we use a method

that has the advantage of being entirely non-parametric. Our null hypothesis is that the distri-

bution of scores among the control and treatment populations is the same. We want to compare
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each of the interdecile differences in Table 6 to the distribution of interdecile differences that

would arise under the null. To derive the distribution of these differences under the null, we

simulate it from the data by randomly drawing hypothetical controls and treatments from the

pooled observations, keeping the number of controls and treated identical to the actual data.

In practice, this is achieved by randomly re-sorting the pooled data and assigning the first N c

observations to controls and the others to treated —where N c is the number of control observa-

tions in the actual data.15 We do this 1000 times and draw a histogram of interdecile differences

simulated over these 1000 replications. We then compare this histogram to the actual difference

reported in Table 6. The p-value of the reported difference is the proportion of the histogram

that lies to the right of the (positive) difference. For row 1, the difference is 2.67-2.61=0.06.

Of the simulated differences under the null, 10% are larger than 0.06. The p-value of 0.06 is

thus 10%. Similar calculations for row 2 and 3 yield p-values of 0.07 and 0.00, respectively. We

therefore conclude that the reduction in dispersion induced by CAL is statistically significant.

We also calculate what further reduction in dispersion could be achieved with improved

pairing. To this effect, we construct counterfactual distributions of math scores with negative

assorting. This is achieved as follows. We first obtain predicted math scores for negatively

assorted pairs following the methodology already described in the previous sub-section. By con-

struction, the distribution of predicted scores has a smaller variance than actual scores because

it omits the random variation contained in the residuals. In order to produce a counter-factual

distribution that can be compared to the sample distributions presented in Table 6, we need to

‘add’the error term back in. This is achieved by adding the residuals from regression (3.6) to

the counter-factual predictions with improved pairing. We compare the resulting hypothetical

distribution to the control population. Point estimates indicate that improved pairings generates

a further —albeit small —reduction in the interdecile range of math scores. Applying the same

permutation method as before to test whether the difference is significant, we find that it is not

significant for all interdecile ranges reported in Table 6 —although it is borderline significant

(p-value of 0.16) for the 90-10 interdecile range. These findings therefore suggest that negative

assorting students may further reduce dispersion in math scores relative to random pairing.

15Before pooling we normalize the two distributions to have the same mean by subtracting the ATE of 0.17
from the paired students’scores.
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6. Conclusion

We have conducted a large scale randomized controlled trial to investigate peer effects in learn-

ing. Every treated subject receives the same standardized treatment, keeping confounds to the

minimum. Identification of peer effects relies on three levels of randomization. We randomly

assign schools to a treatment that successfully improves math learning. Within treated schools,

students take the treatment either individually or in pairs. Finally, paired students are assigned

a peer at random from the class population. In the methodological section, we show that this

experimental designs improves on earlier designs commonly used in the literature on peer ef-

fects in learning, such as paired designs used by Sacerdote (2001), Lyle (2007, 2009) and Shue

(2012). We also avoid some of the pitfalls of paired designs discussed for instance in Guryan et

al. (2009).

We find that, in the Chinese rural schools we studied, computer assisted learning (CAL)

leads to an average 0.17 standard deviation improvement in math scores among primary school

students. This average effect is the same whether students take CAL individually or in pairs,

indicating the presence of positive peer effects to compensate for the fact that paired students

share equipment and software. Since pairing students cuts treatment costs in half, this implies

that peer effects double the learning benefit from a given investment in equipment and software

development.

Among paired students, poor performers benefit more from CAL when paired with good

performers16 and good performers similarly benefit more when paired with poor performers.

Average performers benefit equally irrespective of who they are paired with. Taken together,

the results suggest that the treatment is dominated by knowledge exchange between peers, and

that this effect is large enough to compensate for having to share equipment and software.

Learning interventions can potentially widen the knowledge gap between weak and strong

students. This is not what we find. We find statistically significant evidence that CAL treatment

reduces the dispersion in math scores relative to controls. We also demonstrate that the benefi-

cial effects of CAL can potentially be strengthened, without significant increase in the dispersion

of scores, if weak students are systematically paired with strong students during treatment. To

16This finding is similar to that reported by Booij, Leuven and Oosterbeek (2014) in the context of tutorial
groups for university students.
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our knowledge, this is the first time that a school intervention has been identified in which peer

effects unambiguously help poor student performers catch up with the rest of the class, with-

out imposing learning cost on other students. These findings have important and encouraging

implications for policy.
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7. Appendix 1: Balancedness and attrition

In column (5) of Table 1 we report regression coeffi cient of the baseline characteristic of one

student on the baseline characteristic of the other. The estimated regression is of the form:

yit = β0 + β2yjt + uit (7.1)

This random assignment test is subject to exclusion bias: because a student cannot be his/her

own peer, negative correlation between peer characteristics naturally arises under random as-

signment. Consequently, under the null hypothesis of random assignment estimated β̂2 are not

centered on 0 but on a negative number. Caeyers and Fafchamps (2016) derives the magnitude

of the bias for groups and selection pools of fixed size and shows that the bias is particularly

large when the randomly assigned group is small, e.g., in pairs.
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We cannot use their formula directly because the size of the selection pools varies: class sizes

are not constant. To circumvent this problem, we simulate the distribution of β̂2 under the null

using a so-called permutation method. This method also delivers a consistent p-value for β2

and thus offers a way of testing the null of random assignment. This method works as follows.

The object is to calculate the distribution of β̂2 under the null that yit and yjt are uncorrelated.

To simulate β̂2 under the null, we create counterfactual random matches and estimate (7.1). In

practice, this is implemented by artificially scambling the order of students within each class

to reassign them into counterfactual random pairs. By construction these samples of paired

observations satisfy the null of random assignment within classroom. We repeat this process

1000 times to obtain a close approximation of the distribution of β̂2 under the null. We then

compare the actual β̂2 to this distribution to get its p-value.

We present in Figure 2 the simulated distribution of β̂2 for baseline math scores under the

null hypothesis of random assignment. These simulated β̂2’s are centered around -0.05, with

very few values at or above 0. As shown in the first line of column (5) in Table 1, the β̂2

estimated from the sample -0.03. Comparing this number to the histogram of β̂2 under the null

reported in Figure 2, we find that 27% of simulated coeffi cients are larger than -0.03. From this

we conclude that the p-value is 0.27: we cannot reject the null hypothesis of random assignment

based on baseline math scores.

In column (5) and (6) of Table 1 we report the coeffi cient estimates for other baseline char-

acteristics as well as similarly calculated p-values for the null hypothesis of random assignment

by these characteristics. All p-values are above the 10% level. From this we conclude that the

random assignment of peers was implemented in a satisfactory manner.

Attrition during the experiment is low. A total of 7536 sample students surveyed in the

baseline participated in the endline survey. Only 4% of the students who took the baseline survey

did not take the endine survey. Based on information provided by the schools, attrition is mainly

due to illness, dropout, and transfers to schools outside of the town. In Appendix Table A1 we

examine whether attrition is correlated with treatment. Column 1 shows that attrition rates do

not differ statistically between CAL school students and control school students. Attrition is

also not correlated with being paired or not (Table A1, column 2) or with being assigned to a

high or low achieving peer Table A1, column 3).
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As a final check, we repeat the balancedness tests of Table 1 using only the non-attriting

sample. Results are shown in Appendix Table A2. The same conclusions hold: we cannot

reject balance on all baseline characteristics for the first two treatments. We also repeat the

permutation tests to check random peer assignment on baseline math scores. We obtain p-values

all above 0.1 and again fail to reject the random peer assignment hypothesis.
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Table 1. Balance between CAL school students and control school students, students who 
were paired and who sat alone in CAL classes, and between students who were assigned to a 
high achieving or a low achieving peer before attrition. 

    Independent variables 
  

CAL treatment 
(1=yes; 0=no) 

Pair status 
(1=had a peer; 
2=sat alone) 

Standardized 
baseline math test 
score of the peer - 
class mean score 

(SD) 
  (1) (2) (3) (4) (5) (6) 

    Coef S.E. Coef S.E. Coef 
Simulated 
P-values 

[1] 
Standardized own math 
test score - class mean 
score (SD) 

0.00  0.00  0.04  0.07  -0.03  0.28  

[2] Boy (1=yes;0=no) 0.00  0.01  -0.01  0.03  0.00  0.43  

[3] 
Only Child (1=yes, 
0=no) 

0.01  0.03  0.03  0.04  0.00  0.45  

[4] 
Had computer 
experience before the 
program (1=yes;0=no) 

0.00  0.03  0.07  0.05  0.00  0.48  

[5] 
Mother is illiterate 
(1=yes; 0=no) 

0.00  0.01  0.02  0.02  0.01  0.21  

[6] 
Father is illiterate 
(1=yes; 0=no) 

0.01  0.00  0.00  0.02  0.00  0.36  

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to present information about balance across the three different types of 
treatments in our experiment. The tests regress the variables listed on the left (each at a time) 
on the dummy variable of treatment status, the dummy variables of the pairing or the baseline 
math performance of the peer.  
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Table 2. The impact of the CAL treatment, the pairing status and the types of peer on own 
evaluation math score 

Dependent variable: Own standardized 
evaluation math score (SD) 

[1] [2] [3] [4] 

[1] Own standardized baseline math 
score (SD) 

  
0.47*** 0.50*** 

 
  

(0.02) (0.02) 

[2] Class mean of the standardized 
baseline math score (SD) 

0.62*** 0.63*** 0.18*** 0.17*** 

 
(0.06) (0.06) (0.04) (0.04) 

[3] 
CAL treatment (1=yes; 0=no)   

0.17* 0.17* 

 
  

(0.09) (0.09) 
[4] CAL treatment * (own score - class 

mean)a 
  

0.00  0.00  

 
  

(0.08) (0.09) 
[5] Being paired in CAL classes (1=yes; 

0=no) 
  

0.03  0.02  

 
  

(0.09) (0.09) 
[6] Being paired * (own score - class 

mean) 
0.47*** 0.49*** 0.02  0.04  

 
(0.02) (0.02) (0.09) (0.09) 

[7] [Being paired * (own score - class 
mean)]^2 

 
0.03** 

 
0.04*** 

 
 

(0.01) 
 

(0.01) 
[8] Being paired * (peer score - class 

mean)b 
0.02  0.01  0.02  0.01  

 
(0.01) (0.02) (0.02) (0.02) 

[9] 
[Being paired * (peer score - class 
mean)]^2 

 
-0.01  

 

-0.01  

 
(0.01) (0.01) 

[10] Being paired * (own score - class 
mean) * (peer score - class mean) 

-0.04** -0.03* -0.04** -0.03* 

 
(0.02) (0.02) (0.02) (0.02) 

[11] Constant 0.20*** 0.19*** 0.00  -0.01  

  
(0.03) (0.03) (0.03) (0.03) 

[12] Observations 3,524 3,524 7,536 7,536 
[13] R-squared 0.28 0.283 0.287 0.291 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at class level. 
The tests aim to show how the CAL treatment, the pairing status and the types of peer affect 
own evaluation math score. The tests regress own evaluation math score on the variables 
listed on the left.  
a The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
b The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 3. Predicted own evaluation math scores of students with high or low achieving peers 
using the regression model excluding the quadratic terms of test scores 

  

  
Peer score - 
class mean= 

-2 

Peer score - 
class mean= 

-1 

Peer score - 
class mean= 

0 

Peer score - 
class mean= 

1 

Peer score - 
class mean= 

2 

P-value (difference 
between columns 1 

and 5) 

 
 

[1] [2] [3] [4] [5] [6] 

[1] 
Own score - 
class mean= -2 

-0.95 -0.85 -0.77 -0.69 -0.63 0.02 

[2] 
Own score - 
class mean= -1 

-0.49 -0.42 -0.37 -0.33 -0.31 0.02 

[3] 
Own score - 
class mean= 0 

0.03 0.06 0.07 0.08 0.07 0.21 

[4] 
Own score - 
class mean= 1 

0.59 0.59 0.57 0.55 0.51 0.35 

[5] 
Own score - 
class mean= 2 

1.21 1.18 1.13 1.07 0.99 0.14 

The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 4. Predicted evaluation math test scores of students with high or low achieving peers 
using regression model including the quadratic terms of test scores 

  
  

Peer score - 
class 

mean=-2 

Peer score - 
class 

mean=-1 

Peer score - 
class 

mean=0 

Peer score - 
class 

mean=1 

Peer score - 
class 

mean=2 

P-value (difference 
between column 1 

and 5) 

 
 

[1] [2] [3] [4] [5] [6] 

[1] 
Own score - 
class mean= -2 

-1.02 -0.92 -0.82 -0.72 -0.61 0.06 

[2] 
Own score - 
class mean= -1 

-0.48 -0.42 -0.36 -0.3 -0.24 0.08 

[3] 
Own score - 
class mean= 0 

0.05 0.07 0.09 0.11 0.13 0.46 

[4] 
Own score - 
class mean= 1 

0.59 0.57 0.54 0.52 0.5 0.38 

[5] 
Own score - 
class mean= 2 

1.13 1.06 1.00 0.93 0.87 0.18 

The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 5. Difference in predicted evaluation math test scores between control students and 
students that were paired 

  

  

Predicted 
evaluation 

math score of 
the control 

school students 
(without CAL) 

Difference 
between the 

control school 
students and the 

paired students in 
CAL schools 

Peer 
score - 
class 

mean= -2 

Peer 
score - 
class 

mean= -1 

Peer score 
- class 

mean= 0 

Peer 
score - 
class 

mean= 1 

Peer 
score - 
class 

mean= 2 

 
 

[1] [2] [3] [4] [5] [6] [7] 

[1] 
Own score - 
class mean= 

-2 
-0.88  

Difference in 
scores (SD) 

-0.07  0.03  0.11  0.19  0.25  

P-value 0.35  0.84  0.38  0.08  0.03  

[2] 
Own score - 
class mean= 

-1 
-0.43  

Difference in 
scores (SD) 

-0.06  0.01  0.06  0.10  0.12  

P-value 0.64  0.72  0.16  0.03  0.01  

[3] 
Own score - 
class mean= 

0 
0.02  

Difference in 
scores (SD) 

0.01  0.04  0.05  0.06  0.05  

P-value 0.34  0.13  0.05  0.02  0.02  

[4] 
Own score - 
class mean= 

1 
0.48  

Difference in 
scores (SD) 

0.11  0.11  0.09  0.07  0.03  

P-value 0.08  0.08  0.14  0.32  0.59  

[5] 
Own score - 
class mean= 

2 

0.93  
Difference in 
scores (SD) 

0.28  0.25  0.20  0.14  0.06  

  P-value 0.08  0.13  0.33  0.81  0.76  
The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 6. Interdecile ranges of own evaluation math scores among the control school students 
and the paired students in CAL schools 

    

Control 
students 

Paired 
students 

Paired 
students in 

optimal 
matching 

P-value 
for 

difference  
[1] - [2] 

P-value 
for 

difference  
[2]- [3]  

 
Interdecile ranges [1] [2] [3] [4] [5] 

[1] Q9 - Q1 2.67  2.61  2.57  0.10  0.16 
[2] Q8 - Q2 1.78  1.73  1.71  0.07  0.40 
[3] Q7 - Q3 1.19  1.08  1.08  0.00  0.54  
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Evaluation survey  
(June 2012)  
	  

7881 students in 72 schools in Ankang prefecture, 
Shaanxi Province (1555 grade three students, 1927 
grade four students, 2115 grade five students and 
2284 grade six students) 
	  

Randomly selected 36 schools to receive the CAL 
intervention (CAL schools), and the other 36 schools 
served as control schools. Randomly pair students within 
class to share a computer during CAL sessions.  
	  

3847 students in 36 control 
schools analyzed. 
	  

3689 students in 36 CAL schools 
analyzed. 3524 students had a 
peer during CAL sessions. 165 
students sat alone. 
	  

4029 students in 36 control 
schools.  
	  

3852 students in 36 CAL 
schools. 3679 students had a peer 
during CAL sessions. 173 
students sat alone. 

Baseline	  
(June 2011)  
	  

Allocation 
(September 2011)  
	  

Figure 1: Experiment Profile  
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Figure 2. Histogram of 𝛽2 under the null for baseline math scores 

 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix Table A1. Comparisons of attrition between the CAL school students and control 
school students, students who were paired and who sat alone in CAL classes, and between 
students who were assigned to a high achieving or a low achieving peer 

Dependent variable: attrition (1=students attrited; 0=students 
remained in the sample)  

  (1) (2) (3) 

[1] CAL treatment (1=yes; 0=no) -0.00     
  (0.01)   

[2] Pairing status (1=had a peer; 
0=alone) 

 -0.00  
  (0.02)  

[3] Standardized baseline math score of 
the peer - class mean score (SD) 

  -0.00 
   (0.01) 

[4] Observations 7,881 3,852 3,675 
[5] R-squared 0.000 0.000 0.000 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to show whether attrition rates are different among the groups defined by the three 
different types of treatment. The test regresses attrition status on the different treatment variable.  
 
 
 



Appendix Table A2. Balance between CAL school students and control school students, students 
who were paired and who sat alone in CAL classes, and between students who were assigned to a 
high achieving or a low achieving peer after attrition 

    Independent variables 
  

CAL treatment 
(1=yes; 0=no) 

Pair status 
(1=had a 

peer; 2=sat 
alone) 

Standardized 
baseline math test 
score of the peer - 
class mean score 

(SD) 
  (1) (2) (3) (4) (5) (6) 

    Coef S.E. Coef S.E. Coef Simulated 
P-values 

[1] Standardized own math test score 
- class mean score (SD) 0.00  0.00  0.04  0.07  -0.03  0.24 

[2] Boy (1=yes;0=no) 0.00  0.01  -0.02  0.03  0.01  0.21 
[3] Only Child (1=yes, 0=no) 0.01  0.03  0.02  0.04  0.00  0.46 

[4] Had computer experience before 
the program (1=yes;0=no) 0.00  0.03  0.07  0.06  0.00  0.45 

[5] Mother is illiterate (1=yes; 0=no) 0.00  0.01  0.02  0.02  0.01  0.11 
[6] Father is illiterate (1=yes; 0=no) 0.01  0.01  0.00  0.02  0.00  0.31 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to present information about balance across the three different types of treatments 
in our experiment. The tests regress the variables listed on the left (each at a time) on the dummy 
variable of treatment status, the dummy variables of the pairing or the baseline math performance 
of the peer.  
	  


