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Abstract

Digital tools hold promise for scaling energy conservation by giving households real-
time information about their electricity use and costs. Yet whether such app-based in-
terventions canmeaningfully reduce consumption depends on users’ engagement. We
conduct a natural field experiment on a random sample of 45,000 electricity customers
inHanoi, Vietnam, that tested twomobile-app interventions built on the utility’s smart-
meter platform. One treatment (“price salience”) displayed each household’s current
marginal price tier and consumption to date; the other (“billing salience”) showed
consumption and bill to date. Across the full sample, neither intervention reduced
electricity use on average, and we can rule out effects as small as one percent. To un-
derstand this precise null, we examine engagement with the app and find no effects
on the extensive margin, and only limited responses on the intensive margin. Among
households that already engage with the app, the price-salience treatment modestly
increased engagement and led to small consumption declines late in the billing cycle,
whenmarginal prices risemechanically under the nonlinear tariff. These results under-
score both the promise and limits of digital behavioral tools for demand management
– while low-cost app integrations can inform attentive users, engagement does not nec-
essarily scale with delivery, limiting the ability of such interventions to automatically
generate population-level energy savings.
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1 Introduction

Digital technologies offer an unprecedented opportunity to scale behavioral and infor-
mation interventions by reaching large populations at very low marginal cost. Once de-
veloped, digital platforms can automatically deliver information and reminders at scale,
making them attractive tools for improving household decision-making in energy, health,
and finance. However, their effectiveness ultimately hinges on whether users engage with
the information provided. Many digital programs depend on active engagement and sus-
tained attention – features that are often uneven across users. More recently, economists
have emphasized that many interventions exhibit substantial attenuation when scaled, not
because the underlying mechanism is absent, but because adoption and adherence fall
outside controlled experimental settings (Al-Ubaydli et al., 2017; DellaVigna and Linos,
2022; Vivalt, 2020). In the context of electricity use, this raises an important question: can
low-cost digital tools that communicate real-time consumption and pricing information
meaningfully change behavior, or do limits to user engagement undermine their potential
to deliver energy conservation at scale?

A growing literature shows that households facing nonlinear electricity tariffs often fail
to respond to marginal prices, weakening the effectiveness of non-linear price schedules
designed to manage demand or promote efficiency (Ito, 2014; Jessoe and Rapson, 2014;
Borenstein, 2009). For example, households may mistakenly perceive the marginal price
as the price they must pay for all consumption units, resulting in underconsumption and
significant welfare losses (Shaffer, 2020).1 One explanation is that marginal prices are not
salient: consumers may not know when they cross into higher price tiers, may find rate
structures too complex, or may lack timely feedback about their consumption. Salient
information interventions such as in-home display (IHD) devices that provide real-time
usage and pricing information have been shown to increase responsiveness to marginal
prices (Jessoe and Rapson, 2014). However, IHD devices remain expensive and difficult to
deploy at scale, particularly in low- andmiddle-income countries. A promising alternative
is to integrate increasingly available smart-meter data into mobile applications that auto-
matically communicate real-time usage and pricing information to consumers. Whether
these low-cost, app-based interventions can replicate the behavioral effects of more inten-
sive technologies – and for whom – remains an open empirical question.

We address this question through a pre-registered natural field experiment on a random
1Related evidence shows that consumers often under-attend to energy costs even when those costs are

salient and economically meaningful, such as in appliance purchase decisions (Houde and Myers, 2021).
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sample of 45,000 residential customers of the public electricity utility in Hanoi, Vietnam.2
These households were randomly selected from the population that had already down-
loaded and registered on the utility’s mobile application – approximately 30 percent of the
utility’s more than two million residential customers at the time of the experiment. Res-
idential consumers face nonlinear tariffs with six steeply increasing price tiers, yet many
households remain unaware of when they cross into higher marginal rates. Working with
the utility’s smart-meter data platform, we designed two information interventions deliv-
ered through its existing mobile app. The first treatment (“price salience”) displayed each
household’s current marginal price tier and usage to date on a real-time graph of the tariff
schedule. The second (“billing salience”) displayed cumulative consumption and bill to
date using a dynamic visual gauge.

Across the full sample, we find that neither treatment significantly reduced electricity con-
sumption on average. With sufficient statistical power to detect effects as small as one
percent, we can rule out meaningful average energy savings. To understand this precise
null, we examine whether the interventions succeeded in scaling engagement on the app.
We find no effect on engagement on the extensive margin: treated households are nomore
likely to open the app than control households. The price-salience treatment modestly in-
creases engagement on the intensive margin. Consistent with this pattern, we find sugges-
tive evidence of modest consumption reductions only among households who regularly
check the app and primarily late in the billing cycle, when marginal prices rise mechani-
cally under the nonlinear tariff.

Contributions. This paper makes two central contributions. First, we provide a policy-
relevant evaluation of app-based information interventions for residential electricity con-
servation at scale. A central insight of the science-of-scaling literature is that evidence
should be generated in the population anddelivery environment thatwould be used under
real-world implementation, as many interventions attenuate once scaled beyond tightly
controlled settings (Al-Ubaydli et al., 2017; DellaVigna and Linos, 2022; Vivalt, 2020; List,
2024; Fowlie and Meeks, 2021). Our experimental design explicitly reflects this concern.
We randomly sample 45,000 households from the relevant population of customers—those
who had already downloaded and registered on the utility’s mobile application, which at
the time of the experiment comprised approximately 30 percent of the utility’s more than
two million residential customers. This sampling frame contrasts with much of the prior

2The final analysis follows the experimental design, sampling strategy, outcome definitions, and estima-
tion approach specified in the pre-analysis plan discussed in Garg et al. (2023). We discuss details on neces-
sary deviations from the pre-analysis plan arising from implementation constraints and data availability in
Appendix Section A.3.
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evidence on energy feedback and information, which often relies on pilots, dedicated hard-
ware deployments, or opt-in participation (Houde et al., 2013; Schultz et al., 2015; Geelen
et al., 2019; Tiefenbeck et al., 2018; Burkhardt et al., 2023). In addition, by studying infor-
mation that is delivered through an existing utility platform, we complement field exper-
iments that combine information with pricing incentives (Wolak, 2011; Kahn and Wolak,
2013; Stojanovski et al., 2020). Across this scale-relevant sample, we find no evidence that
providing real-time information about marginal prices or cumulative bills reduces elec-
tricity consumption on average, and we can rule out effects of one percent or larger.3

Second, we diagnose why these interventions fail to generate population-level impacts
when delivered through a scalable digital platform. While mobile applications allow in-
formation to be delivered widely at low marginal cost, they do not ensure attention or
engagement. We show that the interventions do not increase engagement on the extensive
margin—households are no more likely to open the app at all. Any engagement effects
operate only on the intensive margin among households that already use the app regu-
larly, consistent with models of limited attention and infrequent optimization (Sims, 2003;
Reis, 2006; Chetty et al., 2009). As a consequence, reductions in energy use are necessar-
ily confined to a subset of engaged users. Consistent with this mechanism, we find that
modest consumption reductions, when present, occur only among households that rou-
tinely check their app and primarily late in the billing cycle, when marginal prices become
most salient. This timing aligns with evidence that attention to energy costs is episodic
and shaped by billing and other salient moments (Gilbert and Graff Zivin, 2014; Sexton,
2015; Wichman, 2017; Singhal, 2024; Prest, 2020).

Our findings highlight a central challenge for digital demand-side interventions empha-
sized in the energy efficiency literature: low marginal delivery cost does not imply low
realized savings. By combining a scale-relevant experimental sample with high-frequency
consumption data and direct measures of engagement, we show that understanding both
outcomes and engagement is essential for diagnosing when – andwhy – digital behavioral
interventions fail to scale.

3We also contribute to the broader literature on nonlinear tariffs and perceived marginal incentives by
testing whether making marginal costs and tariff kinks more transparent changes consumption behavior
(Ito, 2014; Borenstein, 2009; Shaffer, 2020; Jessoe and Rapson, 2014).
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2 Experimental Design and Data

We conduct our study in Hanoi, the capital and second-largest city of Vietnam. Vietnam, a
lower-middle-income country in Southeast Asia, has experienced rapid economic growth,
with GDP increasing by 6-8% per year over the past decade. This growth has been accom-
panied by a sharp rise in energy demand: according to the International Energy Agency,
Vietnam’s electricity consumption increased from roughly 30 TWh in the early 2000s to
over 240 TWh by 2022, an almost eightfold increase. Rising household incomes and a
growing middle class have driven greater ownership of electricity-intensive appliances,
particularly air conditioning. The country’s hot and humid climate, particularly during
the summer months from May to September, further increases electricity demand. Hy-
dropower accounts for over a third of Vietnam’s electricity, but summer droughts often
cause shortages, making it difficult for the utility to meet rising demand.

As is common for electricity utilities operating as local monopolies, retail electricity prices
in Vietnam are fixed by regulation, limiting the use of dynamic pricing and requiring util-
ities to rely on non-price mechanisms commonly referred to as demand-side management
(DSM) to overcome supply constraints during peak summermonths. EVNHanoi, Hanoi’s
state-owned electricity utility, has introduced a variety of initiatives to encourage energy
conservation in peakmonths, including campaigns via television, radio, communitymeet-
ings, news outlets, and home visits. At the same time, Vietnam is advancing digital trans-
formation to improve efficiency and cut costs. Smart meters are now installed at 100% of
all 2.8 million households in Hanoi, and nearly 30% of customers use EVNHanoi’s mobile
app to track their electricity use, giving the utility more effective tools to manage demand
and engage directly with consumers.

The combination of rapiddemandgrowth andongoingdigital transformationmakesHanoi
a particularly useful setting for evaluating digital demand-side interventions. Mobile plat-
forms allow utilities to deliver personalized information at very low marginal cost and to
potentially do so at scale. Once deployed, they can automatically send information and re-
minders, helping households make more informed decisions about energy use. However,
the success of these interventions ultimately depends on whether people engage with the
guidance provided.

A key part of managing energy use is Vietnam’s nationwide nonlinear pricing system,
which has six tiers based on consumption within a billing cycle. This structure is designed
to encourage careful electricity use, allowing lower-income households to access electricity
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at affordable rates while assigning higher costs to excessive consumption. However, as is
common in other settings, households typically do not react tomarginal prices of electricy -
the common perception is that most customers do not fully understand the pricing system,
creating an important role for effective communication and education.

To address this, our experiment leveraged the EVNHanoi mobile app to make pricing and
billingmore salient for households. The EVNHanoi app, which already allowed customers
to click on a tab on the homescreen to track daily electricity consumption, was enhanced to
display estimated electricity prices for each unit of consumption and projected billing in-
formation. This added functionality allowed households to see how their usage translated
into costs more frequently, providing a clearer link between behavior and financial impact.
By integrating this pricing and billing information directly into the app, the study aimed
to test whether making consumption costs more visible could improve energy decision-
making.

2.1 Sampling

We obtain monthly consumption data for 700,000 households from the electric utility, cov-
ering the period fromAugust 2022 to July 2023. These households represent the full popu-
lation of all app users at the time of the study. To ensure data quality, we excluded house-
holds with more than 15% missing daily data from May 2023 to July 2023 and those with
missing data for any month over a twelve-month span.4 We explicitly exclude households
that had participated in other experiments (Garg et al., 2025).

Our study focuses on evaluating the impact ofmarginal price andbilling salience on energy
consumption. In our experimental context, the highest price tier applies whenmonthly en-
ergy use exceeds 400 kWh (see Figure A.1). Conversely, the lowest price tier is applicable
when monthly consumption is at or below 50 kWh. As such, households consuming sig-
nificantly more than 400 kWh/month or significantly less than 50 kWh/month will not be
affected by our marginal price intervention. Thus, we further limit our sample to house-
holds with monthly energy usage ranging from 10 to 1000 kWh.5 Incorporating these pa-
rameters, we draw our sample from a population of about 400,000 households. Our power

4Typically, 2-5% of households havemissing data due to idiosyncratic meter malfunctions or other techni-
cal problems. Households with an unusually high rate of missing data are often those whose utility services
have been disconnected.

5Less than 1% of all 700,000 app users consume less than 10 kWh monthly, and only 2% consume 1,000
kWh or more monthly. Our pre-analysis plan has further details on sampling (Garg et al., 2023).
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calculations indicate that 10,000 households per treatment group are sufficient to detect a
small 1% effect. We therefore used a total sample size of 45,000 households, with 15,000
assigned to each treatment or control arm. The experiment was done on 45,000 house-
holds. However, our final sample has 44,997 households: We drop one household due to
a missing household ID variable and drop two households due to conflicting consump-
tion data.6Importantly, our results generalize to the broader population of app users at the
time of the study in Hanoi as our sample was selected randomly from the final frame of
approximately 400,000 households.7

2.2 Treatment Assignment

We randomly assigned 45,000 households evenly into a control group and two treatment
groups. Using the app, all households can check their current daily usage, review daily
consumption from the past week, andmonitor theirmonthly usage throughout the current
calendar year. The treatment groups received additional features: one group received real-
time pricing information, while the other received real-time billing updates. Notably, these
information treatments were presented prominently at the top of the homepage of the app,
as shown in Figure A.2.

Control Group: Households in this group did not have access to any interactive displays
for daily electricity prices or updated bills. Figure A.2A shows the app interface of the
control group. The figure displays the app’s homepage. From this page, customers can
access various features, including online bill payment, management of their electricity ser-
vice contract, daily energy usage tracking, and advertisements for incentive programs that
allow users to earn and spend points through the app. Clicking on any icon or advertise-
ment directs the user to the corresponding page within the app.

Price Information Treatment: Households in this treatment group received, in addition to
all the information provided to the control group, details about their estimated electricity
prices for each unit of consumption in their current billing cycle via the app’s interactive
display. Figure A.2B presents an example of the interactive display, visually representing
the nonlinear pricing system, as compared to the original interface shown in Figure A.2A.

6Specifically, our consumption data from the technology partner lists each of these households inmultiple
rows with conflicting consumption data in each row.

7Our sample size was constrained by both fixed and per-user costs associated with working with the
technology partner, including user-interface development as well as data security and management require-
ments.
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The graph in Figure A.2B highlights the primary intervention, allowing customers to vi-
sualize their current energy consumption along with the corresponding marginal price on
a real-time six-tier graph. The design’s objective is to help participants better understand
this pricing structure.

Bill Information Treatment: In this treatment, similar to the price-information treatment,
households received information regarding their estimated, up-to-date electricity usage
and bill each day of their current billing cycle through the app’s interactive display. Fig-
ure A.2C showcases the interactive interface for this treatment. Households in this group
viewed a semicircular gauge on their app that visually represents energy consumption. As
energy usage increases over time, the gauge fills up and changes color from blue (indicat-
ing low consumption compared to the previous month) to red (indicating high consump-
tion relative to the previous month).

2.3 Experiment Timeline and Key Events

Figure 1 shows information on key dates in our study and highlights several important
events that took place during the sample period. In the pre-period, electricity prices were
raised once, on May 4, 2023. A second increase occurred on November 9, 2023, during
the mid-period. Figure A.1 presents changes in the nonlinear pricing structure faced by
consumers during our study period. In the post-period, starting after February 29, 2025,
the utility adjusted billing schedules so that all households shared the same start and end
dates aligned with the calendar month.

Our initial electricity consumption data begins in August, 2022, and our pre-treatment
period extends from August 2022 to end of September, 2023. The experiment was initially
launched onOctober 1, 2023. However, the treatmentwas temporarily suspended onOcto-
ber 20, 2023, at the utility’s request, as they planned to raise electricity prices on November
9, 2023. The treatment was reintroduced on December 30, 2023, and continued until May
30, 2024. Based on this timeline, we define the pre-period as August 1, 2022, the start of
our consumption data, to September 30, 2023, the day before the initial rollout. The mid-
period runs from October 1 to December 29, 2023, covering the gap between the initial
launch and the full resumption. The post-period begins on December 30, 2023, when the
rollout resumed fully.

In our analysis, our main specifications exclude the mid-period (October 1-December 29,
2023) as this was when the treatment was temporarily rolled out and then discontinued
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in October 2023. In some robustness checks, we include all dates in the sample, treating
observations from October 1-December 29, 2023 as treated dates.

2.4 Data and Experimental Balance

The primary outcome variable is daily household electricity consumption from our sam-
ple of 44,997 households, tracked from August 1, 2022, to June 30, 2024. In addition, we
gather billing data from participating households, which includes information on electric-
ity consumption and billing dates. We also collect temperature data, since temperature
changes affect electricity use as households adjust their air conditioners or heaters. Fig-
ure A.3 shows average daily consumption and feels-like temperature during the sample
period. Average daily consumption ranges from 6.5 to nearly 16 kWh. Consumption is
generally lowest during the winter months (December to February), when temperatures
are coolest, and highest during the summer months (May to August), when temperatures
peak. Additionally, we collected app usage data from households in our sample between
November 6, 2023, and June 4, 2024. Although the app usage data fully cover the post-
treatment period, they unfortunately do not include the pretreatment period.8 Appendix
Table A.1 presents summary statistics for all variables in the dataset, measured at the day
by household level.

We assessed the balance between treatment and control groups using historical house-
hold electricity consumption data. Specifically, we examined average daily consumption
for each month from August 2022 to December 2023, prior to the intervention. Appendix
Tables A.2, A.3, and A.4 present the results of our balance checks, showing no noticeable
differences in historical electricity consumption patterns between the control and treat-
ment groups.

3 No Aggregate Effect on Electricity Consumption

We begin by estimating the average effect of the two information interventions on house-
hold electricity consumption. Our primary outcome is daily electricity use at the house-

8This limitation arises from budget constraints and data protection requirements: the technology partner
did not routinely track or store individual-level app usage data. Under our data-sharing agreement, such
data were collected solely for study participants and only during the study period, making app usage data
available only for the post-treatment phase.

8



hold level, measured using high-frequency smart meter data. To estimate average treat-
ment effects, we estimate the following difference-in-differences specification:

f(yit) =
2∑

k=1
βk · 1{treatmenti = k} × postt + γt + δi + εit, (1)

where yit denotes daily electricity consumption of household i on day t, postt is an indicator
equal to one for dates on or after December 30, 2023 (when the intervention was fully
rolled out), and k = 1 and k = 2 index the price-salience and billing-salience treatments,
respectively. The specification includes household fixed effects δi and date fixed effects
γt, so identification comes from within-household changes in consumption following the
intervention, relative to the control group. Standard errors are clustered at the household
level.

We estimate equation (1) using several specifications, including the inverse hyperbolic sine
transformation, the log(1 + yit) transformation, a Poisson specification, and consumption
in levels. Our main specification uses the inverse hyperbolic sine transformation, which
accommodates zero values, reduces sensitivity to outliers, and improves statistical preci-
sion in the presence of skewed consumption data. Our finding of a null result is robust to
these different specifications.

Table 1 reports the estimated average treatment effects. Across all specifications, we find
no evidence that either the price-salience treatment or the billing-salience treatment re-
duces electricity consumption on average. Estimated coefficients are small in magnitude
and statistically indistinguishable from zero. In some specifications, the point estimate for
the price-salience treatment is positive, while the billing-salience treatment yields slightly
negative estimates, but a test of equality between the two treatment coefficients fails to
reject the null at conventional significance levels.

Importantly, the absence of statistically significant effects is not driven by imprecise mea-
surement or limited statistical power. Our analysis is based on a balanced panel of 44,997
households observeddaily over a 23-monthperiod, yieldingmore than 30million household-
day observations. Consumption is measured directly via smart meters, minimizing clas-
sical measurement error. Based on pre-registered power calculations, this design allows
us to rule out average treatment effects of one percent or larger.9 Furthermore, the 95%
confidence intervals implied by our estimates in Table 1 allow us to reject that the treat-

9Details of the power calculations are provided in the pre-analysis plan (Garg et al., 2023).

9



ment causes a significant change in consumption. For example, the 95% interval for the
price salience treatment effect using the Poisson specification is (-0.0039, 0.0101), allowing
us to reject a -1% change in consumption and just barely including a +1.01% increase in
consumption. We also find no evidence of bunching at tier thresholds in either the pre- or
post-treatment periods, further suggesting that the interventions did not meaningfully al-
ter consumption behavior at the aggregate level. Our findings, therefore, indicate that pro-
viding frequent, real-time information about marginal prices or cumulative bills through
a mobile application does not reduce household electricity consumption on average, even
when delivered at scale.

4 Limited Engagement and the Failure to Scale Attention

A natural explanation for the absence of aggregate consumption effects is that households
may not engagewith the information provided through themobile app. In this section, we
examine whether the two treatments affected households’ engagement with the app, fo-
cusing separately on the extensive-margin (whether households ever check the app during
the study period) and the intensive-margin (how frequently they check it).

4.1 Measuring App Engagement

We measure engagement using administrative app-usage data, which record whether a
household accesses the app on each day. Because app usage data are available beginning
November 6, 2023, our analysis focuses on two periods: a mid-period from November 6 to
December 29, 2023 (a period after October 2023 duringwhich the treatment was temporar-
ily introduced and then withdrawn), and a post-period from December 30, 2023 onward
(when the treatment was fully active). For each household and period, we construct two
measures of engagement: (i) an indicator for whether the household checks the app at
least once during the period (extensive margin), and (ii) the fraction of days during the
period on which the household checks the app (intensive margin).

In our design, treatment consists solely of information displayed on the app screen. As
a result, treatment assignment is revealed only after an individual opens the app. Con-
sequently, assignment to treatment should not affect engagement absent other channels.
Consistent with this, we find no effect on the extensive margin – the share of those who
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ever check the app is not statistically different in the treatment and control groups.10 On
the intensive margin, however, it is possible for the treatment to affect app engagement
as different types of information may spur households to check the app more or less fre-
quently.

4.2 Average Effects on Engagement

To estimate treatment effects on app engagement, we estimate the following household-
level regression separately for the mid- and post-periods:

yp
i = α + β1T1i + β2T2i + εi, (2)

where yp
i denotes an engagement outcome for household i in period p ∈ {mid,post}, T1i

and T2i are indicators for assignment to the price-salience and billing-salience treatments,
respectively, and εi is an error term. We estimate equation (2) using ordinary least squares.

Table 2 reports the results. Across both the mid- and post-periods, we find no evidence
that either treatment affects engagement on the extensive margin. In the post-period, ap-
proximately 56 percent of households check the app at least once, and this share does not
differ statistically between the control and treatment groups. We find similar null effects
on extensive-margin engagement during the mid-period. Because checking the app is the
only way households can observe their treatment status, these results indicate that the in-
terventions do not impact whether those who have already downloaded and registered on
the app engage at all with it during the study period.

In contrast, we find modest effects on the intensive margin. Column 2 of Table 2 shows
that households assigned to the price-salience treatment check the app slightly more fre-
quently during the post-period. Relative to a control-group mean of 8.7 percent of days,
households in the price-salience treatment check the app on approximately 9.1 percent of
days, a difference that is statistically significant at the five-percent level. We find a similar
increase in app-checking frequency during themid-period (column 4), suggesting that the
earlier temporary rollout of the price information treatment in October 2023 impacted app
engagement during November and December 2023 when the treatment was temporarily
discontinued. In contrast, the billing-salience treatment does not significantly affect en-

10Indeed, finding any statistically significant treatment effects on the extensive margin would suggest a
lack of balance in treatment assignment.

11



gagement on either margin in either period.

4.3 Treatment Effects by Billing-Cycle Position

To better understand when households engage with the app, we examine daily patterns
of app usage. Figure A.4a plots the fraction of households that check the app on each day,
separately by treatment status. App usage is highly cyclical, with pronounced spikes at
the beginning and end of billing cycles. These spikes become especially sharp after March
1, 2024, when the utility aligned all households’ billing cycles with the calendar month. A
noticeable increase in app usage also occurs around the November 9, 2023 price increase.

Figure A.4b further shows that these patterns align closely with households’ billing-cycle
start dates prior toMarch 2024. Householdswhose billing cycles begin earlier in themonth
exhibit earlier peaks in app checking, while those with later cycle start dates peak corre-
spondingly later. These patterns indicate that attention to the app is naturally concentrated
around billing events. We formalize these patterns using daily household-level regressions
that allow treatment effects to vary by position within the billing cycle. Specifically, we es-
timate:

CheckAppit = α +
∑

g∈{begin,middle,end}
(β1gT1i + β2gT2i)1{CyclePosit = g} + γt + εit, (3)

where CheckAppit = 1 if household i checks the app on day t, 1{CyclePosit = g} denotes
indicators for whether day t falls at the beginning, middle, or end of the billing cycle, and
γt are date fixed effects. Standard errors are clustered at the household level. In our regres-
sion specification, we allow for different ways of dividing the billing cycle into beginning,
middle, and end: Specifically, we define the beginning as days 1-X of the billing cycle, the
end as the last X days of the billing cycle, and allow values of X ranging from 2 to 5.

Table A.7 reports the results. Consistent with the graphical evidence, overall app checking
is significantly higher at the beginning and end of the billing cycle than in the middle.
The price-salience treatment increases the probability of app checking particularly during
the middle and end of the billing cycle, with effects on the order of 0.3 to 0.4 percentage
points. This is consistent with the idea that the information about one’s consumption on
the marginal price schedule is most valuable when one is more likely to have left the first
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pricing tier – i.e., after the first few days of the billing cycle. In contrast, the estimated
effects of the billing-salience treatment are smaller and statistically insignificant across all
cycle positions.

5 Limited Consumption Responses Among App Users

Sections 3 and 4 show that the information treatments do not reduce electricity consump-
tion on average and do not increase app engagement on the extensive margin. In this sec-
tion, we examine whether consumption responses emerge conditional on app usage and
whether such responses vary systematically over the billing cycle.

5.1 Heterogeneity by App Checking

We first allow treatment effects to differ by whether a household checks the app during
the post-treatment period. Let CAi be an indicator equal to one if household i checks the
app at least once during the post-period (December 30, 2023 and later). We estimate the
following specification:

f(yit) = β1 · CAi · postt + β2 · T1i · postt + β3 · T2i · postt

+ β4 · T1i · CAi · postt + β5 · T2i · CAi · postt + γt + δi + εit, (4)

where yit denotes daily electricity consumption, T1i and T2i are indicators for the price-
salience and billing-salience treatments, postt indicates the post-treatment period, δi are
household fixed effects, and γt are date fixed effects. As in the main specifications, we
focus on the inverse hyperbolic sine transformation of consumption.

Appendix Table A.8 reports the results. We find no evidence that either treatment affects
consumption for households that do not check the app. For households that do check
the app, the interaction between the price-salience treatment and app checking is statisti-
cally significant in some specifications. However, joint tests of the total effect of the price-
salience treatment for app-checking households fail to reject the null that the treatment has
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no effect on consumption.11 Overall, these results indicate that selection into app checking
is strongly correlated with consumption outcomes, but that treatment-induced changes in
consumption conditional on app usage are not robustly distinguishable from zero.

5.2 Heterogeneity by Day of Billing Cycle

We next examine whether treatment effects vary over the billing cycle. This analysis is
motivated by the structure of the nonlinear tariff and by the information displayed in the
app, which changes mechanically as consumption accumulates within a billing cycle. To
allow for flexible heterogeneity, we estimate the following specification:

f(yit) =
31∑

d=1

∑
p∈{pre,post}

∑
r∈{control,T 1,T 2}

βd,p,r · 1{d, p, r}it + γ · t + wt + δi + εit, (5)

where d indexes the day of the billing cycle, wt captures interactions between weather
deciles and day-of-week indicators, δi are household fixed effects, and other terms are de-
fined as above. We exclude the mid-period (October 1–December 29, 2023) from this anal-
ysis because the treatment was temporarily rolled out and rolled back during this window.

We summarize the day-specific treatment effects using the followingdifference-in-differences
estimands:

DIDd,T1 vs C = βd,post,T 1 − βd,pre,T 1 − (βd,post,control − βd,pre,control), (6)
DIDd,T2 vs C = βd,post,T 2 − βd,pre,T 2 − (βd,post,control − βd,pre,control). (7)

Figure 2 shows estimated treatment effects for the price information treatment. For the full
sample and for households that do not check the app, estimated effects are close to zero
throughout the billing cycle. For households that check the app, we observe suggestive
evidence of reduced consumption during the second half of the billing cycle, particularly
between days 15 and 20. However, confidence intervals widen toward the end of the cycle,
and the estimated effects are not statistically distinguishable from zero.

Figure 3 presents analogous results for the bill information treatment. Estimated effects are
11Specifically, we test that β2 + β4 = 0 and β3 + β5 = 0.
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generally small and unstable across billing-cycle days. In some specifications, we observe
marginally significant effects for the full sample, but these patterns do not persist among
households that check the app. Formal F -tests fail to reject the null that all day-specific
treatment effects are jointly equal to zero.

Overall, we find no statistically significant evidence of heterogeneous treatment effects by
app usage or billing-cycle position. While some patterns are suggestive of behavioral re-
sponses to marginal price information among app-checking households, these effects are
limited in magnitude and not robust across specifications, consistent with the absence of
aggregate treatment effects.

6 Conclusion

Digital platforms are often viewed as a promising pathway for scaling behavioral interven-
tions, since information can be delivered to large populations at near-zero marginal cost.
Whether such interventions can generate meaningful behavioral change at scale, however,
depends critically on attention and engagement. We study this question using a large-scale
randomized experimentwith residential electricity customers inHanoi, Vietnam, inwhich
two information interventions were embedded directly into the utility’s existing mobile
application and powered by smart-meter data. Importantly, our experimental sample of
45,000 households was drawn at random from the population of customers in the city who
were already using the app (approximately 30%of the households in the city). By random-
izing within the population that would plausibly be exposed under real-world scale-up,
our estimates speak directly to the effects that would be realized if the intervention were
rolled out broadly within the platform, consistent with recent work emphasizing the im-
portance of sampling from the relevant population of interest when evaluating scalability
(List, 2024).

Across this population, we find no evidence that providing real-time information about
marginal prices or cumulative bills reduces electricity consumption on average. Estimated
effects are tightly centered around zero, and our confidence intervals allow us to rule out
average consumption changes of one percent or larger. The absence of aggregate effects
is not driven by a lack of statistical power or measurement error, but instead reflects lim-
ited engagement with the intervention itself. While the price-salience treatment modestly
increases app usage intensity among households that already check the app, neither inter-
vention increases engagement on the extensivemargin. As a result, attention does not scale
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with delivery: the intervention reaches many households mechanically but meaningfully
informs only a subset of already attentive users.

Consistent with this interpretation, we find that behavioral responses, when they occur,
are conditional and temporally concentrated. Modest reductions in electricity consump-
tion appear only among households that actively check the app and primarily late in the
billing cycle, when marginal prices rise mechanically under the nonlinear tariff and the
information becomes most decision-relevant. These patterns are consistent with standard
models of limited attention and salience, but they are not robust or widespread enough
to generate detectable changes in average consumption. Interpreting these conditional ef-
fects as evidence of a scalable intervention would therefore be misleading: they illustrate
a mechanism without delivering population-level impact.

Our findings highlight a fundamental constraint on scaling digital behavioral interven-
tions. Low marginal delivery cost does not imply low attention cost. Even when informa-
tion is well designed, economically relevant, and delivered through an existing platform,
limited and uneven engagement can sharply attenuate its aggregate impact. In this set-
ting, app-based information changes behavior for some users some of the time, but fails to
generate broad energy savings.

Our results point to several directions for future research. First, what design features or
institutional complements can reliably increase attention at scale, rather than merely in-
tensifying engagement among existing users? Second, how should policymakers evaluate
platform-based interventions when treatment exposure is endogenous to user attention,
even under randomized assignment? Third, under what conditions can digital tools sub-
stitute for higher-touch technologies such as in-home displays, and when should they in-
stead be viewed as complements? Addressing these questions is essential for understand-
ing when – and whether – digital platforms can fulfill their promise as scalable tools for
demand-side management and other behavioral policies.

16



7 References

Al-Ubaydli, O., J. A. List, D. LoRe, and D. Suskind (2017). Scaling for economists: Lessons
from the non-adherence problem in the medical literature. Journal of Economic Perspec-
tives 31(4), 125–144.

Borenstein, S. (2009). Towhat electricity price do consumers respond? residential demand
elasticity under increasing-block pricing. Mimeo.

Burkhardt, J., K. Gillingham, and P. Kopalle (2023). Field experimental evidence on the
effect of pricing on residential electricity conservation. Management Science 69(12), 7675–
7702.

Chetty, R., A. Looney, and K. Kroft (2009). Salience and taxation: Theory and evidence.
American Economic Review 99(4), 1145–1177.

DellaVigna, S. and E. Linos (2022). Rcts to scale: Comprehensive evidence from two nudge
units. Econometrica 90(1), 81–116.

Fowlie, M. and R. Meeks (2021). The economics of energy efficiency in developing coun-
tries. Review of Environmental Economics and Policy 15(2), 238–260.

Garg, T., M. Ko, and C. Ta (2023). Enhanced salience of nonlinear pricing and energy
conservation. AEA RCT Registry. https://doi.org/10.1257/rct.12178-1.0.

Garg, T., J. Lemus, G. Marshall, and C. Ta (2025). A comparison of contests and contracts
to deliver cost-effective energy conservation. Mimeo.

Geelen, D., D. Keyson, S. U. Boess, and H. W. van Dijk (2019). Saving energy by sup-
porting energy-efficient behavior: The effects of a smartphone feedback application in
households. Energy Efficiency 12, 1635–1660.

Gilbert, B. and J. Graff Zivin (2014). Dynamic salience with intermittent billing: Evidence
from smart electricity meters. Journal of Economic Behavior & Organization 107, 176–190.

Houde, S. and E. Myers (2021). Are consumers attentive to local energy costs? evidence
from the appliance market. Journal of Public Economics 201, 104480.

Houde, S., A. Todd, A. Sudarshan, J. A. Flora, and K. C. Armel (2013). Real-time feedback
and electricity consumption: A field experiment assessing the potential for savings and
persistence. The Energy Journal 34(1), 87–102.

17



Ito, K. (2014). Do consumers respond to marginal or average price? evidence from non-
linear electricity pricing. American Economic Review 104(2), 537–563.

Jessoe, K. and D. Rapson (2014). Knowledge is (less) power: Experimental evidence from
residential energy use. American Economic Review 104(4), 1417–1438.

Kahn, M. E. and F. A. Wolak (2013). Using information to improve the effectiveness of
nonlinear pricing: Evidence from a field experiment. Working paper, Stanford Univer-
sity.

List, J. A. (2024). Optimally generate policy-based evidence before scaling. Na-
ture 626(7999), 491–499.

Prest, B. (2020). Peaking interest: How awareness drives the effectiveness of time-of-use
electricity pricing. Journal of the Association of Environmental and Resource Economists 7(1),
103–143.

Reis, R. (2006). Inattentive consumers. Journal of Monetary Economics 53(8), 1761–1800.

Schultz, P. W., M. Estrada, J. Schmitt, R. Dachel, and R. Ragazzi (2015). Using in-home
displays to provide smart meter feedback about household electricity consumption. En-
ergy 90, 351–358.

Sexton, S. (2015). Automatic bill payment and salience effects: Evidence from electricity
consumption. Review of Economics and Statistics 97(2), 229–241.

Shaffer, B. (2020). Misunderstanding nonlinear prices: Evidence from a natural experi-
ment on residential electricity demand.American Economic Journal: Economic Policy 12(3),
433–461.

Sims, C. A. (2003). Implications of rational inattention. Journal ofMonetary Economics 50(3),
665–690.

Singhal, P. (2024). Inform me when it matters: Cost salience, energy consumption, and
efficiency investments. Energy Economics 133, 107484.

Stojanovski, O., G. W. Leslie, F. A. Wolak, J. E. H. Wong, and M. C. Thurber (2020). In-
creasing the energy cognizance of electricity consumers in mexico: Results from a field
experiment. Journal of Environmental Economics and Management 102, 102323.

Tiefenbeck, V., L. Goette, K. Degen, V. Tasic, E. Fleisch, R. Lalive, and T. Staake (2018).
Overcoming salience bias: How real-time feedback fosters resource conservation. Man-
agement Science 64(3), 1458–1476.

18



Vivalt, E. (2020). How much can we generalize from impact evaluations? Journal of the
European Economic Association 18(6), 3045–3089.

Wichman, C. (2017). Information provision and consumer behavior: A natural experiment
in billing frequency. Journal of Public Economics 152, 13–33.

Wolak, F. A. (2011). Do residential customers respond to hourly prices? evidence from a
dynamic pricing experiment. American Economic Review 101(3), 83–87.

19



Figures

Figure 1: Timeline of key events and data coverage
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Consumption data App checking data

20



Figure 2: Estimated effect of treatment 1 (price treatment) relative to control group. Point estimates of DID treatment effects and 95%
confidence intervals from estimates of equation 5.
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Figure 3: Estimated effect of treatment 2 (billing treatment) relative to control group. Point estimates of DID treatment effects and 95%
confidence intervals from estimates of equation 5.
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(b) Households that do not check app in post-period:
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(c) Households that check app in post-period:
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Tables

Table 1: Average Treatment Effects: Consumption

(1) (2) (3) (4)
IHS log(1+.) Poisson In levels

Price information treatment x post 0.000685 0.000837 0.00308 0.0307
(0.00420) (0.00351) (0.00358) (0.0347)

Billing information treatment x post -0.00631 -0.00478 -0.000225 -0.00102
(0.00430) (0.00358) (0.00353) (0.0342)

p-value equality 0.103 0.116 0.368 0.372
R squared 0.448 0.454 0.480
Pseudo R squared 0.298
Control mean post-period 2.546 2.042 9.693 9.693
Observations 26471767 26471767 26471767 26471767
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This regression table using the specification in equation 1. The dependent variable is the in-
verse hyperbolic sine of consumption (column 1), log(1 + consumption) (column 2), consumption
using Poisson regression (column 3), and consumption in levels (column 4). Each specification in-
cludes date and household fixed effects. Standard errors are in parentheses and are clustered by
household. The row denoted “p-value equality" is the p-value from the test that the coefficient of
treatment 1 x post is equal the coefficient of treatment 2 x post.
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Table 2: Impact of Treatment on App Checking

(1) (2) (3) (4)
Any–post Frac–post Any–mid Frac–mid

Price information treatment (T1) 0.00750 0.00452∗∗ 0.00577 0.00448∗∗

(0.00573) (0.00193) (0.00577) (0.00195)

Billing information treatment (T2) -0.000326 0.00191 0.000599 0.00194
(0.00574) (0.00191) (0.00577) (0.00192)

Intercept 0.555∗∗∗ 0.0867∗∗∗ 0.490∗∗∗ 0.0851∗∗∗

(0.00406) (0.00134) (0.00408) (0.00135)
Observations 44997 44997 44997 44997
R squared 0.0000530 0.000123 0.0000268 0.000118
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regressions at household level. Dependent variables are an indicator for whether ever
checked app in the post-period (column 1), fraction of days in post-period household checked
app (column 2), whether ever checked app in the mid-period (column 3), and fraction of days in
mid-period household checked app (column 4).
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A Appendix

A.1 Additional Institutional Details

FigureA.1 shows the nonlinear pricing schedule inHanoi. FigureA.2 shows the app under
the control arm (panel A), price information treatment (panel B), and billing information
treatment (panel C).

Figure A.1: Nonlinear (Increasing Block) Tariff Schedule in Hanoi
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Notes: Step functions depict the marginal price tier schedule under Vietnam’s six-tier increasing block
tariff. During the study period, USD 1 ≈ 24,500 VND, so the highest marginal price shown corresponds
to ≈ USD 0.128/kWh.

i



Figure A.2: App Interface Variations: Control Group vs. Treatment Groups

Notes: The control group (Panel A) does not have access to price or usage information on the app’s main page. In contrast, the interface
for Price Salience Treatment Group (Panel B) has been redesigned for a more visually intuitive understanding of the nonlinear pricing
system. The app display for Billing Salience Treatment Group (Panel C) offers users a day-by-day visual of their accumulating energy
costs.

Table A.1: Summary statistics at the household by day level.

Variable Mean Median Min Max N
Daily consumption (kWh) 9.42 8.00 0.00 334.00 30,457,445
1(Checked app at least once in day) 0.09 0.00 0.00 1.00 9,160,416
Mean feels-like temperature (F) 81.16 80.65 48.70 109.30 31,432,800
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Figure A.3: Average Daily Consumption and Feels-Like Temperature during the Sample Period

Notes:This graph displays the average daily electricity consumption (kWh) and feels-like temperature over the sample period from
August 1, 2023, to June 30, 2024. The solid blue line represents average daily electricity consumption, while the solid red line indicates
the average daily feels-like temperature.

Table A.2: Balance Analysis: Mean Comparisons Across Control and Treatment Groups

Month Control Mean T1 Coeff. T1 P-value T2 Coeff. T2 P-value F-test P-value
Aug 2022 10.633 -.03 .671 -.006 .934 .904
Sep 2022 9.659 -.06 .357 -.008 .903 .606
Oct 2022 7.838 -.033 .521 -.023 .657 .806
Nov 2022 7.787 -.046 .376 -.016 .758 .667
Dec 2022 8.033 -.017 .764 .002 .976 .935
Jan 2023 8.221 .006 .925 .051 .4 .655
Feb 2023 8.102 -.034 .558 -.009 .884 .83
Mar 2023 7.795 -.02 .71 -.01 .852 .933
Apr 2023 8.311 -.019 .741 -.021 .706 .919
May 2023 10.769 -.034 .622 -.022 .751 .883
Jun 2023 11.474 -.013 .868 -.005 .948 .986
Jul 2023 13.156 -.05 .565 .049 .578 .529
Aug 2023 10.84 -.031 .678 .012 .872 .836
Sep 2023 10.17 .021 .767 .048 .498 .794

Notes: Each observation is a household. The analysis is based on the monthly average of daily electricity consumption. Columns 3–6
report OLS coefficients and p-values for treatment group indicators. T1 refers to the price salience treatment and T2 refers to the billing
salience treatment. T1 P-value and T2 P-value are the p-values from a test that the T1 coefficient and the T2 coefficient are equal to zero,
respectively. Column 7 shows the p-value from a joint F-test that both the T1 coefficient and the T2 coefficient are equal to zero.
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Table A.3: Kolmogorov–Smirnov Tests Across Treatment Groups

Month Control vs T1 Control vs T2 T1 vs T2
Aug 2022 .534 .886 .456
Sep 2022 .62 .933 .573
Oct 2022 .866 .916 .409
Nov 2022 .519 .974 .518
Dec 2022 .821 .866 .847
Jan 2023 .885 .341 .758
Feb 2023 .891 .544 .742
Mar 2023 .995 .233 .658
Apr 2023 .794 .621 .811
May 2023 .927 .55 .77
Jun 2023 .75 .547 .968
Jul 2023 .591 .526 .347
Aug 2023 .996 .838 .743
Sep 2023 .812 .817 .912

Notes: Each observation is a household. All variables are defined at the household level. T1 refers to the price salience treatment and T2
refers to the billing salience treatment. Each cell reports the p-value of a Kolmogorov–Smirnov test comparing empirical distributions
across the respective treatment groups.

A.2 Summary Statistics and Balance

Table A.1 shows summary statistics, where the unit of observation is the household by day.
Figure A.3 is a graphic showing average consumption and average “feels like" temperature
by date. It shows that consumption and temperature are strongly correlated.

Tables A.2, A.3, and A.4 give information about balance using the pre-period data. Table
A.2 shows that within each month, there is no difference between the control mean of
consumption and each of the treatment means of consumption. Table A.3 does a similar
series of balance tests bymonth but instead uses aKolmogorov-Smirnov balance test. Table
A.4 shows evidence of balance by consumption bin.

Figures A.4a and A.4b show app checking patterns by day of sample period. Figure A.4a
graphs app checking by each treatment group, showing that both treatments and control
had similar app checking patterns, although the price salience treatment group has slightly
higher app checking rates. Figure A.4b groups app checking by when the households
billing cycle starts, where day of billing cycle is based on billing cycle before March 2024,
when all households billing cycles moved to align with the calendar month. The graph
shows that app checking tends to spike around the time that the bill is due.
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Table A.4: Distribution of Consumption in Tiers

Tier
Energy
usage
(kWh)

Control Treatment 1 Treatment 2 Total

Obs. % Obs. % Obs. % Obs. %
1 0-50 11,560 6.43 11,435 6.37 11,490 6.40 34,485 6.40
2 51-100 13,386 7.45 13,636 7.59 13,249 7.38 40,271 7.47
3 101-200 43,890 24.42 43,636 24.30 44,550 24.81 132,076 24.51
4 201-300 45,643 25.40 45,510 25.34 44,734 24.91 135,887 25.22
5 301-400 29,917 16.65 29,830 16.61 29,548 16.46 89,295 16.57
6 401-600 25,601 14.24 25,883 14.41 26,115 14.54 77,599 14.40
7 601+ 9,727 5.41 9,638 5.37 9,870 5.50 29,235 5.43

Notes: This table displays the distribution of consumption across tiers after the randomization, showing the number of observations
and their respective percentage share within each tier and group. The unit of observation is household by billing cycle. The sample
is limited to those whose billing cycle is in the pre-period, with end-of-billing cycle lying between October 1, 2022 and September 30,
2023, ensuing that we observe the full billing cycle’s consumption.

A.3 Deviations from the Pre-Analysis Plan

The final analysis follows the experimental design, sampling strategy, outcome definitions,
and estimation approach specified in the pre-analysis plan. Two deviations arose due to
implementation details and data availability. First, the timing of the intervention rollout
differed slightly from the period specified in the pre-analysis plan. The pre-analysis plan
anticipated that app-based information and accompanying push notifications would be
active from September 29 to October 29. In practice, push notifications were sent from
October 1 to October 20, after which they were discontinued. These notifications were in-
tended solely to familiarize households with the app interface and pricing displays and
were not designed as a distinct behavioral treatment. Consistent with this intent, the anal-
ysis does not study push notifications as a separate intervention component.

Second, while the pre-analysis plan specified the collection of mobile app usage data, it
did not explicitly note that such data could only be collected after participating house-
holds were identified and enrolled in the study. App-usage data are available only for
the post-treatment period. Consequently, engagement outcomes are analyzed using post-
treatment data and are used to study heterogeneity and mechanisms rather than to assess
pre-treatment balance.

All other aspects of the analysis were implemented as described in the pre-analysis plan.
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Figure A.4: App Checking Over Time
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(a) Fraction of households that check the app by day and treatment status
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Notes: Panel (a) shows the fraction of households that check the utility’s mobile app on each day of
the sample period, separately by treatment status. Panel (b) plots app-checking behavior by day of the
sample period, grouped by the first day of the household’s billing cycle. App usage is highly cyclical,
with pronounced spikes at the beginning and end of billing cycles, particularly after March 1, 2024,
when billing cycles were aligned to the calendar month.
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Table A.5: Average Treatment Effects: Compares mid or post with pre-period.

(1) (2) (3) (4)
IHS log(1+.) Poisson In levels

Price information treatment x (mid | post) 0.000530 0.000641 0.00234 0.0234
(0.00371) (0.00310) (0.00325) (0.0302)

Billing information treatment x (mid | post) -0.00514 -0.00390 -0.000623 -0.00481
(0.00379) (0.00315) (0.00316) (0.0294)

p-value equality 0.133 0.149 0.369 0.359
R squared 0.451 0.457 0.483
Pseudo R squared 0.297
Control mean mid and post periods 2.515 2.013 9.254 9.254
Observations 30457445 30457445 30457445 30457445
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

A.4 Additional regression results

Tables A.5 and A.6 provide robustness checks for Table 1: In particular, while Table 1 ex-
cludes the mid period (Oct 1-Dec 29, 2023) from the analysis, both Table A.5 and Table A.6
include it. Table A.5 examines the treatment effect assuming the same treatment effect for
the mid period and the post period. Table A.6 estimates separate treatment effects for the
mid period and the post period.

Table A.8 shows a regression using the specification in equation 4, examining heterogene-
ity in estimated treatment effect as a function of whether the household checks the app at
least once during the post period.
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Table A.6: Average Treatment Effects: Separate treatment effects for mid period vs. post period.

(1) (2) (3) (4)
IHS log(1+.) Poisson In levels

Price information treatment x mid 0.000176 0.000213 0.000558 0.00844
(0.00391) (0.00324) (0.00343) (0.0296)

Billing information treatment x mid -0.00278 -0.00213 -0.00167 -0.0130
(0.00397) (0.00329) (0.00329) (0.0286)

Price information treatment x post 0.000704 0.000852 0.00310 0.0307
(0.00420) (0.00351) (0.00358) (0.0346)

Billing information treatment x post -0.00630 -0.00477 -0.000177 -0.000775
(0.00430) (0.00358) (0.00353) (0.0341)

p-value equality mid period 0.455 0.477 0.514 0.469
p-value equality post period 0.102 0.116 0.372 0.375
R squared 0.451 0.457 0.483
Pseudo R squared 0.297
Control mean mid period 2.452 1.955 8.365 8.365
Control mean post period 2.546 2.042 9.693 9.693
Observations 30457445 30457445 30457445 30457445
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: App Checking by Day and Day of Billing Cycle

(1) (2) (3) (4)
checks app checks app checks app checks app

X=2 X=3 X=4 X=5
T1 * 1(days 1-X before next cycle) 0.00489∗∗ 0.00495∗∗ 0.00476∗∗ 0.00512∗∗

(0.00223) (0.00215) (0.00208) (0.00204)

T1 * 1(days 1-X of billing cycle) 0.00307 0.00295 0.00314 0.00354∗

(0.00229) (0.00218) (0.00213) (0.00209)

T1 * 1(other days of cycle) 0.00461∗∗ 0.00468∗∗ 0.00476∗∗ 0.00462∗∗

(0.00188) (0.00187) (0.00187) (0.00186)

T2 * 1(days 1-X before next cycle) 0.00277 0.00251 0.00246 0.00253
(0.00221) (0.00212) (0.00206) (0.00202)

T2 * 1(days 1-X of billing cycle) 0.00107 0.00101 0.000885 0.00136
(0.00226) (0.00215) (0.00211) (0.00207)

T2 * 1(other days of cycle) 0.00192 0.00196 0.00202 0.00190
(0.00185) (0.00184) (0.00184) (0.00183)

1(days 1-X before next cycle) 0.0262∗∗∗ 0.0224∗∗∗ 0.0180∗∗∗ 0.0144∗∗∗

(0.000800) (0.000706) (0.000642) (0.000598)

1(days 1-X of billing cycle) 0.0335∗∗∗ 0.0276∗∗∗ 0.0234∗∗∗ 0.0201∗∗∗

(0.000801) (0.000682) (0.000620) (0.000589)
Observations 9179388 9179388 9179388 9179164
Control group mean 0.0862 0.0862 0.0862 0.0862
R squared 0.00612 0.00603 0.00589 0.00580
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regression results from OLS regression where the dependent variable is an indicator vari-
able for whether a household checks the app on any given date. All regression specifications in-
clude date fixed effects. T1 denotes the pricing treatment; T2 denotes the billing treatment. The
values of X in the four columns denotewindow length defining the beginning and end of the billing
cycle: The term “days 1-X before next cycle" refers to the end of the billing cycle; the term “days
1-X of billing cycle" refers to the beginning of the billing cycle. Standard errors are clustered by
household.
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Table A.8: Average Treatment Effects by App Checking Status

(1) (2) (3) (4)
IHS log(1+.) Poisson In levels

Checks app x post 0.0235∗∗∗ 0.0195∗∗∗ 0.0118∗∗ 0.120∗∗

(0.00607) (0.00506) (0.00500) (0.0478)

T1 * post 0.0108 0.00921∗ 0.00910 0.0852
(0.00670) (0.00559) (0.00594) (0.0556)

T2 * post -0.00438 -0.00329 0.000575 0.00517
(0.00689) (0.00573) (0.00587) (0.0546)

T1 * checks app * post -0.0183∗∗ -0.0151∗∗ -0.0106 -0.0983
(0.00857) (0.00715) (0.00741) (0.0708)

T2 * checks app * post -0.00344 -0.00265 -0.00143 -0.0109
(0.00877) (0.00730) (0.00730) (0.0696)

Constant 2.551∗∗∗ 2.044∗∗∗ 2.406∗∗∗ 9.553∗∗∗

(0.00133) (0.00111) (0.00114) (0.0105)
p-value: T1 0.162 0.185 0.740 0.764
p-value: T2 0.149 0.189 0.844 0.894
R squared 0.448 0.454 0.480
Pseudo R squared 0.298
Control mean post-period 2.546 2.042 9.693 9.693
Observations 26471767 26471767 26471767 26471767
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regressions where dependent variable is daily consumption. T1 and T2 are indicators for
the price and billing treatments, respectively. Checks app is an indicator for households that check
app at least once in the post-period, and post is an indicator variable for dates of Dec 30, 2023 and
later. The sample excludes themid-period (Oct 1-Dec 29, 2023) from the analysis. All specifications
include household and date fixed effects. The row "p-value: T1" contains the p-value for a test that
the coefficient for T1 * post + the coefficient for T1 * checks app * post is equal to zero. Similarly,
the row "p-value: T2" is the p-value from a test that the coefficient for T2 * post + the coefficient for
T2 * checks app * post is equal to zero. Standard errors clustered by household.
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