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Abstract

Contests and individual contracts are widely used to incentivize costly, unobserv-
able effort. Which is more cost-effective is theoretically ambiguous and thus an em-
pirical question. We conduct a field experiment to inform the design of energy con-
servation incentives in a city with a strained electrical grid, where prices cannot be
used for demand management, and find that both mechanisms achieve similar energy
savings (7 to 9 percent), but contests do so at half the cost. Recognizing that our ex-
perimental design may be comparing suboptimal contracts and contests, we introduce
a novel empirical framework to compute and compare their optimal designs. Using
non-parametric estimates from our structural model of energy consumption, we show
that optimally designed contests outperform optimal contracts for a given budget per
household. Our marginal abatement cost estimates suggest that these programs can
be profitable for the utility even without carbon pricing. Our findings contribute to
the broader organizational question of contests versus contracts, while also advancing
demand-side management policies in residential electricity—particularly in low- and
middle-income countries. Our methodology can be applied to various settings using

increasingly available utility data.
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1 Introduction

Incentivizing costly, unobservable effort remains a long-standing challenge in economics.
Two widely used mechanisms to incentivize effort are individual contracts, which reward
absolute performance (e.g., a bonus for meeting a fixed target), and contests, which re-
ward relative performance (e.g., a prize for the top performer). While the literature has
documented the performance of contracts (e.g., Lazear, 2000; Bandiera et al., 2005) and
contests (e.g., Gross, 2020; Bhattacharya, 2021), which is more cost-effective is theoreti-
cally ambiguous (e.g., Green and Stokey, 1983) and remains an open empirical question.
In this paper, we conduct a field experiment to evaluate the cost-effectiveness of contracts
and contests in the context of an energy conservation program.

In many countries, the electrical grid experiences strain during the summer months,
prompting the electric utilities to incentivize energy conservation. When electricity prices
are fixed by regulation—precluding, for instance, the use of dynamic pricing—electric util-
ities must find non-price mechanisms to provide these incentives. These conditions are
present in Hanoi, Vietnam, where the electric utility has already been deploying low-cost
approaches in the form of behavioral nudges.1 In collaboration with EVN Hanoi, the city’s
state-owned and exclusive electric utility, we evaluate the effectiveness of contracts and
contests above and beyond nudges. We ask three questions: (1) How much energy con-
servation do contests and individual contracts induce? (2) How cost-effective are these
programs? (3) Under what conditions are contests more cost efficient?

We first address these questions by implementing a randomized controlled trial (RCT) that
offered financial incentives to households for energy conservation. We recruited nearly
12,000 households to participate in our study and randomized them into a control and
three treatment groups spanning 30 days from July 15, 2023 to August 13, 2023. The first
two treatment groups received contracts with different terms and conditions, whereas
households in the third treatment group participated in contests. We used the electric
utility’s mobile app as a platform for our energy savings contests and contracts.

We utilize the experimental data to show that both contests and contracts can deliver en-
ergy conservation. On average, households in the treatment groups reduce their energy
consumption by approximately 7 to 9 percent in comparison to the control group during

!Beyond Vietnam, policymakers and utilities are actively promoting demand-side management initia-
tives, including energy conservation programs in urban households, such as tiered pricing (Ito, 2014), time-
varying pricing (Fowlie et al., 2021), behavioral nudges (Allcott and Mullainathan, 2010; Allcott, 2015; Bran-
donetal., 2017, 2019; Allcott and Kessler, 2019), automation (Blonz et al., 2025) and direct “bonus” payments
to keep energy use below a target maximum.



the intervention. Importantly, we find that the energy savings persist for at least one week
after the end of the experiment before returning to just below pre-experimental levels. That
is, the energy reductions were additional relative to an otherwise identical control group.

We leverage variation in the compensation schemes of the contract treatment groups to
show that households are responding to marginal incentives in their electricity use choices.
Specifically, we find that offering a payment for achieving a specific reduction (e.g., $5 for a
5 percent energy reduction) leads to a higher probability of achieving that target reduction
compared to when no such payment is offered. In other words, we can nominally reject a
model where households respond with a pre-determined level of conservation effort that
is invariant to level of incentives. In terms of cost-effectiveness, although we cannot reject
the null hypothesis that the treatment effects are equal between contracts and contests, we
show that contests deliver a statistically similar level of energy conservation as contracts
do, but at nearly half the cost per household.

Under what conditions do contests yield greater energy conservation per unit cost to the
utility than individual contracts? While our experimental results suggest that contests are
more cost-effective, they do not provide a direct answer to this question for two reasons.
First, in our experiment, we compare a contest with two contracts, neither of which is nec-
essarily optimal. We wish to compare the performance of optimized contracts against an
optimal contest. Second, average payments per household are not equal across treatments
in our experiment. We thus answer the question using a structural model of household en-
ergy consumption when faced with incentives to conserve energy. We estimate the model
using our experimental variation, and we use the model estimates to recover an optimal
contract and compare it with a cost-equivalent contest.

In our model, a household trades off its desire for energy consumption—with a satiation
point defined as demand when energy is free—against the cost of energy. Households face
idiosyncratic shocks (e.g., appliance malfunction) as well as shocks common to all house-
holds (e.g., heat wave). In this context, contests and individual contracts create differ-
ent incentives for household energy conservation. Common shocks—events like extreme
weather—impact all households, so relative performance is unaffected by them. In con-
trast, common shocks can affect the performance under individual contracts by making
it very difficult or too easy for households to meet the contract’s energy conservation tar-
get.? Households in a contest may get discouraged as competition grows, but this hinges
on the shape of the distribution of idiosyncratic shocks (List et al., 2020). However, the

21f the weather is unusually cool in a summer month, households may achieve low energy use levels
without exerting effort.



aggregate effort can increase in a large contest, even if individual households get discour-
aged. In contrast, households’ incentives to save energy caused by an individual contract
are unchanged by the behavior of other households.

The comparison of energy consumption across these mechanisms is generally ambiguous
(see, e.g., Green and Stokey, 1983), and we derive a condition under which contests are
more cost effective. Using our model estimates—including non-parametric estimates of
the idiosyncratic shock distributions—we show that when the contest designer can choose
the number of participants in each contest (as the utility can in our case) and equalizes the
expected payment per household across mechanisms, the optimal contest dominates the
optimal contract in terms of delivering energy conservation. This prediction aligns with
our experimental finding that contests are more cost-efficient than contracts. Our model
also allows us to recover the first experimental estimate of the short-run price elasticity of
demand in Vietnam. We estimate a short-run elasticity of -0.0888, which is in the range of
estimates in the United States (Jessoe and Rapson, 2014; Bollinger and Hartmann, 2020)
and the summer in Japan (Ito et al., 2018), but smaller than in other LMICs such as India
(Mahadevan, 2024).

Finally, we estimate marginal abatement costs of CO, emissions under contests and con-
tracts. These estimates help answer the question of whether incentivizing households us-
ing these incentive schemes is socially (or privately) efficient. When ignoring the foregone
profit from reducing electricity demand, emissions reductions are achieved at USD 59.5-
76.7 /Mt CO,. These are upper-bound estimates since they do not account for other posi-
tive externalities from demand management, such as reduced blackouts, avoided capital
investments in new power plants, or importing electricity. Generating reliable estimates
for these is challenging but are often quoted as reasons for utilities investing in such pro-
grams. We also compute marginal abatement costs considering the foregone profit from
reducing electricity demand—from the utility’s perspective, these are an indirect cost of
the incentive program. When oil is the marginal source of electricity, there is a business
case for contests even in the absence of environmental policy since the production costs of
the oil plant far exceed the average retail electricity price: the marginal abatement cost is
negative at USD -85.6/Mt CO,. When coal is the marginal source of electricity, emissions
reductions are achieved at USD 80.5/Mt CO..

These findings have implications for the design of demand management interventions. We
do note that besides the economic forces favoring contests over contracts, individual con-
tracts and contests present different administrative challenges and financial implications

for the utility. Implementing individual contracts requires the utility to determine appro-



priate energy conservation thresholds and corresponding rewards. This creates uncer-
tainty about the total cost of the program, as it depends on the likelihood that households
achieve the consumption reduction thresholds, which can be affected by common factors
like weather conditions. Organizing a contest, on the other hand, imposes the burden of
setting up the competition groups (e.g., grouping households with similar past consump-
tion patterns), monitoring all participants, and determining the winner(s). However, con-
tests offer more financial certainty for the utility. Contests require only a predetermined
fixed budget for the prizes, eliminating the risk of over-spending or under-spending that
can occur with individual contracts.

Our paper builds on two distinct areas of inquiry. First, we provide new evidence on a
classic question in the tournaments literature: whether tournaments dominate contracts
(Lazear and Rosen, 1981; Green and Stokey, 1983). Some articles have examined similar
questions but in other contexts, either not using a large-scale randomized field experiment
(Bull et al., 1987; Knoeber and Thurman, 1994) or analyzing different types of relative in-
centives (Bandiera et al., 2005). A strength of our analysis is that the tournament and con-
tract designs faced by participants are randomly assigned and we observe a high-frequency
performance measure (i.e., energy use) before, during, and after the competitions. The
paucity of field experiments comparing contests and contracts (or incentive schemes more
broadly) can be attributed in part to the need to collaborate with institutions or companies
with a large number of agents (e.g., workers or customers). We bridge this gap by provid-
ing a large-scale field experiment in a typical major urban metropolitan city in an LMIC.
Furthermore, our paper relates more broadly to a growing empirical literature on contest
design (e.g., Gross, 2017, 2020; Lemus and Marshall, 2021; Bhattacharya, 2021; Lemus and
Marshall, 2024).> Our results hinge on the shape of the idiosyncratic shock distribution,
which has been shown to be important for contest design features such as the number of
players (List et al., 2020) and number of prizes (Drugov and Ryvkin, 2020).

Second, our paper informs the design of energy conservation policies and the efficiency
in incentivizing behavior to manage demand in the context of LMICs. Prior work has
examined policies and programs aimed at reducing energy consumption in high-income
countries (Ito, 2014, 2015; Levinson, 2016; Houde and Aldy, 2017; Fowlie et al., 2018; Ito
et al., 2018; Fowlie et al., 2021), but there is a notable dearth of evidence on such programs

30ur paper also relates to work on lotteries as a mechanism to incentivize effort. See, for example, DellaVi-
gna and Pope (2018); Fabbri et al. (2019); Duch etal. (2023); Campos-Mercade et al. (2024). The key practical
difference between a contest or contract and a lottery is that the former is used to incentivize effort when a
non-binary performance measure is available (e.g., energy savings), whereas lotteries are used to reward ef-
fort regardless of performance (e.g., individuals who receive a vaccine are rewarded by entry into a lottery).



in LMICs.* This is especially crucial since the marginal source of electricity is much more
likely to be coal and so the reductions in carbon emissions could be greater (Boomhower
and Davis, 2014; Berkouwer and Dean, 2022; Costa and Gerard, 2021; Ta, 2024). Addition-
ally, we provide the first experimental estimates of the short run price elasticity of demand
for electricity in Vietnam and amongst the few that exist for LMICs. Such estimates are
crucial to planning effective grid management.

The paper is organized as follows: Section 2 describe our randomized field experiment.
Section 3 examines the empirical specifications and findings regarding the impacts of our
experimental contracts and contests on electricity consumption, including their heteroge-
neous effects. Section 4 describes our structural model and the estimation process. Section
5 assesses the marginal abatement costs of energy conservation programs. Finally, Section
6 concludes.

2 The Experiment and Data

2.1 Background and context

We conducted our experiment in the city of Hanoi, which is situated in the northern part
of Vietnam. Hanoi experiences four seasons, with the hottest months being June through
September, where maximum temperatures exceed 35°C (95°F). Rising temperatures and
demand for air conditioning during these months create complications for the utility which
is increasingly concerned about meeting demand. To avoid blackouts and reduce ex-
pensive peak electricity procurement, EVN Hanoi, the only utility in Hanoi, has already
been implementing low-cost demand-side management programs that employ behavioral
nudges and moral suasion to reduce energy use during these months. However, these pro-
grams, while highly cost-effective, are unable to achieve large-scale energy savings. The
utility is particularly interested in incentivizing consumers to reduce energy consumption
during these months because the regulator does not allow the utility to employ dynamic
pricing, ostensibly to protect consumers from volatile pricing.

*A number of papers have also evaluated the effects of behavioral nudges such as peer comparisons on
electricity consumption (Allcott and Mullainathan, 2010; Allcott, 2015; Brandon et al., 2017, 2019; Allcott and
Kessler, 2019). These interventions are highly cost-effective at delivering reductions of approximately 1%.
Our work complements these existing approaches that are already in place by testing contract designs that
deliver higher aggregate demand reductions over and above conservation from nudges.



2.2 Experimental Design

We conducted our randomized field experiment in Hanoi, Vietnam in the summer of 2023.
Collaborating with EVN Hanoi, the exclusive electricity provider in the city, we advertised
our program and recruited participants through different channels, including the utility’s
official website, the utility’s app, and offline marketing. Given our emphasis on advertis-
ing through banners and ads within the utility’s app, the majority of our study’s sample
consists of households that use the app to monitor energy usage and pay bills.”

During the enrollment period, which ran from June 15th, 2023, to July 6th, 2023, a total
of 16,365 households signed up for the experiment. Subsequently, we narrowed down
the pool of households using the criteria specified in our pre-analysis plan, resulting in
a final cohort of 11,194 participants (Garg et al., 2023). These criteria primarily served
the purpose of eliminating outliers and households with extensive missing or zero daily
energy consumption data.

We randomized each participating household into one of four groups: three treatment
groups and one control group. Two treatment groups were assigned to contracts, with
each group differing in the thresholds of energy savings they needed to reach to win a
prize. The third treatment group was assigned to contests. The control group was not
assigned to a contest or contract. Participants could use their smart meters to monitor their
progress by default, so all households, including the control group, received information
about their past and current daily electricity use on the utility company’s app or by logging
into their account on the utility’s website.

The contests and contracts started on July 15, 2023, and ended on August 13, 2023. After
completing our recruitment, registration, and randomization, on July 15, 2023, households
were scheduled to receive individual information about their specific treatment or energy
savings program through the app display as well as a notification that the incentive period
had started. The incentives faced by each group were as follows:

o Treatment 1, Contract with low thresholds (henceforth, ‘Contract 1”). This group
was offered $4.35 USD if they conserved 5% of electricity compared to their average
daily energy use during the same treatment period in the previous year, $6.52 if they
conserved 10%, and $10.87 if they conserved 15%. This group also received weekly
text message reminders, saying "There are [insert number] days left in the contract

5EVN Hanoi, has over 2.8 million customers, and all of them have smart meters. About 25% of all house-
holds in Hanoi have installed the utility’s app.



which ends on [insert end date]. Check the app to see your energy savings.”

o Treatment 2, Contract with high thresholds (henceforth, ‘Contract 2”). This group
was offered $6.52 USD if they conserved 10% of electricity compared to their average
daily energy use during the same treatment period in the previous year, $10.87 if they
conserved 15%, and $15.22 if they conserved 20%. This group also received weekly
text message reminders, saying "There are [insert number] days left in the contract
which ends on [insert end date]. Check the app to see your energy savings.”

e Treatment 3, Contest (henceforth, "Contest”). Households were entered into contests
of 50 households. In every contest, the household that conserved the most energy,
compared to their average daily energy use during the same treatment period in the
previous year, was to receive a prize of $87. This group also received weekly text
message reminders, saying "There are [insert number| days left in the contest which
ends on [insert end date]. Check the app to see your energy savings.”

e Control group, No contest or contract participation. This group was not offered any
incentive to conserve energy. This group received weekly text message reminders,
saying: "Please check the app to see your energy savings.”®

Households assigned to the contest treatment were randomized into groups based on their
average consumption in the period between July 15, 2022, and August 13, 2022 (i.e., the
comparison period for the experimental period) to ensure that contest participants were
competing with households that were similar in energy consumption.

On August 17, 2023, the utility sent text messages to households in the treated group to
inform them about the program’s culmination and express gratitude for their participa-
tion. The utility also informed participants that the results of contracts and contests will
be communicated through app notifications and text messages within the following 10
days.

Structure of incentives We chose this structure of incentives for the treatment groups for
three main reasons. First, our ideal comparison between a contest and a contract fixes
the expected payment received by a household. Without knowing in advance the weather
that households will face, any prediction of the expected payment of a contract is uncertain
(recall that contracts give rewards contingent on achieving certain levels of energy savings

®To avoid dissatisfaction and exclusion, we paid out a small amount of about $0.40 USD to participants
selected in the control group and thanked them for enrolling in the program after the program ended. We
did not inform them about this payment until after the program ended.



against a pre-specified benchmark—in our case the energy consumption in the same pe-
riod the previous year). The same is not true for contests, which are fully predictable in
expected payments, as we know the winner’s payment and that there will always be a
winner. Assigning two treatment groups to a contract allowed us to ex-ante increase the
chances of comparing a contest and a contract with similar expected payments.”

Second, making the contracts have tiers (i.e., different payments for achieving different
levels of savings) ex-ante increases the chances that the contracts will provide households
with marginal incentives (i.e., a non-trivial tradeoff with costs and benefits to saving en-
ergy created by our incentive program). To see this, imagine a scenario in which the ex-
perimental period is significantly cooler than the reference period. Saving 5 percent may
be achieved without effort, but saving 15 percent may require significant effort. If instead,
the weather is warmer during the experimental period, households may find it too costly
to save more than 5 percent. Having a contract with several tiers thus increases the chances
that the contract will provide marginal incentives, regardless of the weather.

Lastly, the contest design literature shows that when idiosyncratic shocks follow a distribu-
tion that does not have “heavy tails,” aggregate effort increases with the number of players
(List et al., 2020), and a single prize is optimal (Drugov and Ryvkin, 2020). We presumed
that shocks did not have a heavy tail, which is why we chose a single prize and N = 50
households per contest.

Departures from our pre-analysis plan There are two departures from our pre-specified
research plan that are worth mentioning, although neither affects the validity of our es-
timates. First, the experiment experienced unexpected delays due to technical issues.
Households needed to update the app to view the specific rules for their treatment. To
help remedy the issue, all households received individual information about their treat-
ment via a text message containing a link to the rules on July 24, 2023, about 10 days after
the start of the program.® In these communications, households were not informed about
the presence of other treatments within our study. Second, in the summer of 2023, during
our experiment, the electric utility sent numerous text messages and notifications to all
customers, urging them to save energy to protect the power grid. On average, each cus-
tomer received 2-3 messages per week. In effect, our treatment effects could be interpreted
as net-of or over and above effects from standard nudges.

’Given our sample size, our power calculations suggested that no more than three treatment groups were
prudent. With a greater sample size, however, we would have added additional contract treatments.

8Examples of the treatment rules, which are displayed in the app and available through a link in text
messages, can be found in online Appendix A. This appendix includes the rules in both the local language
and their English translation.



2.3 Data

The main variable of interest is daily electricity consumption at the household level. This
variable is obtained from the utility company, which measures electricity consumption
through smart meters installed in every home. We collect daily electricity consumption
data at the household level for 12 months prior to the start of the experiment and six
months following its conclusion.” As noted before, data on a household’s electricity con-
sumption within a day (e.g., hourly data) is unavailable as the current IT systems for the
utility in Hanoi do not store such data.

Weather plays a significant role in influencing a household’s electricity consumption and
their likelihood of winning a prize in a contract or contest. As a result, we gather daily
air temperature data for Hanoi from Visual Crossings. This dataset encompasses the air
temperature variable, along with a “feels like” temperature variable, which takes into ac-
count temperature and humidity to provide a more accurate representation of the per-
ceived outdoor temperature. We utilize these data to study heterogeneous responses by
weather conditions on a given day.

To assess the cost-effectiveness and welfare impacts, we also obtain administrative data
from the utility, allowing us to quantify the benefits of energy savings in terms of reduced
energy production and carbon emissions.

2.4 Experimental Balance

We assess the balance between the treatment and control groups by examining household
historical electricity consumption data. More precisely, we analyze the average daily elec-
tricity consumption for each month leading up to the intervention, spanning from July
2022 to May 2023, as part of our balance checks. For each of these variables, we run the
following specification:

3
y; = a+ Y 1{treatment; = k}S; + ¢;,
k=1

Our attrition rate is notably low, with only 8 out of 11,194 participants discontinuing their involvement.
Attrition occurred since those 8 participants stopped their service with the utility. Also, due to intermit-
tent technical issues, the daily consumption of some households is sometimes not transmitted to the utility
immediately although it is accounted for in the billing cycle. We drop these small number of household-
day combinations for which this occurs and importantly, these are balanced across all treatment and control
groups.



Table 1: Balance analysis: Past electricity consumption

(M (2) (3) (4) (5) (6) (7) (8)

Control Treatment 1 Treatment 2 Treatment 3 F-test
Month Mean (kWh) Coeff. p-value Coeff. p-value Coeff. p-value p-value
July 2022 12.388 0233  0.164 0.111  0.500 0.130  0.430 0.581
August 2022 11.488 0211  0.170 0.160  0.295 0.154  0.312 0.543
September 2022 10.621 0.140  0.329 0.134  0.350 0.116 0413 0.733
October 2022 8.441 0.077  0.482 0.123  0.260 0.099  0.366 0.697
November 2022 8.324 0.079  0.462 0.131 0.222 0.133 0.215 0.562
December 2022 8.601 0.097  0.423 0.164 0.174 0.072  0.549 0.594
January 2023 8.814 0.114  0.377 0.223  0.081 0.027  0.827 0.294
February 2023 8.762 0.086  0.480 0.134  0.265 0.079 0512 0.733
March 2023 8.423 0.116  0.309 0.119  0.286 0.055  0.619 0.677
April 2023 9.053 0.026  0.832 0.168  0.173 0.070  0.566 0.541
May 2023 11.447 0.120  0.439 0.235  0.130 0214  0.166 0.410

Notes: An observation in each row is a household. Columns 2-7 report the coefficients and p-values from OLS regressions of average
daily consumption on three indicators: treatment 1, treatment 2, and treatment 3. Column 8 reports the p-value from a joint test of
statistical significance of all three indicators.

where treatment; is a variable indicating the treatment assignment of household i. The
regression includes indicators for all treatment groups except for the control group (the
omitted category). In our balance analysis, we report estimates for the coefficients {3},
their standard errors, and the p-value from a joint test of statistical significance of all co-
efficients on the treatments indicators (i.e., a test where Hy : 8; = 52 = 3 = 0) for every
variable listed above. Table 1 presents the outcomes of our balance checks, showing no no-
ticeable disparities in historical electricity consumption patterns between the control and
treatment groups.

3 Experimental Results

In our study, consenting households opted in to participate in the summer energy con-
servation program and were subsequently randomized into a control group, two tiered
contracts and contests. Thus, we estimate average treatment effects on the households in-
terested in participating in our study.

To measure these treatment effects, we use two different sources of variation. First, we
exploit the random cross-sectional variation in treatment assignment during the experi-

10



Table 2: Treatment effects: Cross-sectional variation

(1) (2) (3) (4)
Daily Daily consumption
consumption (kWh) (kWh) (in logs)
Contract 1 -0.763 -0.914 -0.071 -0.085
(0.180) (0.087) (0.015)  (0.009)
Contract 2 -0.538 -0.794 -0.054 -0.074
(0.182) (0.089) (0.015)  (0.009)
Contest -0.629 -0.835 -0.055 -0.072
(0.182) (0.093) (0.015)  (0.009)
Controls No Yes No Yes
Observations 329752 329192 326283 325724
Mean 12.998 12.999 2.368 2.368
Test 0.454 0.346 0.441 0.272

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects. Columns 2 and 4
include controls for the average daily consumption of the household in each of the months before the experiment (July 2022 to May
2023). Row ‘Mean’ reports the mean of the dependent variable in the estimation sample. Row "Test’ reports the two-sided p-value of
an F-test where the null is that treatments 1, 2, and 3 have equal coefficients.

mental period and run the following regression:

3
yir = a+ Y 1{treatment; = k}S; + X[6 + v + £44, (1)
k=1
where y; , is the daily consumption of household i on day ¢ during the study period, X; is
a set of covariates (one specification includes no covariates, another specification includes
the covariates used in the balance analysis), ; is a day fixed effect, and ¢, is an error term
clustered at the household level.

Table 2 presents the estimates for equation (1). In columns 1 and 2, the dependent vari-
able is daily energy consumption in levels, whereas in columns 3 and 4, the dependent
variable is the natural logarithm of daily energy consumption.’’ The results suggest that
households participating in contracts and contests reduce energy use by approximately
5% to 9% compared to households in the control group. All coefficients are statistically
significant at the 1% significance level. While both contracts and contests achieved energy

10 ess than 0.1% of household days have have zero recorded energy consumption so we obviate the need
for adjustments for logs with zeros (Chen and Roth, 2024).

11



Table 3: Treatment effects: Within-household variation

(1) (2) (3) (4)
Consumption (kWh) Consumption (kWh) (in logs)
Full sample June 1, 2023 - Full sample  June 1, 2023 -

Post * Contract 1 -0.892 -0.969 -0.080 -0.085

(0.100) (0.073) (0.008) (0.006)
Post * Contract 2 -0.740 -0.944 -0.077 -0.078

(0.101) (0.074) (0.008) (0.006)
Post * Contest -0.756 -0.938 -0.072 -0.081

(0.104) (0.075) (0.008) (0.006)
Observations 4430382 718792 4397592 711137
Mean 10.313 13.084 2.131 2.373
Test 0.236 0.910 0.606 0.523

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row "Mean’ reports the mean of the dependent variable in the estimation sample. Row "Test’ reports the two-sided p-value of
an F-test where the null is that treatments 1, 2, and 3 have equal coefficients. Columns 1 and 3 use the full sample (July 1, 2022 to August
13,2023). Columns 2 and 4 restrict the sample from June 1, 2023 to August 13, 2023.

reductions that are statistically different from the pure control group, we cannot reject the
null hypothesis that the effects of contracts and contests are identical.!

Next, we exploit the within-household week-by-week variation in incentives to conserve
energy utilizing energy consumption data from before, during, and after the experimental
period. We estimate the following equation:

yir = a+ Y > treatment; = k}1{t = 7} Bk, + v + Ui + €4, (2)
kot

where y;, is daily energy use of household i on day ¢, ¢t € {(-T,-T —1,...,0,1,....T}
periods relative to the beginning of the study, and (3, measures the average impact of
treatment k£ on electricity consumption 7 periods relative to the beginning of the study
(where the control group is the excluded category), 7; and v; are day and household fixed
effects, respectively, and ¢;, is an error term clustered at the household level. Note that
given the within-household variation in incentives to conserve energy, equation (2) in-
cludes household effects.

The row ‘Test’ reports the two-sided p-value of an F-test where the null is that treatments 1, 2, and 3 have
equal coefficients.

12



Table 3 shows the estimates of equation (2), using data from before and during the experi-
mental period. We restrict all pre-treatment coefficients j;, , to zero, and all post-treatment
coefficients to a single time-invariant value, ;. Columns 1 and 2 report estimates in kWh
whereas Columns 3 and 4 report results in logs. Column 1 and 3 consider the full sample
where as Columns 2 and 4 demonstrates robustness to limiting our sample from June 1,
2023 onward since households in Hanoi experienced rolling blackouts in May 2023 and
consumption is higher in the summer months. The findings remain consistent across var-
ious specifications, indicating that households engaging in contracts and contests reduce
their energy consumption by around 7% to 9% when compared to households in the con-
trol group. All coefficients exhibit statistical significance at the 1% level. Similar to the
results presented in Table 2, we cannot reject the null hypothesis that the effects of con-

tracts and contests are equal.'?

Figure 1 presents estimates for equation (2), where we allow for the treatment coefficients
to vary over time, using data from after the experimental period. Figure 1A illustrates
the difference in energy usage (in kWh) between treatment group 1 (contract with low
thresholds) and the control group over time, as measured by week-level indicators. Like-
wise, Figure 1B and 1C display the energy usage difference (in kWh) for treatment group 2
(contract with high thresholds) and 3 (contests), respectively, relative to the control group
across time. All model specifications incorporate day fixed effects and household fixed ef-
fects. The dataset covers the period from June 1, 2023, to September 22, 2023. Week 0
represents the week before the experiment commencement, and weeks 1 through 4 corre-
spond to the experiment period (July 15 through August 13)."

The coefficients observed before the treatment period affirm the balance between the con-
trol and treatment groups, providing limited evidence of statistically significant differences
in daily energy consumption across these groups before the experiment. Similarly, the co-
efficients two weeks after the experiment started are not statistically significant, implying
that the treatments do not exhibit any immediate effect within the initial two weeks. As
previously discussed, households received a delayed notification that the incentive period
had started (on July 24, 2023, instead of on the first day of the incentive period, July 15,
2023). This most likely explains the null effect in the first two weeks. The treatment effects
begin to emerge and become more pronounced in week 3, with the most substantial ef-
fects occurring during the final week of treatment. The results suggest that as households

12 According to our power calculation provided our pre-analysis plan, it is highly probable that our sample
size is inadequate for detecting any difference of 3% or less in magnitude.

13Week 4 has 3 additional days, to cover the entire experimental period. Similarly, weeks -6 and -5 are
combined, as week -6 includes only two days, given the sample restriction.
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Figure 1: Time effects: Within-household variation
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Notes: Standard errors clustered at the household level in parentheses. An observation is a household—day combination. Each figure
plots the differential energy use (in kWh) of the treatment group X relative to the control group over time, measured by indicators at
the week level. All specifications include day fixed effects and household fixed effects. The sample includes data from June 1, 2023 until
September 22, 2023. Week 0 is the week before the experiment started, week 1 is the first week of the experiment and week 4 is the last

one. Weeks -6 and -5 are grouped together, given the sample restriction. Week 4 has 3 additional days, to cover the entire experimental
period.
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approached the conclusion of their contracts or contests, they intensified their efforts to
enhance their chances of winning a prize. Although most of the treatment effects dissi-
pate two weeks after the end of the treatment period, we observe some evidence of a small
persistent effect. The lower bound of the 95% confidence interval on this estimate is just
above pre-treatment consumption for contracts and just below pre-treatment consumption
for contests with point estimates suggesting a modest persistent effect.!*

3.1 A comparison of treatment effects

A noteworthy fact in Tables 2 and 3 is that the treatment effects are statistically indistin-
guishable across treatment groups. A few explanations could rationalize this finding. First,
households may respond to marginal incentives, but these vary across treatments, as do
expected payments. As we will note later, the expected payment of households in the con-
tract treatment groups was 80 to 85 percent greater than that of households in the contest
group (we come back to this later). In this sense, the findings in Figure 1 (and Tables 2 and
3) are consistent with contests being more efficient (i.e., the same marginal incentives can
be induced with a lower payment), but the greater expected payment in the contract treat-
ments makes the treatment effects similar. The structural model and estimation framework
presented in Section 4 will offer a better comparison of the performance of contracts and
contests, given any equivalent expected payout.

Second, households may not respond to marginal incentives (i.e., fine tuning effort based
on the perceived costs and benefits of saving an additional kWh). We test this possibility
in Figure 2, where we exploit variation in the design of the contract treatments to measure
whether households respond to marginal incentives. Specifically, we measure the impact
of being offered a guaranteed payment for saving a predetermined amount (e.g., $5 for
saving at least 5 percent) on an indicator for whether the household saved at least that
amount. Note that the contract treatments feature variation in the thresholds that trigger
payments—i.e., ‘Contract 1’ offers payments for saving 5, 10, and 15%, whereas ‘Contract
2’ offers payments for saving 10, 15, and 20%. The contest and control groups are never
offered guaranteed payments for saving more than a predetermined amount. Whether we
include all households (Panels A, C, E) or restrict the sample to households being offered
some incentive to save energy (Panels B, D, F), we find evidence of households responding
to marginal incentives (i.e., households are more likely to save at least x percent if offered

YFigure D.1 in the Online Appendix presents a similar analysis but reports means instead of regression
coefficients. The same patterns emerge.
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Figure 2: Share of households saving at least X percent when facing incentives to save X percent
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Figure 3: Household-level electricity consumption reductions
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Notes: An observation is a household. Each figure plots the distribution of the ratio between a household’s average daily consumption
during the experimental period (July 15, 2023 through August 13, 2023) and the household’s average daily consumption during the
reference period (July 15, 2022 through August 13, 2022). For presentation purposes, we cap the ratio at 2.

a payment to save at least that amount). These findings suggest that marginal incentives
are at work, rejecting the notion that the design of the incentive scheme is irrelevant.

3.2 Heterogeneity analysis

In this section, we explore heterogeneity along two dimensions. First, we ask how the en-
ergy use reductions are distributed across participants. Second, we examine how variation
in temperature shapes heterogeneous treatment effects.

To explore how the energy use reductions are distributed across participants, we compute
the ratio between the average daily consumption during the experimental period (July
15 to August 13, 2023) and the average daily consumption during the reference period
(July 15 to August 13, 2022). A ratio of one or less indicates that the household’s energy
use during the experimental period was less or equal to the energy use during the ref-
erence period. Figure 3 displays the cumulative distribution functions of these ratios, by
whether the household was incentivized to conserve energy. The distribution functions
for the treatment groups are smooth and appear to be first-order stochastically dominated
by that of the control group, suggesting that the incentives to save energy influenced all
treated households. The figures also suggest that the energy reductions we find in Fig-
ure 1 are not driven by a subset of households, as the distribution functions of the treated
groups depart uniformly from that of the control group.
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Table 4: Heterogeneity analysis: Within-household variation

o @ 0 @ 0 ©)
Consumption (kWh) Consumption (kWh) (in logs)
Post * Contract 1 -0.967  -1227 -1.435 -0.085  -0.110 -0.126
(0.073) (0.114) (0.103) (0.006) (0.009) (0.009)
Post * Contract 2 -0946 -1.278  -1.462 -0.078  -0.108 -0.121
(0.074) (0.114) (0.103) (0.006) (0.009) (0.008)
Post * Contest -0.938  -1.348  -1.528 -0.081  -0.118 -0.130
(0.075) (0.116) (0.106) (0.006) (0.009) (0.009)
Post * Contract 1 * Reference consumption -0.297 -0.007
(0.063) (0.005)
Post * Contract 2 * Reference consumption -0.156 0.001
(0.057) (0.004)
Post * Contest * Reference consumption -0.244 -0.002
(0.069) (0.005)
Post * Contract 1 * Feels like max 0.311 0.030
(0.103) (0.007)
Post * Contract 2 * Feels like max 0.401 0.036
(0.103) (0.007)
Post * Contest * Feels like max 0.492 0.044
(0.104) (0.007)
Post * Contract 1 * Temp max 0.625 0.055
(0.093) (0.007)
Post * Contract 2 * Temp max 0.695 0.057
(0.093) (0.007)
Post * Contest * Temp max 0.791 0.065
(0.095) (0.007)
Observations 718792 718792 718792 711137 711137 711137
Mean 13.084 13.084 13.084 2373 2373 2.373
Test 0923 0582  0.666 0.529  0.531 0.524

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row 'Mean’ reports the mean of the dependent variable in the estimation sample. Row "Test’ reports the two-sided p-value of an
F-test where the null is that treatments 1, 2, and 3 have equal coefficients. All columns restrict the sample from June 1, 2023 to August 13,
2023. The variables ‘Feels like max’ (maximum feels like temperature), ‘Temp max’ (maximum temperature), ‘Reference consumption’
(household’s average daily consumption during July 15, 2022, and August 13, 2022) are standardized (mean zero, standard deviation
one).
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Table 4 replicates our within-household analysis in Table 3 but allowing for heterogeneous
effects, where all interaction variables are standardized (mean zero and standard devia-
tion one). Column 1 shows that treated households with a larger daily average consump-
tion during the reference period, on average used less electricity during the experimental
period, but the effect disappears when looking at percentage change in electricity use (Col-
umn 4). That is, households that use more can reduce more in levels but the reduction is
similar to other households when measured in percentage terms.

Table D.2 in the Online Appendix shows the results of a similar heterogeneity analysis
where we exploit that there was a delay in notifying participants that the incentive pro-
gram had started. We compute the average daily consumption in the first two weeks of
the experimental period and exclude those two weeks from the regression. Similar to the
results in the previous paragraph, we find that treated households that used more in the
tirst days of the experimental period (before knowing that the experiment had started)
reduced their energy consumption by more, but this reduction is no different from that
of other households when measured in percentage terms. This suggests that greater con-
sumption in the early days of the incentive program did not discourage participants from
saving energy later in the experimental period.

How does the weather impact the effectiveness of the incentives? Table 4 shows that house-
holds consume more energy on warmer days (measured by the maximum daily “feels like”
or the actual maximum temperature). This suggests that households adjust their usage to
align with a satiation level of comfort. Despite increased consumption on warmer days,
households still save energy relative to the counterfactual under the incentive programs.
Our estimates suggest that, on average, a one standard deviation increase in the maximum
temperature reduces the daily energy savings by between 0.3 and 0.8 kWh. Moreover,
the treatments generated energy savings even on the hottest days of the treatment period
(roughly a 1.8 standard deviation increase in temperature), which is when the utility needs
consumption reductions the most. These findings suggest that the incentive programs are
effective in managing demand on extremely hot days.

3.3 Average payouts, by treatment
In this subsection, we analyze the cost of implementing each of these treatments in terms

of average payouts per household. Although we have found that we cannot reject that the
treatment effects across treatment groups are equal, the cost of each treatment may differ,
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Table 5: Average Payouts and Consumption by Treatment

Contract 1 Contract 2 Contest
Minimum Reduction to Earn Reward 5% 10%  15% 10%  15%  20% -
Prize (USD) $4.34 $6.52 $10.86  $6.52 $10.86 $15.22 $87
Observed winning probability 36% 29%  22% 26%  20%  15% 2%
Number of participants 2,795 2,799 2,799
Average payout per participant (USD) $3.14 $3.20 $1.74
Average monthly consumption (kHW) 375.61 381.66 379.76

Notes: An observation is a household. The threshold and prize rows show the prizes awarded for saving more than z%. There are no
pre-determined thresholds for the contest treatment. The average monthly consumption of the control group during the experimental
period was 396.76.

creating differences in the cost effectiveness of each intervention.

Table 5 summarizes the details of each treatment together with the average payout per
participant. The table shows that both contracts were similarly costly in terms of average
payout per household ($3.14 and $3.21, respectively, for contracts 1 and 2), and they were
80 to 85% more costly than the contest treatment (average payout of $1.74). This implies
that although the reductions in energy use were similar across the incentive programs, the
contest achieves these reductions for the least amount of money, suggesting that contests
are a substantially more cost-effective way of incentivizing households to reduce energy
demand.

4 Structural Model and Estimation

In this section, we develop a model that rationalizes households’ energy consumption
choices under various incentive schemes—namely, no incentives (control), individual con-
tracts, and contests—and also enables us to perform counterfactual analyses to answer
additional questions: (1) How do contests and individual contracts compare in inducing
energy savings, keeping expected payments per household fixed? (2) What is the optimal
design of incentive schemes given households” behavioral responses? (3) What are the

welfare and policy implications of different incentive structures?

Using data from our experiment, we estimate the model parameters by comparing ob-
served outcomes with the model’s predictions. The structural model complements our
experimental findings by allowing us to compare the performance of a contest against an
optimal contract—one derived from the model’s primitive parameters—keeping expected
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payments per household fixed. Unlike our comparisons in the previous section—where
we compare two arbitrary contracts, not necessarily optimal ones, against a contest—this
allows us to effectively compare optimized contests and contracts. As well, the model also
enables us to compute demand functions and welfare, which allows us to determine the
price elasticity of electricity consumption and compare incentive programs from the per-
spective of households.

4.1 Modeling Household Energy Consumption

A household’s satiation energy consumption is S > 0 (i.e., the level consumed when en-
ergy is free), which may vary across seasons (e.g., it may be higher in warm months).
The household chooses its target (or expected) energy consumption, e > 0, which is then
affected by an ex post idiosyncratic shock ¢ (i.e., after choosing e)—e.g., malfunctioning
appliance, unexpected travel—with ¢ ~ F(-), Ele] = 0, and density f(-), so the actual en-
ergy consumption is é = e + £.1° The household’s expected payoff is

E[—y(é = 8)* —pe].

The payoff captures that the household values matching its actual consumption with S but
dislikes paying for energy, which is priced at p per kWh.!® The utility loss from deviations
from the household’s satiation level reflects discomfort associated with under- or over-
consumption. The parameter v measures the importance of matching S relative to the cost
of energy."”

Simple algebra shows that, ignoring the constant Var|e], the household payoff is
_’7(6 - 68>27
where ef = S — 3. We have the following result.

Proposition 1 (No Incentives; Control Group). Without an incentive for energy conservation,

Households set their target consumption based on expected conditions in a given time period. We later
study comparative statics on S, which reflect that variation in weather throughout the year determines dif-
ferent values of S and a household’s target consumption.

18Qur formulation assumes that households evaluate uncertain payoffs according to their expected value.
This assumption is for tractability. In reality, behavioral biases (e.g., probability weighting or risk aversion)
may introduce different effects.

7This analysis assumes homogeneous preferences. In our empirical estimation, we allow for different
household types.
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a household’s enerqy consumption (assuming an interior solution) is given by

* p
Ccontrol = S — % (3)

The household always consumes less than its satiation point, S. If energy was very cheap
(low p) or if matching S was highly important (high v), the household’s consumption
would be very close to S. However, a high energy price (high p) or low value of matching
S (low 7), reduces the household’s consumption.

We now consider the use of individual contracts or a contest as an incentive for energy con-
servation. Consider a set of NV households with the same preferences, i.e., the same param-
eters S, v, and distribution F'. These households make simultaneous energy-consumption
choices. Let é; = e; + ¢; be household i’s realized consumption and & = (é;,...,éx). We
assume that the shocks ¢; are independent and identically distributed, ¢; ~ F'.

Under an incentive program that rewards energy conservation, household i receives a re-
ward of I;(&), which can depend on the realized consumption of all households. Taking the
energy-consumption choices by other households as given, household i chooses its energy
consumption to maximize

Ui(ei, e—i) = E[L;(8;,8_5)] — (e — e5)*. (4)

Individual Contract. Consider first an individual contract. In Appendix B, we show that
a threshold contract is an optimal individual contract to allocate a fixed reward, B. That
is, the household receives a prize B if and only if its realized consumption is below the
threshold ¢.'® Under an individual contract with threshold ¢, household i’s chooses its

energy consumption to solve

max B F({ —e;) — (e — €)”. (5)

Our focus is on interior solutions to this problem. Households may ignore contracts that
are too demanding, i.e., those that require extremely high energy conservation to receive
a relatively small reward. Alternatively, if the reward is huge, households could “shut
down” and consume zero. We ignore these corner solutions as the monetary incentives
we consider are relatively small.

181t can be shown that not every optimal contract is necessarily a single threshold. That is, other types of
contracts (e.g., multiple thresholds) can also be optimal under some conditions.
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Proposition 2 (Contracts). Consider a contract that pays B to the household if its realized con-
sumption is below (. An interior solution for (5) is characterized by the fixed point

Bf(l—e
27

* % _
contract — Ccontrol

contmct) ) (6)

e

Fixing the individual reward B, the sponsor of an energy conservation program can choose
a threshold ¢ that minimizes the household’s expected consumption. The optimal thresh-
old, denoted ¢*, is characterized by the solution to

Ig1>i(r)1 €contract(£)-

Proposition 3. If the density of the idiosyncratic shock has a unique point z such that f'(z) = 0,
and consumption is interior at the optimal threshold, then (* = €}, ... + =.

Proposition 3 establishes that, as long as the solution is interior, the household reduces its
consumption up to the point of just achieving the reward. This occurs because reducing
energy further from the satiation point is costly. Using this proposition, we can also get
a closed-form solution for the household consumption for an optimal contract. Using the
fact that * = ¢

contract T 2 in (6); we obtain

. ‘ Bf(z)

= € —_
contract control
2y

, (7)

e

where z is the unique point where f'(z) = 0.

Bf(2)
2y
ward, B, the sensitivity to matching S, v, and the density of receiving an idiosyncratic

The energy reduction induced by the optimal contract is , which depends on the re-
shock z, f(z). Also note that as B increases, the optimal threshold ¢* (which equals
€ ontract T 2) decreases. That is, when the reward is larger, the contract becomes more de-
manding in terms of energy reduction. Finally, note that the probability that the household
earns B is F(z).

Importantly, the optimal threshold ¢* depends on the preference parameters S and . If
a household’s satiation consumption level, S, varies due to common shocks—such as sea-
sonal changes throughout the year—implementing an optimal contract becomes signifi-
cantly burdensome. This is because it requires tailoring the contract to each household’s
expected satiation consumption point, which may fluctuate over time.

Individual Contest. We now consider the use of a contest to promote energy conserva-
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tion. Suppose the sponsor of an energy-conservation program organizes a winner-takes-
all contest, where N homogeneous households simultaneously make energy consumption
choices, e;, and the household with the lowest realized consumption, é;, receives a prize of
V.1 Suppose that every household other than i chooses consumption e*. Then, household
i solves the problem

max V- [(1—Flei+ei — NN THF (e5) — (e — ep)”. (8)
In this expression, given e; and ¢;, household 7 wins the contest by consuming the least
amount among N households, which occurs with probability (1 — F(e; +¢&; —e*))V ! (ties
occur with probability zero). Given that e; is chosen before the realization of ¢;, the house-
hold computes the expectation of this probability with respect to ;.

It is worth noting that we have not considered multiple prizes because awarding a sin-
gle prize is optimal when the idiosyncratic shock distribution does not have “heavy tails”
(Drugov and Ryvkin, 2020), which turns out to be the case in our empirical application.?’

Proposition 4 (Contests). Consider a contest between N households. In a symmetric equilibrium
with interior consumption, each household chooses an energy consumption of

I(V,N;F)
2y

*

€ control

e , 9)

where [(V,N;F) =V / (N = 1)(1 = F(e,))V"22(e1)de.

It is important to understand how the incentive generated by a contest changes with the
number of competitors. List et al. (2020) show that the shape of the distribution of idiosyn-
cratic shocks plays a critical role. For example, when £ ~ Normal(0, o2), for any fixed prize
V, individual households save less energy as the number of competitors increases. That is,
I(V, N; F) goes to zero as N grows. However, more competitors increase aggregate energy
savings, thatis, N x I(V, N; F') increases with N.

Figure 4 illustrates these points. The left panel of Figure 4 shows the incentive for energy
conservation of one of the households participating in an N-household contest with a prize
V =1and F = Normal(0, ¢%), with o = 1 (dotted line) and o = 5 (solid line) for different

YWhen households have equal baseline consumption levels, giving the prize to the household with the
lowest consumption or greatest energy savings is equivalent.

2 A single prize has also been shown to be optimal in other settings. For instance, Moldovanu and Sela
(2001) finds that in a contest where participants have private information about their types, a single prize is
optimal when costs are concave.
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Figure 4: Comparing contests and optimal contracts
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Notes: The left panel shows I(N, V, F'), the energy-conservation of one household participating in an N-household contest, for a prize
V = land F = Normal(0, 02), with 0 = 1 (dotted line) and o = 5 (solid line) for different values of N. The right panel shows
N x I(N,V, F), the aggregate energy-conservation of an N-household contest, for a prize V = 1 and F' = Normal(0, 02), witho = 1
(dotted line) and o = 5 (solid line) for different values of N.

values of N. The figure shows that I (N, V, F') decreases with N, reflecting the impact of
more competition in the contest. When ¢ is larger, extreme shocks play a prominent role in
determining the contest winner, which hinders energy-conservation incentives. The right
panel of Figure 4 shows the aggregate incentive for energy conservation, N x I(N,V, F),
which increases with V.

Lastly, note that the energy-reduction incentive induced by the contest is independent of
the common-shock parameter S—capturing, for example, seasonal effects—which matters
for the design of an optimal contract but does not play any role in the incentives created

by a contest.

4.2 Individual Contracts versus Contests

When considering strategies to reduce household energy usage, is it more effective to give
a household an individual contract or place it in an N-households contest? The answer
to this question is generally ambiguous. In certain scenarios, the competitive nature of a
contest may drive lower energy consumption compared to a standalone contract, while
in other cases, contests can discourage participants and individual contracts might pro-
vide better incentives. By comparing the equations that determine optimal consumption
levels in each scenario—i.e., equations (7) and (9)—we find that the shape of the shock
distribution plays a central role. To streamline our results, we operate under the following
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assumption:

Assumption 1. The density of the idiosyncratic shocks distribution is such that there exists a
unique point z such that f'(z) = 0.

Under this assumption, assuming interior solutions, we have the following result:

Proposition 5. An individual optimal contract with reward B offered to N households induces
more energy conservation than a N-household contest awarding a prize V = N BF(z) when

To understand this proposition, let us first compare the energy-saving incentives of an
individual household participating in an optimal contract offering a reward of 5 or in an
N-household contest offering a prize of V. Comparing (7) and (9), the household saves
more energy under an individual contract when

Bf(z) > V/(N 1)1 = F(e)V 22 (e des. (11)

In terms of the cost of each energy-conservation program, the expected cost of offering in-
dividual contracts is NBF(z), whereas the certain cost of the contest is V. Imposing that

both programs cost the same, NBF(z) = V, individual contracts save more energy than a

fz
F(z

Whether inequality (12) holds hinges on the shape of the shock distribution.

contest when

>) > N [(N = 1)1 = F(e)¥ 2 (e)de: (12)

Proposition 6 provides dominance results for particular sets of distributions. It shows that
for single-peaked distributions with F'(z) < 0.5, incentivizing two households with in-
dividual contracts dominates a 2-household contest. Assuming further that shocks are
normally distributed, the proposition also shows that a N-household contest dominates NV
optimal contracts for N > 3.

Proposition 6. When N = 2, optimal contracts dominate a contest (that is, inequality (12) holds)
for any distribution such that F(z) < 0.5 and, for all x, f(z) < f(z). When N > 3, if ¢ ~
Normal(0, 0%) then an N-household contest induces more energy conservation.

Figure 5 illustrates this proposition by comparing the per-household energy consumption
under three programs: (i) an N-household contest, (ii) an individual optimal contract,
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Figure 5: Comparing contests and optimal contracts

405 405
400 _
& @ 395 -
) >
B390| &390
) )
c c
W 385+ W 385+
-~ Control - Control
380 —Contest |1 380 —Contest |
——-Contract ——-Contract
375 : : : : 375 : : : :
30 40 50 60 70 80 30 40 50 60 70 80
ag
A) N =2 B) N =50

Notes: The figures fix B = 2,y = 0.0016, p = 0.11, and S = 436, and they show the optimal energy use under an optimal contract
and a contest for different values of o and N. The expected payment per household is equivalent in all comparisons between contests
and contracts. These parameters approximate our average empirical estimates.

and (iii) a no-incentive group (“control”). In each comparison, the expected payout per
household is held constant across the contest and the contract. The figure confirms that
the relative performance of a contract versus a contest depends on contest size: for N = 2,
the optimal contract yields greater energy savings, whereas for N = 50, the contest leads
to larger reductions.

As previously discussed, although adding more households to a contest weakens each in-
dividual’s marginal incentive to conserve energy, the overall savings may still rise with
N, depending on the shape of the idiosyncratic shock distribution. Because a sufficiently
large contest can outperform a cost-equivalent individual contract, it is critical to empiri-
cally estimate the distribution of those shocks.

4.3 Estimation

In the empirical analysis, we classify each household as one of K = 56 types, each type
denoted by x = 1, ..., K. We define types based on energy consumption between July 15
and August 13, 2022—i.e., one year before the beginning of our experiment. Figure D.2 in
the Online Appendix plots the average electricity consumption of each type. Let N, be the
number of households of type x. On average, there are 180.73 households of each type,
with some types having as few as 145 households and others as many as 250.%! Let also

Z'The median number of households in each type is 180, and a standard deviation of 21.8.
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N, be the number of households of type x assigned to treatment group ¢.

We assume that each household makes monthly energy consumption choices according
to our model in Section 4.1. A household’s type determines its preferences over en-
ergy consumption through the parameters v,, S,, and the distribution of the idiosyn-
cratic shocks F,.. We assume the shocks are independent. For estimating the parameters,
Ox = (Y, Sk, Fi(+)), for k =1, ..., K, we leverage the model’s predictions and the variation
in consumption induced by each treatment.

Our estimation procedure consists of the following steps:

1. Estimation of F: To estimate F,, we compare the consumption of a household of
type r assigned to treatment ¢ predicted by the model with its observed consumption.
That is, the observed energy consumption of household i assigned to treatment ¢
according to our model is given by

eiv"{vt = 6;5(@,%) + 87:,l‘€,t7

where ¢}, (©,) denotes the optimal consumption choice of household « predicted by
our model, given the parameters. Given that idiosyncratic shocks have mean zero,
taking expectation, we obtain Ele; .. ;| = €} .(0,), and, therefore, &; s = €; 4.t — E[€i 1]
We estimate F), (along with its density, f,,) using a kernel smoothing function over

the vector of residuals {e; ..: — €; x+}:t, Where

1 Nn,t

D Cint
NH L)

it 7=1

€ik,t =

2. Estimation of ~,: To estimate ,, we rely on our estimate of F};, as well as the price
of energy in our experiment, p = 0.11 USD/kWh, the prize in each contest, $87, and
the fact that our experiment assigned 50 households to each contest. We compare the
energy consumption of households of type « across the control and contest groups.
Specifically, from equations (3) and (9), we have that

I(N,V; F,)
29k

* *

€x,control — €k contest —

)

where I(N,V; F,) =V [(N—1)(1—F,(g;))N 2 f%(e;)de; can be computed numerically
given F,, N = 50, and V = $87. We can again estimate € control ANd €} by

r,contest

the average observed consumption for households of type « assigned to the control
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and contest groups, €, control aNd €, contest, respectively. Our estimator of -, minimizes

the difference between the model prediction for e e

x,control — and its empirical

*
K,contest

analog. When v, varies by type, our estimator is given by

I(N,V; Fy)

2(€n,control - 6,‘-i,contest)

’3/,{:

3. Estimation of S: Given an estimate of 7, S, can be estimated by Si. = €}, control + 75/

using equation (3). Specifically, we make use of the following estimator,

S’n = €y control T %

4. Practical Considerations. In practice, to gain power in estimating the objects ~,, and

F,,, we group types into four groups: (v, ) = (1, F1) for k = 1,..,14; (v, Fi) =

(15, Fi5) for k = 15, ...,28; (7., Fi) = (720, Fao) for K = 29, ...,42; (Y, Fi) = (743, Fia3)

for k = 43, ..., 56. This grouping requires an estimation of four different v parameters

and four distribution functions. We estimate (5, )¢ | separately for each type. Hence,
we estimate a total of 60 parameters and four distribution functions.

Figure 6 reports our estimates for the density functions of idiosyncratic shocks (Panel A) as
well as the distribution of energy consumption satiation points (Panel B). The density func-
tion estimates reveal greater dispersion in idiosyncratic shocks for the households with the
greatest electricity consumption (types are ordered by average consumption, from lowest
to highest). We reject the null hypothesis that the idiosyncratic shocks distribute normal
using a Kolmogorov-Smirnov test—the tails of the distributions are too thick. The hetero-
geneity in satiation points corresponds to the consumption heterogeneity across household
types. Lastly, Table D.3 in the Online Appendix reports our estimates for ,.

4.4 Counterfactual Analysis

Counterfactual Contracts and Contests. We use our empirical model to simulate the av-
erage household consumption under different energy-saving incentives, keeping the ex-
pected payment per household fixed across incentive programs.?” This complements our

220ur model in Section 4.1 features a quadratic loss when energy consumption deviates from a household’s
satiation point. This assumption can be reasonable for small deviations relative to S but it might be question-
able for very large deviations. For this reason, the exercises in this section focus on policies that moderately
change consumption.
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Figure 6: Estimates of model parameters: {F,. }, and {Sy},
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Notes: Panel A: The figure shows the estimated density function of idiosyncratic shocks for the four groups of household types. We
use a normal smoothing function with bandwidths 10.99 (types 1-14), 12.07 (types 15-28), 16.57 (types 29-42), and 25.3 (types (43-56).
Panel B: The histogram shows the estimates of .S;; for all 56 types, where an observation is a household type.

comparisons in Section 3 in two ways: i) we are now able to compare an optimized contract
against a contest, and ii) we keep expected payments per household fixed across programs
in all comparisons. Furthermore, Proposition 6 shows that except for some particular cases,
the relative performance of contests and contracts is generally ambiguous and thus an em-
pirical question.

Figure 7 shows the average monthly energy consumption of a household when offered no
incentive (control), an optimal contract, or participating in a contest with NV households.
The figure shows that the optimal contract dominates the contest when the number of
households per contest is small (i.e., N < 3), but contests dominate when the contests
are larger. In fact, the figure (and our estimates more broadly) show that the average
consumption of a contest participant is decreasing in the number of households per contest.
Given that we are keeping the expected payment per household fixed across incentives and
we are comparing an optimal contract against a contest, these findings suggest that contests
are more cost-effective in inducing energy conservation in this setting.

Figure 8 (Panel A) shows the average monthly energy consumption under different pro-
grams when each household receives an expected payout ranging from 0 to 5 dollars. The
figure shows energy consumption under an optimal contract and contests of two different
sizes: 50 households and N,; households (the number of households of type x in our sam-
ple). In line with Figure 7, the figure shows that contests dominate the optimal contract
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Figure 7: Comparing contests and optimal contracts, by number of households per contest
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Notes: The figures plot the average energy consumption of a household when faced with various incentive schemes using our model
estimates for different values of the number of households per contest.

Table 6: Energy Savings for Expected Payout in Our Experiment

E[Payout] Control ¢*-Contract 50-Contest N,-Contest
1.74 392.4826 385.9760 377.1894 375.5471
3.14 392.4826 380.7494 364.9047 361.9431
3.21 392.4826 380.5005  364.3197 361.2953

and that larger contests induce larger gains.

Table 6 provides similar information but restricts attention to the the actual expected pay-
outs in our experiment (see Table 5). For instance, using the expected payout of 3.14 dollars
per household, which is the average payment in the experiment to households enrolled in
contract 1, an optimal contract achieves an expected monthly consumption of 380.75. This
represents a 3 percent reduction relative to the control group. Instead, a 50-household
contest achieves a 7 percent reduction. Across payout levels, the contests dominate the
optimal contract and the energy savings increase in the size of the expected payout.

Figure 8 (Panel B) compares the average welfare of a household when offered an incentive
to save electricity for a given expected payment relative to their welfare when offered no
such incentive (i.e., no payment to save electricity). We measure welfare using the utility
function given by equation (4). As before, we impose equality in the expected payout per
household of a contract and a contest. The figure shows that for every expected payment
value, the household is better off when incentivized with a contract. This is because the
contract induces less electricity savings (which are a source of disutility to the household)
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Figure 8: Comparing contests and optimal contracts, by expected payment
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Notes: The figures plot the average energy consumption (Panel A) and average welfare (Panel B) of a household when faced with
various incentive schemes using our model estimates. We measure welfare using the utility function given by equation (4).

relative to the contest treatments, for a given expected payment (see Figure 8, Panel A).?
This is in contrast to the optimization problem of the electric utility, which would prefer
to incentivize households using a contest because it induces more electricity savings per
dollar spent than the optimal contract.

Weather Variation. The cost-effectiveness of an energy-saving program can vary over the
year due to differences in weather. We simulate the energy savings caused by a contest like
the one offered in our experiment (i.e., 50 households per contest with a prize of $87) across
the twelve months before the experiment. To compute the energy savings, we estimate
the values of S, ,, and the distribution of idiosyncratic shocks F} ., for each period ¢, using
household-level consumption data, following the same estimation procedure discussed

above. We assume that the values of v, remain constant throughout.*

Figure 9 shows the average energy savings of a household (in kWh) by month, where
months are enumerated from 1 (January) to 12 (December). The figure also plots the
average maximum “feels like” temperature for each month. The figure shows that en-

ergy savings are greatest in the summer months, when temperatures are higher, making

The expected utility for a household under an optimal contract is Ucontract = expected payout —
(€ pntract —€)?, and for one competing in a N-household contest is Ueonies: = expected payout—-(e
ey)?. Equating expected payouts implies that Ucontract > Ucontest if and only if €2, 0cr = €5ontest-

2We project the estimated values of S; , and I(V, N; F,;) (see equation 9) on average monthly temperature
and average monthly temperature (squared), type by type, and use the fitted values of S; ,, and I(V, N; F},)

for the analysis.

* —
contest
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Figure 9: Energy reductions of a contest across months
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Notes: The figure plots the energy reduction of a household (in kWh) when households face the contest treatment in our experiment
(i-e., 50 participants, a prize of V' = $87, and a price per kWh of $0.11) in different months of the year. The figure also plots the average
maximum “feels like” temperature for each month. Months are enumerated from 1 (January) to 12 (December).

contests most cost-effective in summer months. Incidentally, this is aligned with the elec-
tric utility’s goals with demand management as the grid is most strained in the summer

months.

Price Elasticity of Demand. Using our model estimates, we compute the price elasticity of
expected demand for energy. We then use this elasticity to simulate the impact of a policy
solution that includes a price increase. Without an energy-saving incentive, the expected
consumption of household of type « is given by equation (3). Thus, the expected energy
demand is the weighted sum of energy consumption across households

D(p) = ian (SK - p) :

27,
where «, is the fraction of households of type «.

Using our model estimates for o, S, and 7., and the average price of electricity in Vietham
of p = 0.11 dollars per kWh, the expected energy demand function is given by D(p) =
427.3439 — 316.9205p. Using this demand curve, the price-elasticity of energy consumption
at the current price is given by —0.0888.

Figure 10 plots the estimated average demand for energy (monthly consumption). It shows
that at the current price of 0.11 dollars per kWh, the average monthly consumption is 392
kWh. If energy was free, households would consume 427 kWh on average. The figure also

33



Figure 10: Estimated Average Demand Curve
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shows the average consumption level under a contest like the one offered in our experiment
(i.e., 50 households per contest with a prize of $87), which is given by 377 kWh. Instead
of providing incentives to save energy, the consumption reduction in the contest can be
replicated via a price increase from $0.11 per kWh to $0.158 per kWh, i.e., a 43 percent
price increase.

5 Marginal Abatement Cost of the Energy Conservation

Program

During four summer months from early May to August 2023, Vietnam faced significant
challenges with its primary energy sources, hydropower and thermal power. The intense
heat and prolonged drought led to a depletion of water levels in lakes and the incapaci-
tation of numerous generating units. The electricity utilities must mobilize many power
plants to meet the demand for electricity and resort to oil-fired sources, despite their sig-
nificantly higher costs compared to other options. Oil power plants are also amongst the
more environmentally polluting source of electricity production. Therefore, energy con-
servation not only enhances power supply reliability and reduces the necessity for deploy-
ing costly electricity sources but also relieves pressure on the country’s investment capacity
and helps mitigate emissions from fossil-fuel electricity generation.

What is the marginal abatement cost implied by the program? Consider the two last power
plants to be turned on on a hot summer day in Hanoi. The last plant burns oil and has a
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marginal cost per kWh of $0.2609 and a carbon intensity of 0.00104 tons of CO, per kWh,
whereas the second to last one burns coal and has a marginal cost per kWh of $0.0913 and
a carbon intensity of 0.001 tons of CO, per kWh. The average price per kWh collected by
the utility is $0.11.

Consider the contest incentive. Using our estimates from Table 3 (Column 1), we know
that households assigned to a contest on average decrease their consumption during the in-
centive period by 22.68 kWh. If the oil plant is in operation, the contest incentive will cause
a decrease in emissions of 22.68 kWh x 0.00104 tons of CO, per kWH = 0.024 tons of CO,
per household. The direct cost of the incentive program is the payout of $1.74 per house-
hold. Using these values, the marginal abatement cost of reducing 1 ton of CO, is then
given by MAC = 1.74/0.024 = $73.76. When using instead the estimates from Table 3 (Col-
umn 2)—which imply an average consumption reduction of 28.14 kWh per household—
the MAC is given by $59.45, as summarized in Table 7. This is well-below widely used
estimates of the social cost of carbon—the U.S. Environmental Protection Agency uses a
social cost of carbon of $190/Mt CO,.

From the perspective of the utility, however, an indirect cost (or benefit) of the program is
the avoided profit (or loss) on the kWhs that households no longer consume as a conse-
quence of the incentive program. When the oil plant is in operation, there is an avoided
profit loss of (0.11 —0.2609) x 22.68 = —$3.42, where the latter comes from the fact that the
marginal cost of generation of the oil plant is higher than the price per kWh (i.e., the utility
saves money by not supplying these kWhs). When considering both the direct (payment
per household) and indirect (profit loss) costs of the program, the marginal abatement
cost of reducing 1 ton of CO, is then given by MAC = (1.74 — 3.42)/0.024 = —$71.33, im-
plying that reducing emissions saves the utility money. When using instead the estimates
from Table 3 (Column 2), the MAC is given by -85.64, as summarized in Table 7. These
MAC estimates likely represent an upper bound, as they do not account for the value of
power reliability to customers, the safety of electrical grid facilities and equipment, and
the alleviation of pressure on the country’s investment in capacity.

Consider instead the case in which the coal plant is the marginal plant (see Table 7,
columns 3 and 4). The contest incentive will cause a decrease in emissions of 0.023 tons of
CO;, per household when using the estimates from Table 3 (Column 1). As before, the cost
per household has two components: the expected payout of $1.74 per household and the
avoided profit gain of (0.11 —0.0913) x 22.68 = $0.42, since the utility makes money on the
kWhs conserved. When ignoring the indirect cost (profit loss) to the utility, the marginal
abatement cost of reducing 1 ton of CO, is given by MAC = 1.74/0.023 = $76.72 (or $61.83

35



Table 7: Marginal Abatement Cost Estimates

(1) (2) (3) (4)

Marginal Plant Oil Coal
Consumption reduction (kWh) 22.68  28.14 22.68 28.14
CO, abated (in tons) 0.024  0.029 0.023  0.028
Payment 1.74 1.74 1.74 1.74
Profit loss (in USD) -3.422  -4.246 0.424 0.526
MAC (in USD) 73.769  59.455 76.720 61.834

MAC, including profit/loss (in USD) -71.327 -85.641 95.420 80.534

Notes: The consumption reduction values are based on the estimates in columns 1 and 2 of Table 7. Consumption reduction, profit loss,
payment, and CO- abated are measured at the household level. MAC is computed using the formula Payment/CO- abated (in tons).
MACG, including profit loss (in USD) is computed using the formula (Payment + profit loss) /CO2 abated (in tons). See the discussion
in the text for more details.

when using the estimates from Table 3, column 2). When instead considering both the
direct and indirect costs of program, the marginal abatement cost of reducing 1 ton of CO,
is then given by MAC = (1.74 4 0.42)/0.023 = $95.42 (or $80.53 when using the estimates
from Table 3, column 2). These MAC estimates, again, are likely an upper bound.

The estimate of the MAC when the coal plant is the marginal plant in operation is higher
than some estimates in the prior literature (Berkouwer and Dean, 2022; Jayachandran et al.,
2017) but lower than many others (Ito, 2014; Davis et al., 2014). Note that this estimate of
MAC is still greater than zero, meaning that the energy conservation program is costly for
the utility. If we ignore the foregone profit from reducing electricity demand (this is often
in the interest of the utility since the grid is constrained), the MAC ranges from $59.45-
$76.72 /Mt CO, depending on the choice of specification. Although carbon pricing could
make the program viable from the utility’s private perspective, Vietham has no carbon tax
or offset market. Carbon offset revenue paying at least $80.5 per ton of CO, could make
the program profitable for the utility.

Could a different contest reduce the marginal abatement cost? We examine whether an
optimized incentive program can bring the MAC down by inducing energy savings in a
more cost-effective way. We use our model estimates to compute the MAC and emissions
reductions for different contest designs, assuming the coal plant is the marginal plant (car-
bon intensity of 0.001 tons of CO, per kWh and a marginal cost of generation of $0.0913
per kWh). We find that using a contest with 250 households (as opposed to 50 house-
holds in our experiment) can significantly drop the MAC for every level of payment per
household. For example, the MAC in a contest with 250 households with a payment per
household of $1.74 (same as in our experiment) can decrease the MAC by $11.95 relative
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Figure 11: Emissions reductions under alternative contest designs
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Notes: The figure plots the tons of CO2 abated per month (per 10,000) for different contests using our model estimates. We assume that
the marginal plant is the coal plant with a carbon intensity of 0.001 tons of CO2 per kWh and a marginal cost of generation of $0.0913
per kWh.

to the MAC when using a contest with 50 households. Figure 11 plots the emissions reduc-
tions for different contests and expected payment amounts, and it shows that the emissions
abated per month are meaningful, suggesting that demand-side incentive programs can
be a cost-effective tool to reduce emissions.

Our estimates suggest that the energy conservation program should save the utility money
when all plants are in operation. Even when the marginal plant is a more efficient plant,
the marginal abatement cost is less than the many estimates of the social cost of carbon,
implying that the program could plausibly raise carbon offset revenue that would make it
viable.

6 Conclusion

In this paper, we experimentally evaluate the cost-effectiveness of contracts and contests
as instruments for incentivizing energy conservation in Hanoi, Vietham. We find that con-
tests and contracts achieve similar energy reductions, but contests are nearly twice as cost-
effective. To understand the conditions under which contests outperform contracts, we
develop and estimate a structural model of household energy demand with satiation and
unanticipated consumption shocks. Using non-parametric estimates of the idiosyncratic
shock distribution, we recover the optimal contract and compare it to a cost-equivalent op-
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timal contest. Our model predicts that, when the contest designer can choose group size
and fix expected payments per household, contests systematically dominate contracts in
terms of energy savings—a finding that aligns closely with our experimental results. Our
model estimates also yield the first experimental estimate of the short-run price elasticity
of electricity demand in Vietnam (-0.089), placing it within the range of estimates from

other countries.

We use information on the carbon intensity of energy sources to compute marginal abate-
ment cost between $59.45-$76.72 /Mt CO, without accounting for any other benefits from
demand management. When oil is the marginal source of electricity, utility savings from
differences in generation costs from oil and retail prices alone justify demand management.
When coal is the marginal source, accounting for avoided profits from demand reduction
implies a marginal abatement cost of $80.50-$95.42/Mt CO,, well below the EPA’s social
cost of carbon of $190/Mt COs,.

Our findings have important implications for the design and implementation of demand-
side management programs. First, we show that working alongside utility partners and
tweaking existing programs can deliver potentially large savings. Our finding is partic-
ularly relevant for low- and middle-income countries, where maximizing the impact of
scarce dollars spent on energy conservation is crucial. By developing a framework to com-
pare contests and contracts, we offer evidence that contests are an effective strategy for
managing demand and reducing emissions, particularly in areas dependent on fossil fuels
for electricity. Second, our model relies on minimal data on electricity consumption that is
increasingly available to utilities around the world that are deploying smart meters. Using
our experimental variation, we are able to provide counterfactual simulations that allow
us to comment on the design of optimal contracts and contests. Finally, our contest design
complements existing “nudge" approaches such as peer comparisons. These have been
shown to be extremely cost-effective given their low implementation costs. However, such
nudges alone cannot deliver large-scale demand reductions during peak months, which
is much needed by utilities such as the one we work with. Indeed, our results should be
interpreted as over and above any demand reduction from nudge interventions.

Implementing contests at scale for energy conservation requires understanding two impor-
tant parameters. First, what is the “voltage drop” from scaling this program beyond those
who signed up for some program in the first place (List, 2022)? The take-up and demand
response could be lower, driving down the cost-effectiveness of these programs. However,
at the same time, number of participants in contests could be expanded to increase cost-
effectiveness. Second, it remains an open question as to whether such demand reductions
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can be derived over and over again, especially if there are discouragement effects from not
meeting contract thresholds or not winning the contests. In principle, utilities would like
to be able to rely on such programs each year during peak months. We leave tackling these
important questions to future research.
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Appendix A: Proofs

Proof of Proposition 1

Proof. Without an incentive to reduce energy, each household solves:

o2 _ 2
max (e—98) —pe+o°.

The solution to this optimization problem is given in the proposition. O

Proof of Proposition 3

Proof. The optimal consumption in an interior solution is characterized by the first-order

condition
Bf(l —e*)=2v(e" —¢),

where ej = 5 — 7. Using the implicit function theorem and taking derivative with respect

, . de*\ _ 0Oe
Bf(ﬁ—e)(l—a€>—2fy :

to ¢ we obtain

ol
Solving for 22 we obtain:
de*  Bf'({—e")
ol 2y+ Bf'({ —e*)
Then, using that at the optimum for an interior solution, 2 = 0, it must be that at the
optimal threshold f'(¢* — e*) = 0. Using that f'(¢) = 0 if and only if ¢ = z, we conclude
that (* = e* + 2. O

Proof of Proposition 4

Suppose there are N households competing in a static contest. Households are ranked
according to their reduction (measured relative to consumption one year ago, ¢/**"), from
the largest reduction to the lowest one. The energy reduction for household ¢ is given by

é; — ef**'. With a single prize, V, household i wins the contest if
& — el < é; — el forall j #i.
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This expression is the same as

past past past past

e t+ei—e <etegi—e Se—ete +&; <¢gj.

In our experiment, households were grouped according to their past consumption, so in

past

each contest e/** = ¢P** for all i. Therefore, household i wins the contest if, for all j # i,

€j > € +¢&; —ej.

In a symmetric equilibrium, each household optimally chooses e, = ¢*. Fixing ¢; and given
e*, player i« wins with probability

Qﬂ(ei,éi, 6*) = (1 — F(ez +é& — 6*>>N_1.

Household i chooses her effort before knowing the realization of the shock ¢;. Then, the

optimal choice of e; solves

max V' [ V(e e, €") f(e;)de; + E.,[U (e, ;)]

e; >0

The FOC yields

Op(es, €4, € , B
v [T ) flendes + B [U'(es, 0] = 0.

In a symmetric equilibrium we must have e; = ¢*. Thus, the contests create an incentive to
reduce energy consumption, I, given by

1=V [(N = D)1= F(e) 2 (=) des
The optimal energy consumption solves

I

et = eZontrol - 5 (13)

Intuitively, spending energy becomes “more costly” when there is a prize for being the
household with the lowest consumption.
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Proof of Proposition 6

Proof. First, we show that a contract to a single household dominates an N-household con-
test under three conditions: N = 2; F((z) < 0.5; and for all z, f(z) < f(2).

This follows from the following observations:

L (N = 1)1~ FE)V2f(e) = £[-(1 - F),
2 [ &[-(1- FE)¥de =1,

Using these observations and the assumption f(¢) < f(z) for all ¢, we obtain the following

upper bound:

JOV =00 = PP < ) [ L1~ )Y e = £(2)

Therefore,

N [(N=1)(1 = FE)¥ 2 (e)de < Nf(2).

When N = 2, using that F(0) < , we get

N[V 1)1~ FE)Y P (e)de < NJ () =
which corresponds to (12), establishing that a contract given to a single household domi-

nates an 2-household contest.

Second, we show that a N-household contest dominates the single contract when N > 3
and ¢ ~ Normal(0, 0?). In this case, f'(z) = 0 iff z = 0.

The key observation is that

T (R R L ]

We also make the variance of the distribution explicit by using the notation

F(s) = @ (5) .

g
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Using these observations we can write

J=[(v -1 (1 _ (5))N_2 Pe)de = 10) [~ (N - 1) (1 iy (5))N_2 exf)/g_;(‘?)da.

o —00 o

This expression combines the CDF of a Normal(0, o%) with the PDF of a Normal(0, (5 /2)?).
Ideally, we would also like the CDF of a Normal(0, (¢/2)?), that is, the term ® (#) instead
of ® (5) Since /2 > 1and ®(-) is increasing, we have ® (§> <® (#) Therefore, we have

the following lower bound:

7550 [ o= (1-e (g %)))M exiz(—;ég/%)? o

If we call F' the CDF of a Normal(0, (¢/2)?) and f its PDF, the last expression equals

fQ0) e Nl 1)
| =D = P e = 22

Hence, we obtain the following lower bound:

N0
N/(N — D= F@Ee)N2f2(e)de > \‘% ).
The contest dominates for N > 2 because % > 2. O]

Appendix B: Threshold Contracts are Optimal

Consider a principal with the objective of minimizing the household energy consumption
subject to a budget constraint. Equivalently, the principal minimizes the household’s ex-
pected consumption since Efe] = 0.

For household i, the principal considers an individual contract that rewards a household
based on its realized consumption regardless of the consumption by other households, i.e.,
I;(&) = W(é;). Moreover, the reward is subject to the constraint 0 < W (¢;) < B, where B
is the principal’s per-household budget. Thus, the principal solves

min FE. |é; 14
Jmin, B, [é] (14)
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subject to

1. e; € argmax — y(&; — S)* — pé; + 0 + Eg,[W(é;)|é)]

€;>0

2. 0<W(é) < Bforallé; > 0.

Proposition 7 (Optimal Individual Contract). A threshold contract is an optimal individual
contract

In other words, the principal’s optimal contract rewards the household whenever the en-
ergy consumption is below an optimal threshold, ¢, which is determined by the parameters
of the model.

Proof. Letu(e) = —y(e — S)? — pe + o2 and define
Vie, W) = ule) + /W(é)f(é —e)dé

At the optimal interior solution we have V,(e*, W*(-)) = 0.

Consider the relaxed problem

min e
e, W(-)

subject to

1. Ve, W () <0,
2. W(é)— B <O0forallé,
3. —W(é) <0forallé,

4. —e <0.

The Lagrangian of this problem is
L—c+ (u’(e) — [weste- e)dé) 1 0(6)(W (&) — B) + (e)(—W (@) + pe

where A, 11, 0(é),n(é) > 0.

47



Taking FOC w.r.t. W (é) we get

oL
= M(6—e) +0(8) — n(e).
At the optimal solution we have % = 0. Since f.(é — e) # 0 a.e. we cannot have 0(é) =

n(é) = 0 simultaneously when A > 0. This means that either W (é) = B or W (é) = 0 for
all ¢ > 0. Moreover, W (é) is non-increasing, since the principal wants to minimize energy
consumption. Lastly, at the optimum incentive compatibility requires V. (e*, W*(:)) = 0, so
A > 0 satisfies complementary slackness. O
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Appendix C: Treatment rules are provided through the app

and via a link included in text messages

Figure C.1: Treatment rules are provided through the app and via a link included in text message

(b) Via a link in text messages

(a) App’s display

. Xfinity Mobile &

4 Chudng trinh tich diém

Thé lé
Xem ngay »

Tiét kiém dién - Gilr hé xanh

Tiét kiém dién - Giif hé xanh
0

EPoint xin gui I6i chic mung t&i quy khach hang
da dang ky thanh cong va tham gia chuang trinh
TIET KIEM BIEN - GIU HE XANH. Ban da dugc xé&p
vao nhém thi dua tiét kiém dién THEO HANG MUC.

I. THOI GIAN THI PUA: 15/07 - 13/08/2023

Il. CACH THUC THI PUA & CO CAU GIAI
THUGNG:
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Figure C.2: English Translation of treatment rules

(a) Contract 1

Rules of the program "Saving Electricity - Keeping Summer Green"

EPoint is pleased to who have fully registered and participated in
the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been
assigned to the energy-saving competition group based on saving thresholds.

1. PROGRAM DURATION: 15/07 - 13/08/2023

IL PARTICIPATION RULES & AWARD STRUCTURE:

Each customer who reduces their average electricity consumption during the program period
compared to the same period last year:

+by 5% to less than 10% will receive an electricity payment voucher worth 100,000 VND
+ by 10% to less than 15% will receive an electricity payment voucher worth 150,000 VND
+by 15% or more will receive an electricity payment voucher worth 250,000 VND
The formula for calculating the electricity saving result is as follows: H = (B-A)A*100%
In which:

« H is Daily Electricity Saving Performance

+ Ais the total electricity consumption in 30 days from 15/7 to 13/8/2022

* B is the Total Electricity Consumption in 30 days from July 15 to August 13, 2023

*Note:

Customers who do not incur electricity charges on their registered electricity contract for
more than 7 days during the promotion period will not be eligible for the reward.

On days with missing electricity consumption data, the consumption for that day will be
calculated based on the average consumption of the other days during the program period.

For the best results in the program, monitor your electricity consumption on EPoint and
check out suggestions and tips to save electricity more effectively!

(c) Contest

(b) Contract 2

Rules of the program "Saving Electricity - Keeping Summer Green"

EPoint is pleased to who have registered and participated in
the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been
assigned to the energy-saving competition group based on saving thresholds.

I. PROGRAM DURATION: 15/07 - 13/08/2023

II. PARTICIPATION RULES & AWARD STRUCTURE:

Each customer who reduces their average electricity consumption during the program period
compared to the same period last year:

+ by 10% to less than 15% will receive an electricity payment voucher worth 150,000 VND
+ by 15% to less than 20% will receive an electricity payment voucher worth 250,000 VND
+by 20% or more will receive an electricity payment voucher worth 350,000 VND
The formula for calculating the electricity saving result is as follows: H = (B-A)A*100%
In which.
* H is Daily Electricity Saving Performance
* A is the total electricity consumption in 30 days from 15/7 to 13/8/2022
* B is the Total Electricity Consumption in 30 days from July 15 to August 13, 2023
*Note:
«  Customers who do not incur electricity charges on their registered electricity contract for
more than 7 days during the promotion period will not be eligible for the reward.
«  On days with missing electricity consumption data, the consumption for that day will be
calculated based on the average consumption of the other days during the program period.

For the best results in the program, monitor your electricity consumption on EPoint and
check out suggestions and tips to save electricity more effectively!

Rules of the program "Saving Electricity - Keeping Summer Green"

EPoint is pleased to

registered and participated in

the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been
assigned to the energy-saving group to compete against other participants.

1. PROGRAM DURATION: 15/07 - 13/08/2023

1. PARTICIPATION RULES & AWARD STRUCTURE:

Each customer will compete in electricity savings within a group of no more than 50 households.

Each group will award one electricity voucher worth VND 2 million to the customer who
achieves the greatest reduction in elcctricity consumption compared to the same period in 2022.

The formula for calculating the electricity saving result is as follows: H = (B-A)/A*100%

In which:

« H is Daily Electricity Saving Performance

« Aiis the total electricity consumption in 30 days from 15/7 to 13/8/2022

« Bis the Total Electricity Consumption in 30 days from July 15 to August 13, 2023

*Note:

Customers who do not incur electricity charges on their registered electricity contract for

more than 7 days during the promotion period will not be cligible for the reward.
« On days with missing electricity consumption data, the consumption for that day will be
calculated based on the average consumption of the other days during the program period.

For the best results in the program, monitor your electri

If multiple customers achieve the same energy-saving performance, EPoint will prioritize
those who registered for the program carlier.

consumption on EPoint and

check out suggestions and tips to save electricity more effectively!



Appendix D: Additional tables and figures

Figure D.1: Mean Comparisons over Time: Within-household variation
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Notes: An observation is a household—-day combination. The figure plots the average energy use (in kWh) of each treatment group
X at the week level. The sample includes data from June 1, 2023 until September 22, 2023. Week 0 is the week before the experiment
started, week 1 is the first week of the experiment and week 4 is the last one. Weeks -6 and -5 are grouped together, given the sample
restriction. Week 4 has 3 additional days, to cover the entire experimental period.
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Figure D.2: Definition of “type” based on past consumption
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Notes: Types are defined based on a household consumption during one-month period, one year prior to the experiment. Higher types
typically have higher consumption.



Table D.1: Share of households saving at least X percent when facing incentives to save X percent

(1) (2) (3) (4) (3) (6)

Full sample Households in contests or contracts
HH saves at least HH saves at least

5% 10% 15% 5% 10% 15%

Paid to save 5% 0.057 0.028
(0.010) (0.011)
Paid to save 10% 0.048 0.014
(0.008) (0.010)
Paid to save 15% 0.039 0.016
(0.007) (0.009)

Observations 11178 11178 11178 8388 8388 8388
p-value 0.000 0.000 0.000 0.013 0.162 0.074

Notes: Robust standard errors in parentheses. An observation is a household. Each column reports the output of a regression of
an indicator for whether the household saves at least X percent (relative to their consumption in the same period in the year prior)
on an indicator for whether the household receives a direct payment for saving X percent. Note that households in the contest or
control groups are never offered payments for saving more than a predetermined threshold. Columns 4 through 6 restrict the sample
to households being paid to save electricity (i.e., those assigned to a contract or contest). The p-value row reports the p-value for a
two-side test of the null that the coefficient on the variable ‘Paid to save X% is zero.
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Table D.2: Heterogeneity analysis II: Within-household variation

M @ 3 @
Consumption (kWh) Consumption (kWh) (in logs)
Post * Contract 1 -1.759 -1.742 -0.152 -0.152
(0.089) (0.089) (0.008) (0.008)
Post * Contract 2 -1.716 -1.722 -0.142 -0.142
(0.087) (0.088) (0.008) (0.008)
Post * Contest -1.744 -1.747 -0.150 -0.150
(0.091) (0.091) (0.008) (0.008)
Post * Contract 1 * Consumption first two weeks  -0.843 -0.005
(0.084) (0.006)
Post * Contract 2 * Consumption first two weeks -0.712 -0.003
(0.105) (0.006)
Post * Contest * Consumption first two weeks -0.756 -0.011
(0.161) (0.006)
Post * Contract 1 * Reference consumption -0.709 -0.007
(0.075) (0.005)
Post * Contract 2 * Reference consumption -0.612 -0.002
(0.065) (0.005)
Post * Contest * Reference consumption -0.688 -0.007
(0.079) (0.005)
Observations 564187 564187 558264 558264
Mean 12.820 12.820 2.355 2.355
Test 0.878 0.957 0.374 0.377

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row "Mean’ reports the mean of the dependent variable in the estimation sample. Row "Test’ reports the two-sided p-value
of an F-test where the null is that treatments 1, 2, and 3 have equal coefficients. All columns restrict the sample from June 1, 2023 to
August 13, 2023, dropping the days between July 15 and July 29, 2023. The variables ‘Reference consumption’ (household’s average daily
consumption during July 15, 2022, and August 13, 2022) and ‘Consumption first two weeks’ (the household’s average daily consumption
between July 15 and July 29, 2023) are standardized (mean zero, standard deviation one).

Table D.3: Estimates of the model parameters: {7}

Type o St. Error
Type 1-14  0.0046 0.0001
Type 15-28 0.0012 1.6738e-05
Type 29-42  0.0016 4.8683e-05
Type 42-56 0.0012 7.5187e-05

Notes: Standard errors are bootstrapped.
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