
Pseudocode 101

What is pseudocode? Pseudocode is a simplified, half-English, half-code outline of a com-
puter program.

Why use it?

• Because it can help you to clarify your thoughts, and design a routine properly, before
you start to write any code.

One of the hardest things to resist is the temptation to start writing code! Compared to
typing source code, designing the functions which will make up a program seems dull, and
perhaps even like a time wasting activity. But spending ten minutes to think out carefully
the pros and cons of different approaches to the goal can save you hours of time debugging
and refactoring your code later on.

• Pseudocode makes reviews easier. You can review detailed designs without examining
source code. Pseudocode makes low-level design reviews easier and reduces the need to
review the code itself.

• Pseudocode supports the idea of iterative refinement. You start with a high-level design,
refine the design to pseudocode, and then refine the pseudocode to source code. This
successive refinement in small steps allows you to check your design as you drive it to
lower levels of detail. The result is that you catch highlevel errors at the highest level,
mid-level errors at the middle level, and low-level errors at the lowest level – before any
of them becomes a problem or contaminates work at more detailed levels.

• Pseudocode makes changes easier. A few lines of pseudocode are easier to change than a
page of code. Would you rather change a line on a blueprint or rip out a wall and nail in
the two-by-fours somewhere else? The effects aren’t as physically dramatic in software,
but the principle of changing the product when it’s most malleable is the same. One of
the keys to the success of a project is to catch errors at the ”least-value stage,” the stage
at which the least effort has been invested. Much less has been invested at the pseudocode
stage than after full coding, testing, and debugging, so it makes economic sense to catch
the errors early.

• Pseudocode minimizes commenting effort. Often, students write the code and add com-
ments afterward. When we use pseudocode, the pseudocode statements directly become
the comments, so it actually takes more work to remove the comments than to leave them
in.

• Pseudocode is easier to maintain than other forms of design documentation. With other
approaches, design is separated from the code, and when one changes, the two fall out
of agreement. With the PPP, the pseudocode statements become comments in the code.
As long as the inline comments are maintained, the pseudocode’s documentation of the
design will be accurate.

1

Now let’s look at some examples of pseudocode in action!

• Example #1 - Computing Sales Tax : Pseudo-code the task of computing the final price
of an item after figuring in sales tax.

1. get price of item
2. get sales tax rate
3. sales tax = price of item times sales tax rate
4 final price = price of item plus sales tax
5. display final price
6. halt

Variables: price of item, sales tax rate, sales tax, final price

Note that the operations are numbered and each operation is unambiguous and e�ectively
computable. We also extract and list all variables used in our pseudo-code. This will be
useful when translating pseudo-code into a programming language.

Now let’s turn this pseudocode into real code. We start by making our pseudocode into
Python comments; then, we ”fill in the blanks” under each line of pseudocode, filling it
with real code (sometimes one line of pseudocode may represent more than one line of real
code).

2

def compute_salestax():
 # get price of item
 price = float(raw_input("What is the item's price? ")

 # get sales tax rate
 tax_rate = float(raw_input("Enter the sales tax rate, in decimal: ")

 # sales tax = price of item times sales tax rate
 tax = price * tax_rate

 # final price = price of item plus sales tax
 final_price = price + tax

 # display final price
 print "The final price is:", final_price

 # halt
 return

• Example #2 - Computing a Quiz Average: Pseudo-code a routine to calculate your quiz
average.

Get number of quizzes as a parameter

1. Initialize "sum" and "count" variables to 0

2. while count < number of quizzes

2.1 get quiz grade

2.2 add quiz grade to "sum"

2.3 increment count

3. compute average of sum over number of quizzes

4. return average

Hmm... that looks pretty good, but is it the best way? Let’s try pseudocoding a different
approach, where we instead accept a list of quiz grades as input:

Get a list of quiz grades as a parameter

1. Initialize "sum" variable to 0

2. Go through each quiz grade in the list

2.1 add quiz grade to "sum"

3. compute average of sum over number of quizzes

4. return average

Now we can compare our two pseudocode versions of this function and decide which one
to implement. The second version is shorter and doesn’t rely on getting user input, which
is a better way of coding things, so we choose to implement that version.

Get a list of quiz grades as a parameter

def compute_quiz_average(quiz_grade_list):

Initialize "sum" variable to 0

sum = 0

Go through each quiz grade in the list

for qgrade in quiz_grade_list:

add quiz grade to "sum"

sum += qgrade

compute average of sum over number of quizzes

num_quizzes = len(quiz_grade_list)

average = float(sum)/num_quizzes

return average

return average

3

