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Abstract

Many social experiments are run in multiple waves, or are replications of earlier social ex-
periments. In principle, the sampling design can be modified in later stages or replications
to allow for more efficient estimation of causal effects. We consider the design of a two-stage
experiment for estimating an average treatment effect, when covariate information is available
for experimental subjects. We use data from the first stage to choose a conditional treatment
assignment rule for units in the second stage of the experiment. This amounts to choosing the
propensity score, the conditional probability of treatment given covariates. We propose to se-
lect the propensity score to minimize the asymptotic variance bound for estimating the average
treatment effect. Our procedure can be implemented simply using standard statistical software
and has attractive large-sample properties.

1 Introduction

Social experiments have become increasingly important for the evaluation of social policies and the
testing of economic theories. Random assignment of individuals to different treatments makes it
possible to conduct valid counterfactual comparisons without strong auxiliary assumptions. On
the other hand, social experiments can be costly, especially when they involve policy-relevant
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treatments and a large number of individuals. Thus, it is important to design experiments carefully
to maximize the information gained from them. In this paper, we consider social experiments run
in multiple stages, and examine the possibility of using initial results from the first stage of an
experiment to modify the design of the second stage, in order to estimate the average treatment
effect more precisely. Replications of earlier social experiments can also be viewed as multiple
stage experiments, and researchers may find it useful to use earlier published results to improve the
design of new experiments. We suppose that in the second stage, assignment to different treatments
can be randomized conditional on some observed characteristics of the individual. We show that
data from the first wave can reveal potential efficiency gains from altering conditional treatment
assignment probabilities, and suggest a procedure for using the first-stage data to construct second-
stage assignment probabilities. In general, the treatment effect can be estimated with a lower
variance than under pure random sampling using our sequential procedure.

This technique can be applied to two types of studies. First, many social experiments have a
pilot phase or some more general multi-stage or group-sequential structure. For instance, Johnson
and Simester (2006) conduct repeated experiments with the same retailers to study price sensi-
tivities. Karlan and Zinman (2006) conduct repeated experiments with a microfinance lender in
South Africa to study interest rate sensitivities. Second, for many research questions we have seen
a plethora of related social experiments, such as get-out-the-vote experiments in political science
(see Green and Gerber, 2004), charitable fundraising experiments in public finance, and conditional
cash transfer evaluations in development economics. To illustrate our procedure, we use data from
three studies to optimize a hypothetical future wave of a similar social experiment: the first and
second from two charitable fundraising experiments, and the third from a conditional cash transfer
evaluation (Gertler, Martinez and Rubio-Codina, 2006). Our approach is appropriate when later
stages or replications are applied to the same population and same treatments as in the initial
stage; if the later replications do not satisfy this requirement, but involve similar populations or
have similar treatments, then our results could still be useful to suggest alternative designs which
maintain the key benefits of randomization but can improve precision.

Randomizing treatment conditional on covariates amounts to choosing the propensity score—the
conditional treatment probability. Rosenbaum and Rubin (1983) proposed to use the propensity
score to estimate treatment effects in observational studies of treatments under the assumption of
unconfoundedness. Propensity score methods can also be used in pure randomized experiments
to improve precision (for example, see Flores-Lagunes, Gonzalez, and Neumann, 2006). When
treatment is random conditional on covariates, the semiparametric variance bound for estimating
the average treatment effect depends on the propensity score and the conditional variance of out-
comes given treatment and covariates. We propose to use data from the first stage to estimate the
conditional variance. Then we choose the propensity score in the second stage in order to mini-
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mize the asymptotic variance for estimating the average treatment effect. Finally, after data from
both stages has been collected, we pool the data and construct an overall estimate of the average
treatment effect. If both stages have a large number of observations, the estimation error in the
first-stage preliminary estimates does not affect the asymptotic distribution of the final, pooled
estimate of the treatment effect. Our procedure is “adaptive” in the sense that the design uses an
intermediate estimate of the conditional variance structure, and does as well asymptotically as an
infeasible procedure that uses knowledge of the conditional variances.

There is an extensive literature on sequential experimentation and experimental design, but
much of this work focuses on stopping rules for sequential sampling of individuals, or on “play-
the-winner” rules which increase the probability of treatments which appear to be better based on
past data. Bayesian methods have also been developed for sequential experimental design; for a
recent review of Bayesian experimental design, see Chaloner and Verdinelli (1995). Unlike some
recent work taking a simulation-based Bayesian approach, our approach is very simple and does
not require extensive computations.1 However, our analysis is based on asymptotic approximations
where the sample size in each stage of the experiment is taken as large. Thus, our formal results
would apply best to large-scale social experiments, rather than the small experiments sometimes
conducted in laboratory settings.

Our approach is also closely related to the Neyman allocation formula (Neyman, 1934) for
optimal stratified sampling.2 Some authors, such as Sukhatme (1935), have considered the problem
of estimating the optimal strata sizes using preliminary samples, but in a finite-population setting
where it is difficult to obtain sharp results on optimal procedures. A review of this literature is
given in Solomon and Zacks (1970). Our asymptotic analysis lead to a simple adaptive rule which
has attractive large-sample properties.

2 Adaptive Design Algorithm and Asymptotic Theory

2.1 Two-Stage Design Problem

We consider a two-stage social experiment comparing two treatments. In each stage, we draw
a random sample from the population. We assume that the population of interest remains the
same across the two stages of experimentation. For each individual, we observe some background
variables X, and assign the individual to one of two treatments. We will use “treatment” and
“control” and “1”, “0” to denote the two treatments. Let n1 denote the number of observations in
the first stage, and let n2 denote the number of observations in the second stage, and let n = n1+n2.

1We have written simple programs in Stata to implement our procedures, which are available at
http://research.yale.edu/karlan/downloads/hhk.zip.

2Manski and McFadden (1981) also discuss the possibility of using pilot or previous studies to help choose a
stratification design.
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In order to develop the formal results below, we assume that the covariate Xi has finite support.
If Xi is continuously distributed, we can always discretize it. Further, since we will be making
treatment assignment probabilities depend on Xi, it often would be sensible to work with discretized
covariates for operational purposes. All of our results to follow will still hold under discretization,
although discretizing too coarsely may sacrifice some precision in estimating treatment effects.

In the first stage, individuals are assigned to treatment 1 with probability π1, which does not
depend on their observed covariates. Before the second stage, the outcomes from the first stage are
realized, and observed by the experimental designer. In the second stage, the designer can make
treatment assignment probabilities depend on the individual’s covariate X. Let π̂2(x) denote the
probability that a second-stage individual with Xi = x receives treatment 1. We use the “hat”
to indicate the these probabilities can depend on all the data from the first stage. The goal is to
estimate the population average treatment effect with low mean-squared error.

Formally, for individuals i = 1, 2, . . . , (n1+n2), let (Xi, Y0i, Y1i) be IID from a joint distribution.
We interpret Xi as the (always observed) vector of covariates, and Yti as the potential outcome
under treatment t = 0, 1. We are interested in estimation of the average treatment effect

β := E[Y1i − Y0i].

Individuals i = 1, . . . , n1, drawn in the first stage, are assigned treatment Di equal to 1 with
probability π1, and 0 with probability 1−π1. The experimental planner then observes (Xi, Di, Yi),
where

Yi := DiY1i + (1−Di)Y0i.

Similarly, for i = n1 + 1, . . . , n1 + n2, we assign individuals to treatments according to P (Di =
1|Xi = x) = π̂2(x), and we observe (Xi, Di, Yi).

We can also consider a constrained version of the experimental design problem, where the overall
probability of treatment is required to equal a fixed value p. In this case, the assignment rule π̂2(·)
must satisfy

p =
n1

n
π1 +

n2

n
E[π̂2(Xi)],

where n = n1 + n2 and the expectation is with respect to the marginal distribution of X. In the
sequel, we will consider both the unconstrained and constrained design problems. It would also be
straightforward to extend the analysis to cases where there is an upper or lower bound on the the
overall treatment probability, or other constraints.
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2.2 One-Stage Problem and Optimal Propensity Score

Before giving our proposal for an adaptive experimental design rule, it is useful to consider the
simpler problem of estimating the average treatment effect under a fixed treatment assignment
rule.

Suppose that (Xi, Y0i, Y1i, Di) are IID from a population for i = 1, . . . , n, and that the treatment
assignment rule depends only on Xi:

Di ⊥ (Y0i, Y1i)|Xi.

Let
p(x) := Pr(Di = 1|Xi = x).

The function p(x) is often called the propensity score (Rosenbaum and Rubin, 1984). We also
require that for all possible values of X, 0 < p(X) < 1.3

As before, the average treatment effect β = E[Y1i − Y0i] is the object of interest. Typically,
there will exist estimators β̂ that β̂

p−→ β and

√
n(β̂ − β) d−→ N(0, V ).

We wish to find an estimator with minimal asymptotic variance V . The following result, due to
Hahn (1998), provides a lower bound for the variance of regular4 estimators:

Proposition 1 (Hahn, 1998) Let

β(x) := E[Y1i − Y0i|Xi = x],

σ2
0(x) := V [Y0i|Xi = x],

σ2
1(x) := V [Y1i|Xi = x]

Then any regular estimator β̂ for β has asymptotic variance

V ≥ E
[
σ2

1(Xi)
p(Xi)

+
σ2

0(Xi)
1− p(Xi)

+ (β(Xi)− β)2
]
.

Estimators that achieve this bound have been constructed by Hahn (1998), Hirano, Imbens, and
Ridder (2003) (hereafter HIR), and others. Consider the following two-step estimator proposed by
HIR. Let p̂(x) be a nonparametric regression estimate of p(x) = E[Di|Xi = x]. The HIR estimator

3In a randomized experiment, this overlap condition can be guaranteed by design.
4See Chamberlain (1986), for a discussion of regularity and semiparametric variance bounds.
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is

β̂ =
1
n

n∑
i=1

(
DiYi
p̂(Xi)

− (1−Di)Yi
1− p̂(Xi)

)
.

HIR consider the case where X is continuous, and p̂ is a estimated using a sieve estimator, and
they show that the estimator achieves the semiparametric efficiency bound. In the case that X is
finitely supported, it is natural to estimate the propensity score as

p̂ (x) =
∑n

i=1Di1 (Xi = x)∑n
i=1 1 (Xi = x)

.

This is simply the empirical probability of treatment for observations with Xi = x.
An alternative estimator suggested by Hahn (1998) is:

β̃ =
1
n

n∑
i=1

(r̂1 (Xi)− r̂0 (Xi))

where r̂1 (Xi) and r̂0 (Xi) are nonparametric analogs of

r1 (Xi) =
E [DiYi|Xi = x]
E [Di|Xi = x]

, r0 (Xi) =
E [ (1−Di)Yi|Xi = x]
E [1−Di|Xi = x]

In the case we consider here, where the covariate X has finite support, the two estimators are
equal. The proof of the following proposition is straightforward and is omitted.

Proposition 2 β̂ = β̃ when X is multinomial with finite support.

Now suppose that the researcher can choose the propensity score p(x). The researcher would
like to solve

min
p(·)

E

[
σ2

1 (Xi)
p (Xi)

+
σ2

0 (Xi)
1− p (Xi)

+ (β (Xi)− β)2
]

(1)

If there is a constraint on the overall treatment probability, this minimization is subject to the
constraint

E [p (Xi)] = p

In the constrained case, an interior solution p (·) will satisfy

−σ
2
1 (x)
p (x)2

+
σ2

0 (x)
(1− p (x))2

= λ (2)

for all x in the support of X, where λ denotes the Lagrange multiplier.
In both the constrained and unconstrained problems, the solution depends on the conditional

variances σ0(x) and σ1(x). Intuitively, if the data exhibit large differences in conditional variances
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by x, then allowing for different treatment probabilities for different x may permit more precise
estimation of the treatment effect. In essence, heteroskedasticity drives the possibility for improved
precision.

2.3 Two-Stage Adaptive Design and Estimator

The optimization problem (1) implicitly assumes that the conditional variance functions σ2
1 (Xi) and

σ2
0 (Xi) are known to the researcher, and therefore is not feasible in a one-stage setting. However,

if the experiment is run in two stages, one can use the first stage to estimate the unknown variance
functions. We propose to use the first stage results to estimate σ2

1 (Xi) and σ2
0 (Xi), and then use

these estimates to modify the treatment assignment probabilities in the second stage. We show
that if the sample sizes in both stages are large, the overall design is “adaptive” — we achieve the
same overall efficiency as the infeasible version that uses knowledge of the conditional variances.
Our overall design and estimation procedure is implemented in the following steps:

1. In Stage 1, we assign individuals i = 1, . . . , n1 to treatment 1 with probability π1, irrespective
of their covariate values. We collect data (Di, Xi, Yi) for these individuals.

2. Using data from Stage 1, we estimate the conditional variances: σ̂2
0(x) and σ̂2

1(x) by their
empirical analogs: σ̂2

0(x) is the sample variance of Y for first-stage observations with D = 0
and X = x, and σ̂1(x) is the sample variance of Y for first-stage observations with D = 1
and X = x. We then choose π̂2(x) to minimize:

E

[
σ̂2

1(Xi)
π(Xi)

+
σ̂2

0(Xi)
1− π(Xi)

+ (β(Xi)− β)2
]

where
π(x) = κπ1 + (1− κ)π̂2(x).

As before, if there is a constraint that the overall treatment probability is equal to p, then
the minimization is subject to:

E[π(Xi)] = p.

Here, all of the expectations are with respect to the marginal distribution of Xi. Note that
the solution does not depend on (β(Xi) − β)2, so we can drop this term from the objective
function when solving the minimization problem.

3. We assign individuals i = n1 + 1, . . . , n1 + n2 to treatment 1 with probabilities π̂2(Xi). We
collect data (Di, Xi, Yi) from the second stage individuals, and estimate the average treatment
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effect β using the Hahn/HIR estimator

β̂ =
1
n

n∑
i=1

(
DiYi
p̂(Xi)

− (1−Di)Yi
1− p̂(Xi)

)
.

Note that this estimator involves estimating a propensity score. Although the propensity
score is known (because it is controlled by the researcher), the estimator does not use the
true propensity score.5

In the second step of our procedure, it is possible to have a corner solution, because the first
stage randomization restricts the set of possible propensity scores achievable over the two stages. In
particular, for any x, the overall conditional probability π(x) cannot be less than κπ1, and cannot
be greater than κπ1 + (1 − κ) = 1 − κ(1 − π1). However, our results to follow do not require an
interior solution.

2.4 Asymptotic Theory

Our asymptotic theory is based on the regularity conditions stated below as Assumption 1:

Assumption 1 (i) n1 →∞ and n2 →∞ such that n1/(n1 + n2)→ κ; (ii) Xi has a multinomial
distribution with finite support; (iii) π∗2(·) depend smoothly on the vectors σ2

0(·) and σ2
1(·); (iv) the

estimators σ̂2
0(x) and σ̂2

1(x) are
√
n-consistent for the true variances σ2

0(x) and σ2
1(x).

The most notable aspect of Assumption 1 is the double asymptotics, in which n1 and n2 go to
infinity at the same rate.6 The assumption that π∗2(·) depends smoothly on the vectors σ2

0(·) and
σ2

1(·) is innocuous when the Xi has a multinomial distribution with finite support. The assump-
tion that σ̂2

0(x) and σ̂2
1(x) are

√
n1-consistent is also harmless under the multinomial assumption.

Because n1 = O (n), it follows that σ̂2
0(x) and σ̂2

1(x) are
√
n-consistent.

Since the estimators σ̂2
0(x) and σ̂2

1(x) are
√
n-consistent for the true variances, it follows that

the second stage assignment probabilities π̂2(x) are
√
n-consistent for π∗2(x). We also use π∗(x) to

denote the target overall propensity scores, defined as

π∗(x) := κπ1 + (1− κ)π∗2(x).

Because the assignment probabilities in the second stage depend on the realization of the first-
stage data, we do not have classic IID sampling. To develop the formal results, we must take into

5The efficiency gain from using an estimate of the propensity score rather than the true propensity score is
discussed in HIR.

6This assumption can be relaxed somewhat, but we maintain it to keep the analysis relatively simple.
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account the dependence of the second-stage DGP on the first stage data. We do this by viewing
the treatment indicators as being generated by IID uniform random variables. In the first stage,

Di = 1(Ui ≤ π1),

where Ui are IID Uniform[0,1] random variables, independent of the X and Y variables. For
individuals i = n1 + 1, . . . , n1 + n2, drawn in the second stage, treatment is determined according
to an assignment rule as π̂2(Xi), where the “hat” indicates that the rule can depend on first-stage
data. Treatment is defined as

Di = 1(Ui ≤ π̂2(Xi)),

and we observe (Xi, Di, Yi) where Yi is defined as before. There is no loss of generality in defining
treatment randomization this way, and it permits us to define empirical processes based on the Ui
in the proof of the main theorem below.

The following result shows that the two-stage design procedure, combined with the Hahn/HIR
estimator, is “adaptive”: the estimator has asymptotic variance equal to the variance that would
obtain had we used π∗(x) to assign individuals to treatment.

Theorem 1 Let (i) π∗2 (x) := plim π̂2 (x); and (ii) π∗ (x) := κπ1 + (1− κ)π∗2 (x). Assume that
π̂2 (x) = π∗2 (x) + op

(
1√
n

)
. Further assume that 0 < π∗ (x) < 1. We then have

√
n
(
β̂ − β

)
d−→ N

(
0, E

[
1

π∗ (Xi)
σ2

1 (Xi) +
1

1− π∗ (Xi)
σ2

0 (Xi) + (β (Xi)− β)2
])

Proof: See Appendix A 2

3 Examples

In this section we give three simple numerical examples of our adaptive design algorithm, using
data from recently conducted social experiments. Two of these applications were single-stage
experiments. For the purpose of illustration, we suppose that the researcher has the ability to
carry out a second round of the same experiment. We use our adaptive algorithm, along with
the data from the “first” round, to determine how the second stage should be carried out. In
the first example, a charitable fundraising experiment (Karlan and List, 2007), we find significant
efficiency gains from employing our adaptive treatment assignment rule. In the second example,
also a charitable fundraising experiment, we also find potential efficiency gains, and have used
our procedure to guide the design of the second wave of the experiment, currently underway. In
the third example, we use results reported in a World Bank working paper on an evaluation of a
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conditional cash transfer program in Mexico (Progresa) to estimate the potential efficiency gains if
the study were to be replicated elsewhere. We find only a small efficiency gain, but include this as
an example of how to use third-party published results to improve power in new studies.

3.1 Direct Mail Fundraising Experiment

For the first example, we use data from a direct mail fundraising experiment reported in Karlan and
List (2007). In this experiment, a charitable organization mailed 50,083 direct mail solicitations to
prior donors to their organization. Of the 50,083, two-thirds (33,396) received a matching grant
offer, and one-third (16,687) received the same solicitation but without mention of a matching
grant. (The two-thirds treatment assignment rate was imposed by the charitable organization.)
The matching grant test included several sub-features (i.e., the ratio of the match, the ceiling of
the match, and the example amount provided), but for the sake of simplicity we will only consider
the main treatment of receiving the matching grant offer. We now ask the question: in a second
wave of an experiment with this organization, how should we allocate treatments, conditional on
covariates?

There are various covariates available to us, but to keep the analysis simple, we focus on a
single binary covariate, an indicator equal to one if the individual lived in a state that George
W. Bush won in the 2004 presidential election (“red state”), and zero if not (“blue state”).7 We
define Xi = 1 if the individual lives in a red state, and 0 otherwise. The outcome of interest is the
individual’s donation amount in dollars after receiving the direct mail solicitation. We set κ = 1/2,
so that the second round will be the same size as the first round.

The results from this exercise are given in Table 1. Notice that, for X = 1 (donors living in red

Table 1: Karlan-List Experiment

#0 µ̂0 σ̂2
0 #1 µ̂1 σ̂2

1 π∗

Blue State
(X = 0) 10029 0.90 73.44 19777 0.89 67.74 0.49
Red State
(X = 1) 6684 0.69 57.01 13594 1.06 97.67 0.57

Note: #0 is the number of observations with D = 0, and #1 is the number of observations with D = 1.

states), the variance under treatment one is considerably larger than the variance under treatment
zero. This suggests that red state donors should be treated more, because it is more difficult to
learn the expected outcome under treatment for this subpopulation.

7In the original data, the estimated treatment effect was found to be positive for residents of red states, but not
significantly different from zero for residents of blue states.
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We applied our algorithm without the constraint that the overall treatment probability be 2/3.
The last column of Table 1 gives the overall treatment assignment probabilities calculated by our
procedure. As we expected, the optimal rule gives a higher treatment probability to red state
donors. For both types of donors, the overall optimal treatment probabilities are below 2/3, so the
second stage probabilities will be lower than the overall probabilities. Using our adaptive rule would
lead to a normalized asymptotic variance of 291, compared with 320 from 2/3 random sampling in
the second stage. This is a 9.1% gain in efficiency. Given that the original sample size was 50083,
this implies that we could have achieved the same efficiency with adaptive sampling using a sample
size of 45525, or 4558 fewer observations.

We also considered adaptive treatment assignment under the constraint that the overall treat-
ment probability be 2/3. In this case, we found that using our adaptive rule would lead to a
normalized asymptotic variance of approximately 319, only a 0.04% gain in efficiency. So if we were
constrained to running a second round with 2/3 overall treatment probability, there would be little
lost by continuing to use pure randomization.

3.2 Freedom from Hunger Experiment

For the second example, we use data from an ongoing multi-wave experiment. Freedom from
Hunger, in collaboration with Dean Karlan and Michael Kremer, is testing whether fundraising
letters are more effective when the letters contain anecdotal discussions of the organization’s impact,
or when they contain reference to research and randomized trials to measure impact. The first
wave included a “research” insert, a “story” insert, and a control (no insert). We found noticeable
heterogeneity in response to the treatment for those who had given more than $100 in the past,
compared to those who had given less than $100. Table 2 shows the results from applying our
procedure to the comparison between the research insert and the control.

Table 2: Freedom From Hunger Experiment, Research Insert vs. Control

#0 µ̂0 σ̂2
0 #1 µ̂1 σ̂2

1 π∗

Small Prior Donors
(prior donation < $100) 5044 1.09 42.64 5001 0.85 32.47 0.466
Large Prior Donors

640 5.19 1172.91 637 9.66 3369.29 0.629

We define the control as D = 0 and the research insert as D = 1.

For a second wave, to test “research” versus the control, the optimal proportion assigned to
treatment falls to 46.6% for the small prior donors and rises to 62.9% for the large prior donors,
which represents a significant departure from the first-stage 50% assignment rule. In the actual
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experiment, the organization decided to drop the control group entirely, and test the research versus
the story treatments in the second wave. The results are given in Table 3. For this comparison,
the tool still improves power, but not by as much as it would have for a research versus control
test. The optimal assignment rule is 45.6% to treatment for the large prior donors, and 49.1% for
the small prior donors.

Table 3: Freedom From Hunger Experiment, Research Insert vs. Story

#0 µ̂0 σ̂2
0 #1 µ̂1 σ̂2

1 π∗

Small Prior Donors
(prior donation < $100) 5000 0.84 34.97 5001 0.85 32.47 0.491
Large Prior Donors

641 7.64 4800.38 637 9.66 3369.29 0.456

We define the story insert as D = 0 and the research insert as D = 1.

3.3 Progresa Experiment

For the third example, we use data reported in Gertler, Martinez, and Rubio-Codina (2006) on
the Progresa/Oportunidades experiment in Mexico. The Progresa program randomly allocated
cash and nutritional supplements to families, conditional on children attending school and visiting
health clinics. The Progresa experiment was conducted only once, but similar experiments have
since been conducted or begun in Colombia, Ecuador, Honduras, and Nicaragua.

We focus on one of the outcome measures: number of draft animals owned by the family. The
covariate we examine takes on four values, indicating the size of the family’s agricultural holdings
before the program. In one of their tables, Gertler, Martinez, and Rubio-Codina report sample sizes,
means and standard deviations, and treatment effects broken down by this covariate, so we are able
to calculate optimal treatment assignment probabilities directly from their tables, without requiring
access to the raw data. Table 4 gives some summary statistics from the Progresa experiment, along
with the variance-minimizing treatment probabilities calculated using our method. We find that
our treatment probabilities differ somewhat from the ones used in the original experiment, but the
reduction in variance is quite small, suggesting that the original design was not far from optimal.
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Table 4: Progresa Experiment, Number of Draft Animals

#0 µ̂0 σ̂2
0 #1 µ̂1 σ̂2

1 porig π∗

NoAgAssets
(X = 0) 137 0.41 0.34 110 0.34 0.07 0.55 0.69
Landless
(X = 1) 1451 0.49 0.79 714 0.44 0.37 0.67 0.59
SmallerFarm
(X = 2) 2847 0.68 1.3 1359 0.58 0.63 0.68 0.59
BiggerFarm
(X = 3) 1187 0.83 1.2 728 0.87 1.83 0.62 0.45

Note: porig denotes original treatment probabilities, and π∗ gives the overall treatment probabilities selected
by adaptive rule.
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4 Conclusion

In this paper, we considered the optimal design of a two-stage experiment for estimating an average
treatment effect. We propose to choose the propensity score in the second stage based on the data
from the first stage, in order to minimize an estimated version of the asymptotic variance bound. We
argue, using a double asymptotic approximation, that our proposal leads to an adaptive estimation
procedure for the average treatment effect. Using this double asymptotics leads to a very simple,
intuitive procedure that is easily implemented in practice, and has good theoretical properties.
Extending our approach to more than two time periods is straightforward.

Throughout this paper, we have assumed that the population of interest, the treatments, and
the effects of the treatments are stable across periods, so that it is meaningful to combine the
data from both stages. In some cases, the second stage might be substantially different from the
first stage, for example if the treatments under consideration are modified in later time periods,
or in a replication of a social experiment in a different population. Then, the idea of using earlier
experiments to inform experimental design could still be fruitful, but would require additional
modeling assumptions to link the data across time periods.
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A Proof of Theorem 1

We can write

β̂ − β =
1
n

n∑
i=1

(r1 (Xi)− r0 (Xi)− β)

+
1
n

n∑
i=1

(
Di (Yi − r1 (Xi))

π̂ (Xi)
− (1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)

)

+
1
n

n∑
i=1

(
Dir1 (Xi)
π̂ (Xi)

− (1−Di) r0 (Xi)
1− π̂ (Xi)

− (r1 (Xi)− r0 (Xi))
)

+
1
n

n∑
i=1

(
DiYi
p̂ (Xi)

− DiYi
π̂ (Xi)

)
− 1
n

n∑
i=1

(
(1−Di)Yi
1− p̂ (Xi)

− (1−Di)Yi
1− π̂ (Xi)

)
(3)

Note that

1
n

n∑
i=1

(
Dir1 (Xi)
π̂ (Xi)

− r1 (Xi)
)

+
1
n

n∑
i=1

(
DiYi
p̂ (Xi)

− DiYi
π̂ (Xi)

)

=
∑
x

(r1 (x)− r̂1 (x))
(
p̂ (x)− π̂ (x)

π̂ (x)

)(
1
n

n∑
i=1

1 (Xi = x)

)
(4)

and

1
n

n∑
i=1

(
(1−Di) r0 (Xi)

1− π̂ (Xi)
− r0 (Xi)

)
+

1
n

n∑
i=1

(
(1−Di)Yi
1− p̂ (Xi)

− (1−Di)Yi
1− π̂ (Xi)

)

= −
∑
x

(r0 (x)− r̂0 (x))
(
p̂ (x)− π̂ (x)

1− π̂ (x)

)(
1
n

n∑
i=1

1 (Xi = x)

)
(5)

Furthermore, Lemmas 1 and 2 in Appendix B show that

p̂ (x)− π̂ (x) = Op

(
n−1/2

)
, r1 (x)− r̂1 (x) = Op

(
n−1/2

)
, r0 (x)− r̂0 (x) = Op

(
n−1/2

)
,

which implies that (4) and (5) are op
(
n−1/2

)
. We therefore obtain the following approximation for

(3):

√
n
(
β̂ − β

)
=

1√
n

n∑
i=1

(r1 (Xi)− r0 (Xi)− β)

+
1√
n

n∑
i=1

(
Di (Yi − r1 (Xi))

π̂ (Xi)
− (1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)

)
+ op (1) (6)
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By Lemma 4 in Appendix B, we have

1√
n

n∑
i=1

(
Di (Yi − r1 (Xi))

π̂ (Xi)
− (1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)

)

=
1√
n

n∑
i=1

(
D∗i (Y1i − r1 (Xi))

π∗ (Xi)
− (1−D∗i ) (Y0i − r0 (Xi))

1− π∗ (Xi)

)
+ op (1)

where D∗i := 1 (Ui ≤ π1) for the first sample, and D∗i := 1 (Ui ≤ π∗2 (Xi)) for the second sample.
Therefore, we can write

√
n
(
β̂ − β

)
=

1√
n

n∑
i=1

(β (Xi)− β)

+
1√
n

n∑
i=1

(
D∗i (Y1i − r1 (Xi))

π∗ (Xi)
− (1−D∗i ) (Y0i − r0 (Xi))

1− π∗ (Xi)

)
+ op (1)

or
√
n
(
β̂ − β

)
=
√
n1√
n
× (I) +

√
n2√
n
× (II) + op (1)

where

(I) :=
1
√
n1

n1∑
i=1

(
β (Xi)− β +

D∗i (Yi − r1 (Xi))
π∗ (Xi)

− (1−D∗i ) (Y0i − r0 (Xi))
1− π∗ (Xi)

)

(II) :=
1
√
n2

n∑
i=n1+1

(
β (Xi)− β +

D∗i (Yi − r1 (Xi))
π∗ (Xi)

− (1−D∗i ) (Y0i − r0 (Xi))
1− π∗ (Xi)

)

By the Central Limit Theorem (CLT), we obtain that

(I) d−→ N

(
0, E

[
π1

π∗ (Xi)
2σ

2
1 (Xi) +

1− π1

(1− π∗ (Xi))
2σ

2
0 (Xi) + (β (Xi)− β)2

])
(II) d−→ N

(
0, E

[
π∗2 (Xi)
π∗ (Xi)

2σ
2
1 (Xi) +

1− π∗2 (Xi)
(1− π∗ (Xi))

2σ
2
0 (Xi)

])
Noting that (I) and (II) are independent of each other, and that κπ1 + (1− κ)π∗2 (Xi) = π∗ (Xi)
by definition, we obtain that

√
n
(
β̂ − β

)
converges weakly to a normal distribution with mean
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zero and variance equal to

E

[
κπ1 + (1− κ)π∗2 (Xi)

π∗ (Xi)
2 σ2

1 (Xi) +
1− (κπ1 + (1− κ)π∗2 (Xi))

(1− π∗ (Xi))
2 σ2

0 (Xi) + (β (Xi)− β)2
]

= E

[
1

π∗ (Xi)
σ2

1 (Xi) +
1

1− π∗ (Xi)
σ2

0 (Xi) + (β (Xi)− β)2
]

which proves the theorem.

B Auxiliary Results

Lemma 1 p̂ (x)− π̂ (x) = Op
(
n−1/2

)
Proof: We will write

p̂ (x) =
∑n

i=1Di1 (Xi = x)∑n
i=1 1 (Xi = x)

=

∑n1
i=1Di1 (Xi = x) +

∑n
i=n1+1Di1 (Xi = x)∑n

i=1 1 (Xi = x)

=

∑n1
i=1 1 (Ui ≤ π1) 1 (Xi = x) +

∑n
i=n1+1 1 (Ui ≤ π̂2 (x)) 1 (Xi = x)∑n

i=1 1 (Xi = x)

=
n1

n

1
n1

∑n1
i=1 1 (Ui ≤ π1) 1 (Xi = x)

1
n

∑n
i=1 1 (Xi = x)

+
n2

n

1
n2

∑n
i=n1+1 1 (Ui ≤ π̂2 (x)) 1 (Xi = x)

1
n

∑n
i=1 1 (Xi = x)

(7)

By the law of large numbers and central limit theorem, we would have

1
n1

n1∑
i=1

1 (Ui ≤ π1) 1 (Xi = x) = E [1 (Ui ≤ π1) 1 (Xi = x)] +Op

(
1
√
n1

)
= π1 Pr (Xi = x) +Op

(
1√
n

)
(8)

In order to deal with the second component on the far RHS of (7), we define the empirical process

ξ2 (·, π2) :=
1
√
n2

n∑
i=n1+1

(1 (Ui ≤ π2 (x)) 1 (Xi = x)− E [1 (Ui ≤ π2 (x)) 1 (Xi = x)])

The set of functions {1 (Ui ≤ π2 (x)) 1 (Xi = x)}indexed by π2 (x) is Euclidean, and satisfies stochas-
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tic equicontinuity. We therefore have ξ2 (·, π̂2) = ξ2 (·, π∗2) + op (1), or

1
√
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x)) 1 (Xi = x) =
1
√
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x)) 1 (Xi = x)

+G2
√
n2 (π̂2 (x)− π∗2 (x)) + oP (1) (9)

where
G2 :=

∂

∂π2
E [1 (Ui ≤ π2 (x)) 1 (Xi = x)]

∣∣∣∣
π2(x)=π∗2(x)

Because E [1 (Ui ≤ π2 (x)) 1 (Xi = x)] = π2 (x) Pr (Xi = x), we have G2 = Pr (Xi = x), and hence,

G2
√
n2 (π̂2 (x)− π∗2 (x)) = Op (1) (10)

as long as π̂2 (x) is chosen to be a
√
n-consistent estimator of π∗2 (x). We also have

1
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x)) 1 (Xi = x) = π∗2 (x)E [1 (Xi = x)] +Op

(
1√
n

)
(11)

by the law of large numbers and CLT. Combining (9), (10), and (11), we obtain

1
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x)) 1 (Xi = x) = π∗2 (x) Pr (Xi = x) +Op

(
1√
n

)
(12)

Now note that, by the law of large numbers and CLT, we have

1
n

n∑
i=1

1 (Xi = x) = Pr (Xi = x) +Op

(
1√
n

)
(13)

Combining (7), (8), (12), and (13), we obtain

p̂ (x) =
n1

n

π1 Pr (Xi = x) +Op

(
1√
n

)
Pr (Xi = x) +Op

(
1√
n

) +
n2

n

π∗2 (x) Pr (Xi = x) +Op

(
1√
n

)
Pr (Xi = x) +Op

(
1√
n

)
= κπ1 + (1− κ)π∗2 (x) +Op

(
1√
n

)
Therefore, as long as π̂2 (x) is chosen to be a

√
n-consistent estimator of π∗2 (x), we will have

p̂ (x) = π̂2 (x) +Op (1/
√
n). 2

Lemma 2 r1 (x)− r̂1 (x) = Op
(
n−1/2

)
, r0 (x)− r̂0 (x) = Op

(
n−1/2

)
18



Proof: We only prove that r1 (x)− r̂1 (x) = Op
(
n−1/2

)
. The proof of the other equality is similar,

and omitted. Our proof is based on the equality

r̂1 (x) =
∑n

i=1DiYi1 (Xi = x)∑n
i=1Di1 (Xi = x)

=

∑n1
i=1DiYi1 (Xi = x) +

∑n
i=n1+1DiYi1 (Xi = x)∑n1

i=1Di1 (Xi = x) +
∑n

i=n1+1Di1 (Xi = x)

=
n1
n

1
n1

∑n1
i=1 1 (Ui ≤ π1)Yi1 (Xi = x) + n2

n
1
n2

∑n
i=n1+1 1 (Ui ≤ π̂2 (x))Yi1 (Xi = x)

n1
n

1
n1

∑n1
i=1 1 (Ui ≤ π1) 1 (Xi = x) + n2

n
1
n2

∑n
i=n1+1 1 (Ui ≤ π̂2 (x)) 1 (Xi = x)

We take care of the numerator first. We note that

1
n1

n1∑
i=1

1 (Ui ≤ π1)Yi1 (Xi = x) = E [1 (Ui ≤ π1)Yi1 (Xi = x)] +Op

(
1√
n

)

by the law of large numbers and central limit theorem. Because

E [1 (Ui ≤ π1)Yi1 (Xi = x)] = π1E [Y1i|Xi = x] Pr (Xi = x)

= π1r1 (x) Pr (Xi = x) ,

we obtain
1
n1

n1∑
i=1

1 (Ui ≤ π1)Yi1 (Xi = x) = π1r1 (x) Pr (Xi = x) +Op

(
1√
n

)
. (14)

In order to deal with 1
n2

∑n
i=n1+1 1 (Ui ≤ π̂2 (x))Yi1 (Xi = x), we note that the set of functions

{1 (Ui ≤ π2 (x))Yi1 (Xi = x)} indexed by π2 (x) is Euclidean, and satisfies stochastic equicontinuity.
We therefore have

1
√
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x))Yi1 (Xi = x) =
1
√
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x))Yi1 (Xi = x)

+G3
√
n2 (π̂2 (x)− π∗2 (x)) + oP (1)

where
G3 :=

∂

∂π2
E [1 (Ui ≤ π2 (x))Yi1 (Xi = x)]

∣∣∣∣
π2(x)=π∗2(x)

Because

E [1 (Ui ≤ π2 (x))Yi1 (Xi = x)] = π2 (x)E [Y1i|Xi = x] Pr (Xi = x)

= π2 (x) r1 (x) Pr (Xi = x) ,
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we have G3 = r1 (x) Pr (Xi = x), and hence, G3
√
n2 (π̂2 (x)− π∗2 (x)) = Op (1) as long as π̂2 (x) is

chosen to be a
√
n-consistent estimator of π∗2 (x). We also have

1
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x))Yi1 (Xi = x) = π∗2 (x) r1 (x) Pr (Xi = x) +Op

(
1√
n

)

by the law of large numbers and the central limit theorem. We may therefore conclude that

1
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x))Yi1 (Xi = x) = π∗2 (x) r1 (x) Pr (Xi = x) +Op

(
1√
n

)
(15)

Combining (14) and (15), we obtain

n1

n

1
n1

n1∑
i=1

1 (Ui ≤ π1)Yi1 (Xi = x) +
n2

n

1
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x))Yi1 (Xi = x)

= κπr1 (x) Pr (Xi = x) + (1− κ)π∗2 (x) r1 (x) Pr (Xi = x) +Op

(
1√
n

)
= π∗ (x) r1 (x) Pr (Xi = x) +Op

(
1√
n

)
We can take care of the denominator in a similar manner, and obtain

n1

n

1
n1

n1∑
i=1

1 (Ui ≤ π1) 1 (Xi = x) +
n2

n

1
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x)) 1 (Xi = x)

= π∗ (x) Pr (Xi = x) +Op

(
1√
n

)
and hence, we conclude that

r̂1 (x) =
π∗ (x) r1 (x) Pr (Xi = x) +Op

(
1√
n

)
π∗ (x) Pr (Xi = x) +Op

(
1√
n

) = r1 (x) +Op

(
1√
n

)

2

Lemma 3

1
√
n1

n1∑
i=1

Di (Y1i − r1 (x))
π̂ (x)

1 (Xi = x) =
1
√
n1

n1∑
i=1

1 (Ui ≤ π1) (Y1i − r1 (x))
π∗ (x)

1 (Xi = x) + op (1)
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1
√
n2

n∑
i=n1+1

Di (Y1i − r1 (x))
π̂ (x)

1 (Xi = x) =
1
√
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x)) (Y1i − r1 (x))
π∗ (x)

1 (Xi = x)+op (1)

1
√
n1

n1∑
i=1

(1−Di) (Y0i − r0 (x))
1− π̂ (x)

1 (Xi = x) =
1
√
n1

n1∑
i=1

1 (Ui > π1) (Y0i − r0 (x))
1− π∗ (x)

1 (Xi = x) + op (1)

1
√
n2

n∑
i=n1+1

(1−Di) (Y0i − r0 (x))
1− π̂ (x)

1 (Xi = x) =
1
√
n2

n∑
i=n1+1

1 (Ui > π∗2 (x)) (Y0i − r0 (x))
1− π∗ (x)

1 (Xi = x)+op (1)

Proof: We only prove the first two claims. The proof of the last two claims is identical, and
omitted.

We first note that

1
√
n1

n1∑
i=1

∑
x

Di (Y1i − r1 (x))
π̂ (x)

1 (Xi = x)

=
1
√
n1

n1∑
i=1

∑
x

1 (Ui ≤ π1) (Y1i − r1 (x))

π∗ (x) +Op

(
1√
n

) 1 (Xi = x)

=
1
√
n1

n1∑
i=1

∑
x

1 (Ui ≤ π1) (Y1i − r1 (x))
π∗ (x)

1 (Xi = x) +Op

(
1√
n

)

as long as π̂2 (x) is chosen to be a
√
n-consistent estimator of π∗2 (x), and the latter is an interior

point of (0, 1), which proves the first claim.
In order to prove the second claim, we define the empirical process

ν2 (·, π2) :=
1
√
n2

n∑
i=n1+1

(
Di (Y1i − r1 (x))

π (x)
1 (Xi = x)− E

[
Di (Y1i − r1 (x))

π (x)
1 (Xi = x)

])

where π (x) = κπ1 + (1− κ)π2 (x). Recall that Di = 1 (Ui ≤ π1) for the first sample, and Di =
1 (Ui ≤ π̂2 (Xi)) for the second sample. Because the sets of functions{

1 (Ui ≤ π2 (x))Di (Y1i − r1 (x))
κπ1 + (1− κ)π2 (x)

1 (Xi = x)
}

indexed by π2 (x) is Euclidean, we can use stochastic equicontinuity, and conclude that ν2 (·, π̂2) =
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ν2 (·, π∗2) + op (1), or

1
√
n2

n∑
i=n1+1

1 (Ui ≤ π̂2 (x)) (Y1i − r1 (x))
π̂ (x)

1 (Xi = x)

=
1
√
n2

n∑
i=n1+1

1 (Ui ≤ π∗2 (x)) (Y1i − r1 (x))
π∗ (x)

1 (Xi = x) + F2
√
n2 (π̂2 − π∗2) + op (1)

where
F2 =

∂

∂π2
E

[
1 (Ui ≤ π2 (x)) (Y1i − r1 (x))

κπ1 + (1− κ)π2 (x)
1 (Xi = x)

]∣∣∣∣
π2=π∗2

Because Ui is independent of (Xi, Y1i, Y0i), we have

E

[
1 (Ui ≤ π2 (x)) (Y1i − r1 (x))

κπ1 + (1− κ)π2 (x)
1 (Xi = x)

]
= 0

regardless of the value of π (x). This implies that the derivative F2 is identically zero, from which
the validity of the second claim follows. 2

Lemma 4

1√
n

n∑
i=1

(
Di (Yi − r1 (Xi))

π̂ (Xi)
− (1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)

)

=
1√
n

n∑
i=1

(
D∗i (Y1i − r1 (Xi))

π∗ (Xi)
− (1−D∗i ) (Y0i − r0 (Xi))

1− π∗ (Xi)

)
+ op (1)

Proof: Write

1√
n

n∑
i=1

Di (Yi − r1 (Xi))
π̂ (Xi)

=
∑
x

(√
n1√
n

1
√
n1

n∑
i=1

(
Di (Y1i − r1 (x))

π̂ (x)
1 (Xi = x)

))

+
∑
x

(√
n2√
n

1
√
n2

n∑
i=n1+1

(
Di (Y1i − r1 (x))

π̂ (x)
1 (Xi = x)

))

and

1√
n

n∑
i=1

(1−Di) (Yi − r0 (Xi))
1− π̂ (Xi)

=
∑
x

(√
n1√
n

1
√
n1

n∑
i=1

(
(1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)
1 (Xi = x)

))

+
∑
x

(√
n2√
n

1
√
n2

n∑
i=n1+1

(
(1−Di) (Yi − r0 (Xi))

1− π̂ (Xi)
1 (Xi = x)

))
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The conclusion then follows by using Lemma 3. 2
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