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Abstract

We evaluate the effect of an innovative active labor market policy (ALMP) imple-
mented by the French Public Employment Service (PES) that targeted the vacancy
costs of thousands of small and medium sized firms. We find that this policy increased
labor demand among treatment firms on average: a 24% increase in vacancy postings
with the PES and a 10% increase in permanent contract hires of registered jobseekers,
a large proportion of which were still in employment after 12 months. The increase in
firm labor demand is consistent with a drop in vacancy costs due to a shift in the pre-
screening and filtering burden of the recruitment process away from the firm to the PES
counselor. These results suggest that ALMPs directed at firm recruiting costs may be a
valuable addition to the labor policy toolkit, yet theory and simulations illustrate that
care must be taken when targeting future interventions of this type due to equilibrium
effects.
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1 Introduction

Active labor market policies (ALMPs) have primarily focused on assisting jobseekers through
job-search assistance or training programs. Numerous studies have shown that these pro-
grams can be effective at improving labor market outcomes for participants (Card et al.,
2015). Yet their gains may be limited in equilibrium because they can induce substantial
displacement effects between jobseekers, especially in weak labor markets (Crépon et al.,
2013). In this paper, we explore the effectiveness and potential limitations of a symmetric
intervention that assists firms in their recruitment operations in a slack labor market.

In the seminal Mortensen and Pissarides (1994) equilibrium job search and matching
framework, the recruitment or "vacancy" cost is a key parameter that helps determine both
labor demand and the unemployment rate. The model tells us that if these costs fall it
will stimulate firm labor demand as the threshold for job creation is lowered. Yet we lack,
perhaps surprisingly, evidence of the impact on labor demand of intermediation services that
target vacancy costs.

These costs are related to collecting relevant information about the labor market in order
to generate applicants, screen them, formalize the hire and integrate the new employee into
the firm. Indeed, private labor market intermediation services, such as temp agencies, play
a key role in the functioning of the labor market because they help provide this information
(Autor, 2008). Public Employment Services also offer many different labor market intermedi-
ation services designed to address these costly search frictions. They exploit the information
they have about jobseeker skills, firm needs and how they fit for different possible positions.
Yet these services – and the studies that have evaluated their effectiveness – have focused
on jobseekers.

We address this gap in the literature using a large-scale randomized experiment in which
the French Public Employment Service (PES) prospected thousands of small and medium
sized firms in order to offer them free recruitment services. In line with the theory, our
results indicate that targeting recruitment costs can have strong positive effects on labor
demand. We show that this shock led to a 24% increase in open-ended vacancy postings
with the PES that translated into a 10% increase in permanent contract hires for registered
jobseekers, on average over a six-month treatment period. In addition, these hiring effects
are largely driven by the creation of stable employment (contracts for which jobseekers stay
off the PES roster for at least 12 months).

We find that treatment firm vacancies are similar on a wide range of characteristics
including the wage. The one exception is that treatment firm vacancies posted with the PES
are more likely to require low skills, on average. This suggests that the marginal jobs created
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through the intervention are of lower productivity and profitability post-hiring, but this was
offset by a reduction in the initial recruitment cost. Indeed, we find that vacancies posted
by treatment firms were more likely to benefit from a robust set of pre-selection, or pre-
screening, and filtering services that allowed PES counselors to reduce costs related to the
initial screening phase of the hiring process. In line with the implementation of these types
of services, we find that treatment firms receive significantly less applicants for final review,
that they expend significantly less effort themselves in generating applicants and that their
vacancies are significantly more likely to be filled by counselor-made matches over an 8-week
period. We find little evidence that other parts of the recruitment process were affected
by the intervention such as vacancy drafting and posting, interview support or post-hiring
testing and adaptation services.

We provide a theoretical framework by extending insights from Michaillat (2012) and
Crépon et al. (2013), through which we analyze our results in the presence of equilibrium ef-
fects. Our simulations highlight that labor market tightness and the scale of the intervention
play key roles both in the interpretation of the experimental impacts and in any discussion
of targeting and scale-up of similar interventions. First, we clarify the difference between
the true causal effect of the intervention and what our experimental estimates capture: a
comparison between treated and control firms’ labor demand when aggregate labor market
conditions have potentially changed due to the intervention itself. We highlight the fact that
since the size of the experiment is just a small proportion of all recruiting firms in local labor
markets, indirect effects on control firms should be negligible when measuring the impact on
treated firms. We further argue that this measured effect is actually of great interest as it
measures the shift in labor demand that occurs at constant labor market tightness.

Second, our framework allows us to examine the role of "firm-level displacement effects"
that might mitigate aggregate employment effects and how they evolve as the intervention
scales-up. We show that they are especially important to take into account when underlying
market tightness is high but are less of an issue in slack labor markets, where firms have a
plethora of candidates to choose from. Our simulations also show that displacement effects
are not to be neglected even when the size of the intervention is small, but that they actually
vary little with the size of the intervention. Hence, though our experiment was not designed
to measure spillovers, our results are informative about the potential of firm-based ALMPs
when economic conditions call for labor market intervention.

Finally, our simulations also show that the measured impact should be an increasing
function of labor market tightness. The intuition behind this result is that firms have a
harder and harder time finding applicants for their vacancies when the market is strong.
Accordingly, we test whether hiring impacts are heterogeneous over local-level tightness and

3



find that impacts are similar in both slack and tight markets. The lack of statistically
significant heterogeneous impacts over tightness indicates that firms may incur significant
costs trying to generate applicants in tight markets – where their is strong competition over
candidates – as standard theory predicts, but also when there might be many candidates
to evaluate, the case in slack markets. This suggests that the vacancy cost itself may be a
function of labor market conditions.

While these empirical results are encouraging, they are accompanied by several additional
caveats. First, we observe that the impact on employment creation in permanent contracts
is stable, but find that the impact on vacancy creation with the PES is much more transi-
tory. Second, we find small positive effects on fixed-term/temp vacancy postings with the
PES, but see a reduction in the number of hires of registered jobseekers in these types of
contracts. These results indicate that not all firms were fully confident in counselor appli-
cant recommendations, deciding not to hire the recommended registered jobseeker and then
further refrained from recruiting through the PES, post-intervention. Indeed, a prerequisite
for the effectiveness of pre-screening services is that the PES has the relevant information
about firm needs and how jobseekers can fullfill them. Consistent with this hypothesis, we
find substantial heterogeneity in estimated treatment effects on hiring over the pre-existing
relationship between the PES and firms.

This paper is primarily linked to the literature on the effectiveness of active labor mar-
ket policies, but contributes to several strands in the labor literature. Indeed, job search
assistance policies have been evaluated on many occasions and have most often been found
to be effective and profitable given their low cost (Card et al., 2015). The field has also
tried to better understand and improve the aim and intensity of the job search process using
lessons from behavioral economics (see Babcock et al. (2012); Altmann et al. (2018); Abel
et al. (2018)) or by providing advice to jobseekers about alternative occupations (Belot et al.,
2018). However, these policies can be particularly ineffective in weak labor markets because
displacement effects between jobseekers can substantialy weaken the aggregate employment
effect (Crépon et al., 2013). We contribute by flipping an ALMP’s focus to firms in a market
characterized by a large surplus of jobseekers to study changes in actual job creation.

Our study is thus further related to the literature focusing on hiring processes, especially
when there is heterogeneity in applicants and vacancies. On the one hand, firms may develop
strategies to limit the risk of failing to attract relevant profiles in the applicant pool.1 But
on the other, they might develop strategies aimed at limiting the risk to attract irrelevant
profiles.2 These strategies relate to information about the quality of applicants and how

1This includes offering higher wages (Dal Bó et al., 2013; Ashraf et al., 2018; Deserranno, 2019), or
subsidizing applicant job search in order to improve the quality of the applicant pool (Abebe et al., 2019).

2This includes self-selection mechanisms (Hardy et al., 2016) or screening (Autor and Houseman, 2010),
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costly it is is to acquire this information.3 Our study focuses on public sector intermediation
as another channel through which labor market actors can aquire this information. As
Autor (2008) notes, information provided to the market about vacancies and jobseekers can
be thought of as a public good and intermediation exists because it can supply the relevant
information at a lower cost than firms (or jobeekers) can obtain from their own effort. For
firms, they reduce the fixed costs that are sunk when identifying and screening workers
before the hire. This paper provides the first experimental evidence on how labor market
intermediation impacts this fixed cost, and, in turn, job creation.

Because PES counselors can provide valuable information to firms about an applicant’s
productivity our paper is also linked to the literature studying the stigma associated with
unemployment status. For example, Altmann et al. (2018) inform jobseekers about the
difficulty of convincing a company of their skills as the duration of their unemployment
spell lengthens and several audit studies have been conducted in recent years which vary
the unemployment history of fictitous applicants (Oberholzer-Gee, 2008; Kroft et al., 2013;
Eriksson and Rooth, 2014). Consistent with the growing evidence that firms are strongly
receptive to productivity signals when hiring,4 these studies have shown that unemployment
history can convey a negative productivity signal to employers.5 Our study shows that
screening services offered by the PES are services that firms demand in part because they
may alleviate the uncertainty about hiring the unemployed.

Finally, our study is also related to the growing literature on field experiments with
firms (Bandiera et al., 2011; Quinn and Woodruff, 2019). These studies have mainly been
conducted in developing countries and focus on topics such as access to funding or business
training. More recently some studies have also focused on firm labor demand and the frictions
that firms face in these developing economies.6 To our knowledge, this study is the first

or also the referral process (Burks et al., 2015; Pallais and Sands, 2016) as well as job testing (Autor and
Scarborough, 2008; Alonso, 2018; Bassi et al., 2017)

3See Abebe et al. (2018a) for an example in Ethiopia in which both jobseekers and firms hold inaccurate
beliefs about what to expect from the labor market.

4Several recent papers have shown the positive impacts on labor market prospects of improved ability for
jobseekers to signal their skills. This starts with the simple fact of having being hired in the past Pallais
(2014), tests scores (Carranza et al., 2019), having a reference letter (Abel et al., Forthcoming) or simply
help in writing resumes (Abebe et al., 2018b)). While this improvement can come from the intensity or
direction of search efforts, the audit study in Carranza et al. (2019) or (Cahuc et al., 2019) highlights that
it might also meet a demand for accurate productivity signals from employers.

5They show that being currently unemployed for more than 8-9 months reduces the chances to pass the
first step of the hiring process. Specifically, Kroft et al. (2013) further show that this is consistent with
firms using the long unemployment spell in their screening process and correlate it with a negative signal on
productivity.

6This includes (de Mel et al., 2019) and Alfonsi et al. (2017) who study the long term effect of wage
subsidies, as well as Hardy et al. (2016) and Crépon and Premand (2019) which look at the hiring process of
apprentices. It also relates to studies focusing on the matching process (Bassi et al., 2017; Abebe et al., 2018a)
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randomized control trial addressing labor market frictions faced by firms in a developed
country.

The remaining structure of the paper is as follows. Section 2 describes the context, in-
tervention and experimental protocol. Section 3 provides the theoretical framework through
which we analyze the experimental results. Section 4 describes treatment effects on vacancies
and employment creation. Section 5 presents evidence on potential mechanisms driving the
main effects. Section 6 discusses concerns about equilibrium effects, targeting and scale-up.
Section 7 concludes while the appendices provide supporting information and results.

2 Context and experimental design

Having devoted resources almost exclusively to assisting jobseekers since 2008, the PES,
known as Pôle Emploi, revamped their firm services program in 2015.7 The objective was
to move towards a more balanced approach between aiding jobseekers and firms. The "new
firm services offer" (nouvelle offre de services aux entreprises) was designed to provide free,
comprehensive support to firms for their recruitment needs. The service was based on two
complementary components: (1) prospection and (2) recruitment support (accompagnement
au recrutement). In collaboration with the PES, we integrated the evaluation within a six and
half month pilot phase of the prospection and firm services offer campaign. 7,438 unique firms
participated in the experiment of which half were randomized into treatment. Counselors
in the 129 participating local employment agencies intensively prospected treatment firms
for 3 months starting on September 15th, 2014 while the control group was "sanctuarized"
until March 31, 2015: No proactive action was to be taken towards these firms. Importantly,
control firms were not refused services if they requested it. Counselors were required to
have an “in-depth interview" with treatment firms during this intense period during which
counselors were required to market the recruitment services and make a concerted effort to
encourage firms to create vacancies and gauge the firm’s future recruitment needs. Following
the intensive prospection period, counselors were instructed to continue to nurture relations
with treatment firms. After this six and half month treatment, or "sanctuary" period,
agencies were free to contact and propose services to the control group.

and Bertrand and Crépon (2019) who examine the frictions associated to employers’ imperfect knowledge of
labor laws.

7Pôle Emploi has over a thousand local agencies throughout mainland France and its overseas territories.
In 2008, it was created as the result of a merger between the ANPE (Agence nationale pour l’emploi),
the government agency concerned with job counseling and recruitment services, and l’Assedic (Association
pour l’emploi dans l’industrie et le commerce) the agency that dealt with the distribution and oversight of
unemployment insurance benefits.
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2.1 Sampling and Randomization

The research team collaborated with the Firm Services Department (FSD) at the PES in
the targeting phase of the the intervention. First the FSD chose 129 local employment
agencies to participate in the study. These local employment agencies were chosen so that
all 22 mainland French regions were represented in the sample.8 We then developed a
targeting algorithm to sample firms that were administratively attached to these agencies
so that the intervention could affect low-tightness and low job-finding rate professions.9

Targeting professions in depressed labor markets was made simple by the fact that the
study was conducted at a time when the French labor market was at its weakest point
following the "Great Recession." Figure A.1 in the appendix provides the overall context of
the evaluation. It shows aggregate, detrended quarterly tightness from 2007-2017 using data
from the French Employment Ministry. The highlighted grey area represents the 6-month
sanctuary period of our study. We see that the intensive treatment and sanctuary phases
took place when aggregate tightness was roughly 0.42. This sampling strategy also ensured
that the proportion of treatment firms among all recruiting firms in a local market remained
small.10 We created a priority ranking of professions per agency based on local-level tightness
and job finding probabilities weighted by the stock of jobseekers registered in the agency.
Using a profession-sector correspondence table, we then merged these "priority professions"
to sectors. This gave us a ranked list of sectors at the agency level in which firms were most
likely to recruit within the prioritized professions.

These sector identifiers were then linked to local firms that had between 5-250 employees
and had responded to the PES’ annual survey Besoin en Main d’Oeuvre (BMO) or "Labor
Needs" survey.11 We sampled in BMO 2014, a survey conducted in autumn 2013 on recruit-
ment needs for 2014. Each agency was then given an oversampled list (roughly double) of
"priority firms" to potentially prospect drawn out of the BMO survey (those that were at
the top of the sector rankings). Counselors then selected roughly half of the firms in these
lists using their own local expertise. The final agency-validated list was then sent back to
the research team for randomization.

The sample was stratified by indicators for the agency to which the firm was administra-
tively attached, if the firm had intended to recruit in 2014 and by the number of employees

8French overseas regions and territories were not included in the experiment.
9For example, it was important for the PES that any publicity for the firm-based services made the

distinction that they were provided to help jobseekers get back to work and not simply to help firms recruit.
10Figure A.2 shows the proportion of treated firms among all recruiting firms within a micro-market

(commute-zone×sector).
11Roughly 400,000 firms receive the BMO survey in France each year in order to gauge their recruitment

needs for the following year. The results are entered into an online platform used by the agencies to follow-up
on potential hiring declared in the survey.

7



on the firm’s payroll (in four categories). Within each stratum we randomly assigned treat-
ment with probability 0.5. For strata with odd numbers of firms we re-randomized the last
firm within the stratum with probability 0.5 and did the same for single-firm strata.12 A
total of 8,232 establishments were randomized, yet we found ex post that some of these
establishments were simply branches of the same firm. We thus exclude firms that had mul-
tiple branches included in the experiment due to the possibility of within-company spillover
effects that would dilute treatment effects. Our final sample comprises 7,438 unique firms.
Our empirical specification follows the experimental design.

2.2 Empirical specification

Our baseline specification corresponds to a least squares regression that includes a set of
dummy variables to account for the stratification:

yi = a+ βTi +
S∑
s=1

γs1s,i + ui (1)

We cluster standard errors at the local employment agency level.
We will also analyse the robustness of the average treatment effect along several dimen-

sions. Following Young (2018), we implement randomization inference for the usual student
test, using 10,000 permutations tests. This allows to obtain a consistent estimate of the ex-
act p-value of our test. We also implement ranksum tests (Mann and Whitney, 1947) which
have the advantage of being robust to outliers and, here also, compute their p-values using
randomized inference. We will also estimate a specification that includes baseline covariates.
To select covariates, we implement the double post lasso developed in Belloni et al. (2014) in
order to avoid the risk of specification search. Finally, we compute standard errors without
clustering at the employment agency level.13

2.3 Data

We have access to rich historical administrative data from the PES from January 2014
through January 2016. This includes vacancies posted with the PES, the applications made

12For the analysis, small sized strata are reabsorbed into the closest stratum based on size, local agency
and 2014 recruitment in order to have a minimum of two control and two treatment firms per stratum.

13As described in section 2.1, the sample was selected so that the 129 agencies represented all mainland
regions in France and firms sampled in BMO are administratively attached to a specific agency. Following
(Abadie et al., 2017), these two features of the sampling procedure advocate for using clustered standard
error. However, if we consider the study sample as given and consider design based variability of our
estimates, there is room also to consider non clustered standard errors, as randomization was performed
individually.
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to them and data on hires.
Vacancy data from the PES include their characteristics and the specific recruitment

services applied to them as well as the posting date and type of contract: permanent (open-
ended) or fixed-term which includes interim or temp contracts. The characteristics include
the minimum annual wage, the profession, the required qualification, the minimum required
experience, duration (for fixed-term contracts) and the weekly working hours. It is important
to note a limitation of the vacancy data. We do not have an exhaustive measure of vacancy
creation because the PES is only one, though by far the largest, outlet for vacancies on the
French job market.

Importantly for the mechanisms analysis, we also have the applications, or, potential
matches made through the PES to these vacancies through three different channels: ap-
plications made by jobseekers and potential matches initiated by the firm and by the PES
caseworker. These data are novel in that they provide a measure of search effort put forth by
each of the three actors. Jobseekers are able to apply directly to vacancies posted with the
PES and we can link this application to the vacancy characteristics. Symmetrically, firms
can go into the PES CV bank and solicit an application from a jobseeker to apply to their
vacancy. Counselors search for vacancies for their jobseekers, they then verify the interest
of the jobseeker and either apply on their behalf or generate an official request whereby the
jobseeker is compelled to apply directly to the job.

We have an exhaustive measure of hiring flows through legally required hiring declarations
called DPAE, Déclaration préalable à l’embauche. This is the data we use to build our main
outcome variables to measure changes in firm labor demand: a simple count of hires and the
number of “theoretical” workdays created by and across contract types. All firms are required
to submit a hiring declaration before, or shortly after the contract start date.14 Interim, or,
temp-work contracts also require a declaration, but this is done by the temp agency. Thus,
we exploit a separate data set created by the PES that documents the final employer ("using
employer") of the temp contract and append this to our data set of permanent and fixed-term
contracts.

The hiring declarations data provide precise information about the contract type, its
start and end dates (for fixed-term and temp-contracts) and whether the person hired was a
registered jobseeker with the PES in the 30 days preceding the hiring date. Using the start-
and end-dates for fixed-term and temp-work contracts that ended during the observation
period (September 2014-January 2016) we calculate the number of workdays created within

14Exceptions to the requirement for the hiring declaration concern internships and volunteer contracts and
for the recruitment of private child care professionals and some public sector jobs. Firms that that were
sampled and eventually randomized were unlikely to make hires that do not require a declaration.
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each contract signed in month t. For example, a contract with start date January 15th,
2015 and end date June 30th, 2015 would be counted as five and half months of theoretical
workdays created in January 2015. For permanent contracts and fixed-term/temp-work
contracts that ended after the observation period, we censor the end-date at January 31st,
2016. We do this because these declarations are contract flows and for a large proportion
of them, we have no personal identifiers due to the individual privacy constraints faced by
the PES. Personal identifiers are only available for individuals who were registered with the
PES in the 3 years preceding the date of hire. This "theoretical number of workdays" allows
us to have a standardized measure of employment creation. For example, a week of one-
day (Monday to Saturday) hires for the same individual would be counted as 6 fixed-term
contract flows, but as only one contract if it were a fixed-term contract that ran for the
week. Thus, calculating workdays allows us to compare the overall theoretical employment
creation within and across contract types.

We also use the DPAE to measure the quality of the match. Indeed, even a permanent
contract can be terminated rapidly if there is a poor match.15 To account for this, we
calculate the number of hires in permanent contracts and over all contract types that results
in a new hire staying off the PES register for at least 12 months. We can do this because
we observe when a registered jobseeker is hired and when they eventually fall back into
unemployment (if at all).

Finally, we top-code all administrative data at the 99th percentile of their distribution in
order to make sure our linear estimates are not driven by a few, very large recruiting firms.

2.4 Sample description and compliance

Table 1 shows the distribution statistics and balance checks on important firm characteristics
for which we have data. Each row presents the strata-weighted control group mean and
the treatment group difference estimated using equation (1). All dependent variables are
indicators. Firm characteristics are collected from the BMO survey. For hires, vacancy
postings, contacts and use of PES services, we sum the variables from January 2014 to
August 2014 (our available pre-treatment period) and create an indicator for the sum being
larger than zero.

Examining the baseline characteristics of firms, we see that 73% of firms have less than
26 full time employees and that they are predominantly in the service (42%) and commerce
sectors (25%) while manufacturing and construction make up 28% of the sample. 50% of
firms hired someone in a short-term contract (1 day to 6 months in duration) and 44%

15Actually this can be done quite easily in France during the probation period, see Cahuc et al. (2016).

10



hired at least one employee in a permanent contract during this pre-treatment period. Yet,
relatively few firms posted vacancies with the PES compared to the proportion that hire.
For example, roughly 9% of firms posted a permanent contract vacancy with the PES over
the eight month pre-intervention period for which we have data, while roughly 20% posted a
fixed-term and/or a temp job with the PES. In contrast, we see that a significant proportion
of firms (36%) completed at least one phone call with a PES counselor before the intervention
and that a portion had received potential match proposals for their vacancies through the
PES directly from jobseekers (15.4%) and/or counselors (18.3%).

Across the board we see treatment coefficients close to zero and statistically insignificant
coefficients for all but two of the 25 regressions, indicating that the stratified randomization
was successful. The two significant coefficients from the balance check indicate that treat-
ment group firms are about 1.2 percentage points less likely to post a permanent contract
vacancy with the PES during the pre-period and 1.2 percentage points more likely to have
received a visit from the PES, on average. We’ll see that this is a relatively small difference
compared to impacts, but we’ll also show that results are robust to controlling for pertinent
baseline covariates.

We now turn to empirically examining the intensity of treatment. Figure 1 plots the
monthly cumulative evolution for counselor visits to firms, meetings with the firm at the
agency, and phone calls, from January 2014 through January 2016 using unconditional binned
firm averages. The shaded region denotes the intense treatment period in which all treatment
firms were expected to undergo an in-depth interview with a PES counselor and marketed
the intensive recruitment services. We see an upward linear evolution in all forms of contact
and a sharp discontinuity for the treatment group at the beginning of the intensive phase.
The figures show a jump of about half a visit per firm on average and an increase of about
one and a half more telephone calls made to the treatment group, representing 488% and
152% increases off of the control mean at the end of the intensive period.

A subservice that the PES also elaborated was the promotion, by counselors, of spon-
taneous candidatures. These spontaneous candidate promotions are defined as a counselor
presenting a résumé to an employer in absence of a declared hiring need or vacancy. We
consider this a form of compliance that demonstrates the implication of the counselors by
showing that they studied firm needs and provide profiles that might interest the employer.
We see in the last graphic in Figure 1 that treatment firms received close to one additional
spontaneous candidature, on average, emanating from caseworkers, compared to the control
group which received almost none during the initial months of the treatment.

It is important to note the uninterrupted linear trajectories of the control group. Control
firms were free to contact the PES and request recruitment services and accordingly we do
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not observe a sudden change in the evolution of control group trends: They do not suddenly
go flat starting in September 2014. Thus the counterfactual outcome represents simply what
would have happened in absence of the prospection campaign, not what happens when firms
are severed from PES services. Importantly, we also note that contacts do not substantially
change on average after the sanctuary period end date, March 31, 2015. One could imagine
that when counselors were permitted to proactively encourage the control group firms to
take advantage of PES services, we might see a jump in the contact and service levels of
control group firms after this date. This suggests that the intervention can be thought of as a
temporary intensification of contacts between firms and counselors during which counselors
learned about firms’ recruitment needs while exposing them to the new services that they
could use in their recruitment operations.

2.5 The services that were marketed

We now turn to what the PES really offered the firms. During the intensive and sanctuary
phases, a strong emphasis was put on collecting "useful vacancies" (offres utiles) that would
benefit registered jobseekers by getting them back into stable employment. This entailed a
special focus on encouraging the creation and posting of vacancies corresponding to jobs in
permanent, or open-ended contracts (contrats de durée indeterminée, CDI ) with the PES. A
permanent contract, for which over 80% of registered jobseekers are searching, offers a variety
of advantages to the employee in France. Apart from providing stable employment, having
a permanent contract is key to be able to access the French housing and credit markets. Yet
permanent contracts are stable because it can be very costly for firms to unilaterally break
the contract. It follows that the PES needed to elaborate a robust set of free services to
encourage firms to hire registered jobseekers in permanent contracts.16

The basic service, appui au recrutement, or "hiring support," included,

1. Vacancy drafting support - French law requires that vacancies do not discriminate on
the basis of demographic characteristics such as gender or race and that they contain
adequate job descriptions: a baseline salary offer, skill requirements and working times
and hours.

2. Vacancy posting - Free public vacancy posting online and on agency job boards
16The recent trend in the French labor market (see DARES (2017, 2018)) is that firms are using more

and more fixed-term contracts because hiring in a permanent contract requires costly screening. In a study
conducted by the French Ministry of Labor, 65% of firms declare that they use fixed-term contracts to
provide an initial test of the employee’s performance.
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3. Access to the PES CV bank which allows employers to directly search for candidates
and solicit them to apply to their vacancy

4. Information on local labor market characteristics and on how the vacancy is performing

These services existed in various forms before the intervention, but were renamed and
highlighted for the counselors. In addition, counselors now had the ability to officially tag
which service they applied to the vacancy in the computer system.17 The real innovation that
was marketed to firms during the prospection campaign came in the form of the "reinforced
recruitment services" (accompagnement au recrutement). When a vacancy was selected into
this new category it could then benefit from the following intensive services:

5. Pre-selection, or pre-screening services - Counselors became responsible for generating
a restricted list of candidates that would be then sent to the firm for review.

6. Jobseeker emphasis - This included "Valorization" in which counselors put special
effort into highlighting specific jobseeker attributes that might be unobservable to, or
overlooked by the employer. This could also include an "evaluation" service whereby
the candidate is evaluated through a simulation or immersion in the firm before the
decision to hire is made.

7. Interview support - If the firm needed support in running interviews after candidate
selection the counselors could provide this.

8. Post-hiring and adaptation services - This could take the form of subsidized pre- or
on-the-job training. In addition, the counselors could market special wage subsidized
contracts available for the recruitment of certain types of jobseekers.18

Being tagged for the reinforced recruitment service also ensured that a specific counselor was
assigned to the vacancy and recruitment process. The firm thus benefited from a privileged
contact throughout the recruitment process who was responsible for a successful candidate
search.

Among these reinforced services, pre-selection was considered a key and novel component.
It comprised two additional sub-components:

1. Pre-selection on prerequisites (critère) through which the firm and the counselor
jointly define 1-5 prerequisites on which to pre-screen candidates for the firm.

17Indeed, some of the counselors who were designated to participate had little previous experience providing
services directly to firms due to the strong focus on jobseekers.

18Known as contrat aidé these types of contracts are aimed at stimulating hiring of jobseekers at risk of
long-term unemployment.
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2. Verification (vérification du profil) which entails that a restricted number of appli-
cants get through to the employer (a maximum of 5 to 10 per post) and that they
exactly match the vacancy requirements. This service also encouraged the counselor
to restrict access to the vacancy through additional filtering mechanisms.

With "verification" the PES counselor could recommend that firms choose to have applicants
apply only through the counselor by making the vacancy private (not publicly available
online). Or, if publicly posted, jobseekers could only see the brand or chain name and thus
cannot contact the recruiter directly, thus shifting the pre-screening responsibility entirely
to the counselor. In addition, verification required counselors to negotiate a time frame with
the firm for the delivery of the applicant list and ways in which to adapt the vacancy if it
was generating an insufficient number of applicants.

Hence the package of services marketed during the intervention was primarily directed at
reducing the vacancy costs faced by firms in their recruitment operations. We now elaborate
a conceptual framework to show how labor demand shifts in response to a reduction to these
recruiting costs and how this shift affects equilibrium employment in the market.

3 Conceptual framework

This section will help us to conceptualize the potential congestion externalities present be-
tween firms when a proportion receive recruitment services and will guide our interpretation
of the ensuing empirical results. It builds on Michaillat (2012), using the set of parameter
values used in his simulations (Table A.1), and extends the framework used in Crépon et al.
(2013) to analyze displacement effects between firms. The key features of the model include
both decreasing returns to scale in the production function and sticky wages in the canoni-
cal job search and matching model (Pissarides, 2000).19 We start with a "Beveridge" curve
describing how the employment level n is linked to flows in and out of unemployment in
steady state. This curve depends on the tightness of the labor market θ = v/u, where v is
the stock of available vacancies and u the level of unemployment:

nB(θ) =
1

(1− s) + s/f(θ)
(2)

In this equation nB(θ) is the level of employment when tightness is θ. s is an exogenous
separation rate and f(θ) is the job finding probability of unemployed individuals. f is
derived from a homogeneous matching function f(θ) =M(u, v)/u = θM(θ, 1) = θq(θ). The

19We refer the reader to Michaillat (2012), Sections IA-IIIB, for the derivation and extended discussion of
the basic assumptions behind the equations.
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other piece of the model is a "labor demand" curve that links the marginal productivity
of workers, aαnα−1 to the wage, aγω, and the cost of search a c

q(θ)
(1 − (1 − s)δ). a is the

productivity level used to describe the strength of the economy and α ∈ (0, 1) is the elasticity
of output to employment in a Cobb-Douglas production function. The wage partially adjusts
to productivity shocks through γ ∈ [0, 1). c is the instantaneous vacancy cost which has to
be paid over the search period 1/q(θ) and δ is the discount rate. In a static environment the
firm’s optimality condition is,

αD(0, θ)α−1 = aγ−1ω +
c0
q(θ)

(1− (1− s)δ) (3)

In this equation D(0, θ) and c0 are the demand for labor, as a function of θ, and the instan-
taneous recruitment cost absent the intervention, respectively. Thus firms optimally equate
the marginal product of labor to the wage and the cost of search: c0

q(θ)
(1− (1− s)δ), which

is simply the recruiting cost minus the present discounted value of this cost in the future.
This equality is the job creation condition for firms. Absent the intervention, equations (2)
and (3) jointly determine the level of employment n(0) and labor market tightness θ(0). As
we’ve seen above, the intervention consists of proposing cost-reducing recruitment services to
a share σ of firms, such that c1 < c0 where 1 denotes firms receiving the service.20 Similarly,
employment in these firms satisfies the labor demand equation,

αD(1, θ)α−1 = aγ−1ω +
c1
q(θ)

(1− (1− s)δ) (4)

In this equation the employment level in firms receiving services is denoted D(1, θ). The new
labor demand curve is the combination of the labor demand for both types of firms. Firms
receiving services represent a share σ of all other exiting firms.21 Aggregate demand D(σ, θ)

is simply defined as:
D(σ, θ) = σD(1, θ) + (1− σ)D(0, θ) (5)

20We could alternatively consider that the intervention also improves the matching process. The instan-
taneous probability of a match for vacancies posted in the program when the tightness is θ would write
q1(θ) = ηq(θ) with η > 1. There would be two direct effects in this case. First, there would be an in-
crease in firm labor demand (as with a reduction in c) because of the reduction in the total hiring cost
c(1− (1− s)δ)/q(θ). The second would be to shorten the duration needed to fill a vacancy, shifting the flow
of future hires to the present. The intervention in this case would also involve an increase in the instanta-
neous probability f(θ) of a match for jobseekers and thus a shift of the Beveridge curve. This shift would
actually mitigate the increase in the tightness associated with the intervention and the related displacement
effect. To be conservative on displacement effects, we stick to the model with a change in c but keep in mind
that the intervention could also involve an acceleration of the matching process for treated firms.

21Assuming that firms in the experiment have been randomly drawn from the existing pool of firms in
the market, and represent a share λ of theses firms, and that they have been further randomly assigned to
treatment and control with proportion π, the share of treatment firms in the pool of existing firms is σ = πλ.

15



When vacancy cost reducing services are implemented through the intervention, the labor
demand curve shifts, from D(0, θ) to D(σ, θ) as can be seen from Figure 2a. This figure shows
the upward sloping Beveridge curve and the downward sloping labor demand curves in the
(θ, n) space for both a weak and regular labor market. For exposition, the figure shows
the aggregated demand curve for a large value of σ, but as will be highlighted below, the
intervention proposed services to only a very small share of firms operating in local labor
markets. Labor demand for control firms and firms outside the experiment does not shift
and is determined by equation (3).

Market equilibrium is given by the equality of the aggregate demand and Beveridge
curves:

D(σ, θ) = nB(θ) (6)

The set of equations (3), (4) and (6) jointly determine the new employment level and average
labor market tightness. Labor demand is a decreasing function of labor market tightness,
θ(σ). The Beveridge curve and new labor demand for both types of firms determine the new
equilibrium employment levels. Figure 2b zooms in to detail the firm-level congestion effects
that get us to the new equilibrium. There is first an outward shift in labor demand (AB)
for benefiting firms from D(0, θ) to D(1, θ). This leads to a new aggregate labor demand
curve D(σ, θ) which also shifts outward, with the size of the shift depending on the σ share
of benefiting firms in the market. The new aggregate labor demand curve leads to a new
equilibrium (D) in which tightness increases causing a downward adjustment in the level of
employment in both treated and non-treated firms (respectively C and F) compared to the
employment level with unchanged labor market conditions (B and A).

This framework allows us to conceptualize what the experimental results actually cap-
ture comparing employment demand in treated and control firms within our sample. Our
measured impact cm is FC:

cm(σ) = D(1, θ(σ))−D(0, θ(σ)) (7)

which is different from the true causal impact on the treated EC:

ct(σ) = D(1, θ(σ))−D(0, θ(0)). (8)

The difference is simply the indirect negative indirect impact on “control” firms FE:

ci(σ) = D(0, θ(σ))−D(0, θ(0)). (9)
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The three measures are linked through the simple relation:

cm(σ) = ct − ci. (10)

This leads to the following key points:

• Even if the comparison between treatment and control firms provides only a proxy
for the causal impact, this comparison is informative. It represents the shift in the
demand function only due to the change in the vacancy posting cost c. It is the
true parameter of impact defined from the perspective of the model, compared to the
measured treatment effect which combines changes due to the change in c and the
tightness adjustment.

• The error made using the measured impact cm (FC) instead of the true impact on the
treated ct (EC) is ci (FE) and it is a function of the size of the experiment. Clearly if the
size σ of the experiment is small, the adjustment to aggregate labor market tightness
will be small and the measured and true impacts will be comparable. To illustrate this
point the solid curve (2) in Figure 2c shows the adjustment in labor market tightness
and the ratio of the true (causal) impact to the measured impact (EC/FC) as a function
of the size of the experiment.22 As can be seen, and quite intuitively, the adjustment
in labor market tightness is very small when the size of the experiment is small relative
to the total population of firms. As a result, the difference between the measured and
true impact on the treated is very small. But we can clearly see that the tightness
adjustment and ratio change considerably as the proportion of treated firms grows.
Hence to be able to interpret our estimated impacts, it is very important to examine the
share of firms that received treatment among all firms in the same local market. Figure
A.2 shows the distribution of the proportion of treated firms among all recruiting firms
within a "micro-market" (commute-zone×sector) represented in the experiment.23 We
see that the vast majority of the density is concentrated at very small values of σ.
The median proportion is 2% while 95% of sample firms are in micro markets with a
proportion of 33% or less, hence σ = ε, with ε very small. We are thus confident that
cm(ε) ≈ ct(ε) meaning that our estimates in the next section capture an extremely
"close-to-causal" impact on firm labor demand.

22In the same spirit as what Cahuc and Le Barbanchon (2010) do for jobseeker counseling programs, we
study how equilibrium and true and measured impacts vary with the share of treated firms.

23There are a total of 322 commute zones (zone emploi) in mainland France and Corsica of which 85 are
represented in our sample. We aggregate sectors to 74 categories using the first tier of the French business
activities nomenclature (Nomenclature d’activités française, NAF ). For clarity, these micro markets are
distinct from the strata in which the firms were grouped and randomized.
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We now turn to impacts on vacancy creation and hires to examine whether the interven-
tion did indeed affect treatment firms’ labor demand. We will return to questions concerning
equilibrium effects and scale-up in Section 6.

4 Impacts

4.1 Vacancies

Using our baseline specification, Table 2 displays results for the average treatment effect
on vacancies for permanent contracts and all contract types posted with the Public Em-
ployment Service during the sanctuary period (September 15th, 2014 - March 31st, 2015).
Column 1 shows that the program had a strong and significant impact on vacancy posting
with the PES for jobs in permanent contracts. On average, treatment firms posted 0.047
more vacancies than control firms, a 24% increase relative to the control group mean (0.199
vacancies per firm). This is consistent with the model’s prediction that vacancy cost reducing
services offered to firms led them to open new vacancies. Columns 2-6 investigate whether
the intervention also had an impact on fixed term and temp job postings with the PES. We
see smaller positive effects which are insignificant at conventional levels of statistical signifi-
cance, but the ranksum test on all fixed-term and temp contracts rejects the equality of the
distributions. When looking at total vacancy creation with the PES (column 6) we estimate
a 14% increase, significant at the 5% level. Overall, the intervention led to relatively large
increases in vacancy posting with the PES, and the most robust increase happened for the
most sought after jobs, those in permanent contracts. Hence the program was successful at
one of its core objectives: prospecting firms in order to collect job offers that could translate
into stable employment for jobseekers. Yet we must be quite cautious about interpreting this
as increased vacancy creation overall as we only measure vacancies posted at the PES, and
not all opened vacancies. Indeed a portion or all of this impact could simply be duplication
of vacancies posted elsewhere or a substitution effect where the intervention led firms to post
with the PES rather than through another outlet. Impacts on hires will allow us to infer
whether these results are evidence of increased labor demand in treatment firms, but first
we explore differences in characteristics of vacancies posted by treatment and control firms.

4.2 Characteristics of vacancies

We focus on the characteristics of permanent contract vacancies posted with the PES and
whether we find differences in the types of vacancies that were selected for posting with
the PES by treated firms. Table 3 presents this non-experimental evidence by displaying

18



results from OLS regressions of key job characteristics on a treatment status indicator using
the 1,825 permanent contract vacancies posted with the PES during the sanctuary period.
The vacancy data include the minimum wage posted (usable for 1705 of the vacancies),
hours, the skill and experience requirements as well as the occupation. In columns 1-2 we
explore selection on perhaps the most important search parameter, the posted wage.24 In
the first column we see small and insignificant coefficients on the treatment indicator for the
log of the annual posted wage. In the second column, we predict the wage on a sample of
1,921,148 permanent contract vacancies posted with the PES by firms outside of our sample
during the sanctuary period. We construct this prediction by regressing the log of the posted
annual wage on indicator variables for the number of hours in 8 categories and indicators
for the required experience (in years) in 6 categories. Finally we include 95 indicators for
the profession and the required qualification in 9 levels along with their interactions. Again,
we see a small and statistically insignificant difference using a measure of the wage typically
offered given these observable characteristics. In sum, we do not find evidence that vacancies
created by treatment firms differed on the wage margin.

We see in columns 4-7 of Table 3 that jobs posted by treatment firms are also not
statistically different in terms of the required experience or working hours. In contrast,
we find a large difference in the qualification required for the job (column 3). Treatment
vacancies are roughly 12 percentage points more likely to correspond to low skilled jobs.25

This is an important result because it connects directly with our theory. This evidence
conforms to the idea that the drop in vacancy costs allowed treatment firms to create less
productive jobs. We can clearly see this through the firms optimality condition (equation 3)
in which marginal productivity is equated to the wage and the vacancy cost. To create a job,
a drop in productivity implies a drop in either the wage or a drop in the recruiting cost and
we find no effect on the actual or predicted wage. 26 This suggests that the intervention led
to the creation of jobs with initially lower expected net profitability "on-the-job" but that
this loss was compensated by the drop in the recruitment cost.

Overall, the examination of vacancy characteristics highlights that treatment firm vacan-
cies differed on average from control firm vacancies and that this difference was centered on
the skills required for the job. We find only small and insignificant differences on other di-
mensions, suggesting that there was a trade-off between lower productivity and lower vacancy

24We use the log of the annual minimum posted wage in the vacancy. The max wage is missing for a large
percentage of vacancies.

25In the PES system qualification is categorized in six categories. Low qualification is defined as laborers,
production workers and unqualified employees. High qualification jobs are defined as supervisors, technicians
and management.

26Though purely speculative, the lack of impacts on the offered wage could be linked to the existence of
France’s relatively high minimum wage which would likely be binding for entry level low-skilled work.
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costs that determine the expected net profitability of marginal jobs created by treatment
firms. Given that the structure of the marginal vacancy between groups has changed due
to the intervention, it will be important to account for this when we turn to exploring
mechanisms in section 5.

4.3 Impact on hiring and workdays

We now turn to impacts on our exhaustive measure of hiring outcomes to definitively test
whether the intervention caused a change in firm labor demand. Table 4 provides evidence
of impacts on hiring flows (panel a) and employment creation using our workday measure
(panel b) during the sanctuary period.27 We group the estimates obtained from our baseline
model by type of hire: registered jobseekers are defined as individuals who were registered
with the PES during the 30 days that preceded the contract start-date (columns 1 and 2).28

Non-registered jobseekers thus correspond to people who were not registered with the PES in
the last 30 days before the start of the contract (columns 3 and 4). Lastly, we present results
across all types of jobseekers in columns 5 and 6. For each category of jobseeker, we first
display results for employment creation within permanent contracts and then aggregated
across all contract types, omitting the specific results for fixed-term and temp contracts.

Consistent with the results on vacancies, treatment firms increased their hires in perma-
nent contracts and created significantly more workdays in these contracts (panel (a), column
5). Not surprisingly, this effect is driven by hires of registered jobseekers: The average treat-
ment effect on the number of hires in permanent contracts increases by 0.046, an increase
of 10.2% off the control group mean (panel (a), column 1). This leads to a statistically
significant increase of 17.5 theoretical workdays created for registered jobseekers, on average
per firm (panel b, column 1).

For hires of registered jobseekers in all types of contracts (column 2) we find positive
point estimates that are attenuated (a point we will come back to when we discuss possi-
ble substitution effects), but with much larger standard errors. As a reminder, the hiring
declarations data are simply contract flows of which a significant proportion are very short-
term contracts. For example, roughly 53% of all flows concern fixed or temp contracts of
a week or less. Not surprisingly, the standard deviation of hires over all contracts is 9.9
times as large as that of permanent contracts. This obviously inhibits our ability to detect
a significant effect on overall hiring as the impact on permanent contract hires is diluted.

27We use cumulative hires and theoretical workdays until April 31st, 2015 in order to capture any hiring
processes that started in March.

28The definition of who is a registered jobseeker is not arbitrary. It is defined by the PES and coded
directly into the hiring declaration data.
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In addition the intervention explicitly encouraged the creation of-, and use of services for
permanent contracts to place registered jobseekers in stable employment. We saw that the
effect on vacancy creation was centered on permanent contracts and we find no statistically
significant effects on fixed-term hires of any length (results not reported).

Columns 3 and 4 also show positive differences between treatment and control group
firms on the number of hires and workdays created for non-registered jobseekers. However,
only the effect on workdays in permanent contracts is significant at the 10% level. When
looking at all types of jobseekers together, we can reject the null hypothesis of no effect on
employment creation in permanent contracts (column 5), but are unable to infer an effect
from treatment when aggregating over all types of contracts and jobseekers (column (6)).

4.4 Quality of hires

Next, we address questions related to the quality of the hire by looking at the stability of the
contract. Our previous analysis has shown that the number of hires in permanent contracts
increases, but even hires on a permanent contract can be terminated rapidly if there is a poor
match. To account for this, we calculate the number of hires, in permanent contracts and
over all contract types that result in the new hire staying off the PES register for at least 12
months. We can do this because we observe when a registered jobseeker is hired and when she
or he eventually falls back into unemployment (if at all). We examine impacts on the number
of such hires that occurred during the sanctuary period. Panel (c) in Table 4 presents these
results for registered jobseekers, non registered jobseekers and all jobseekers.29 Again, we
identify a significant impact centered on registered jobseekers hired in permanent contracts,
significant at the 1% level. This represents a 14% increase in these "quality" hires off the
control group mean of 0.33. We also see that the point estimate is essentially the same across
panels (a) and (c) in column 1 suggesting that all of the intervention’s impact on permanent
contract creation lead to stable employment for registered jobseekers. In examining columns
3 and 4 of Panel (c), we see that there are no significant effects on non registered jobseekers
(for whom we have identifiers) and that the point estimates are close to zero (in contrast to
Panel (a)).30 This provides evidence that the program helped firms hire workers that made
it past the formal trial period.31 Yet caution is warranted when interpreting these results as
it captures a mix of a change in the quality of hires that would have happened in treatment

29We have this data for only a subset of non registered jobseekers: those that had been registered at the
PES within the last 3 years. Return to the description of the DPAE data in section 2.3

30Below, we examine the impact on the entire distribution of hires below and present evidence that only
effects on registered jobseekers are robust which is consistent with this result.

31A trial period or période d’essai, typically lasts 1-3 months for permanent contracts in France in which
either side can unilaterally end the contract without consequence.
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firms anyway and the quality of new, marginal hires that occurred in treatment firms due to
the intervention.

4.5 Substitution effects

We now discuss the potential substitution effects induced by the intervention. While we
see an increase in the number of hires of registered jobseekers in permanent contracts, this
increase might come at the expense of a reduction in hires of (1) other jobseekers, (2) in
fixed term contracts and (3) hires that that would have occurred in the future.

We address first whether firms simply substituted between hiring non-registered jobseek-
ers and registered jobseekers proposed by the PES. Table 4 clearly shows that this is unlikely
to be the case. When we consider hires, workdays or employment spells of at least 12 months
in permanent contracts for registered jobseekers, we detect no negative impact. Estimated
impacts are either positive (and significant at the 10% level) or very close to zero. Similarly,
when we consider impacts on all jobseekers, we see a statistically significant increase in each
three variables due to the program (column 5).

Substitution may also occur between contract types as firms move from fixed-term/temp
contracts to permanent contracts. When comparing columns 1 and 2 in Table 4, we see that
the point estimates of impacts on job flows and workdays are attenuated when we aggregate
over all contract types. The difference between impacts in column 2 and 1 for example is
-9.75 and corresponds to the impact on workday creation in fixed term/temp contracts. It
is not significantly different from zero but a ranksum test would reject the assumption that
the distributions in both groups are the same (not reported). Yet, the fact that part of
the increase in the hiring of registered jobseekers in permanent contracts was accompanied
by a reduction of fixed-term/temp contracts does not mean that the initial intent of firms
was a planned substitution. Returning to Table 2, we do not see a similar pattern with
vacancy creation. The intervention is associated with an overall positive increase in vacancy
creation with the PES when aggregating over all contract types (column 6) that is statistically
significant and larger than the impact on permanent contract vacancies alone. We also see in
column 5 that the the point estimate is positive and the ranksum test rejects the hypothesis of
equality in distributions. Rather than a planned substitution, the results appear to indicate
that the intervention was a success to post and fill vacancies in permanent contracts (as
the 1-1 correspondence of impacts on vacancies and hires of registered jobseekers further
suggests), but perhaps only successful in posting and not necessarily filling vacancies for fixed
term/temp jobs. Furthermore, when we turn to examining heterogeneous impacts in section
6.1.2 we’ll find that this result is more consistent with the PES’ inability to place registered
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jobseekers in certain types of firms rather than a subsitution effect between contract types.
Another possibility to consider is that the intervention simply shifted hires that would

have occurred in the future, absent any intervention, to the present. To address this question,
we return to Figure 1. We see that the intervention, and thus the direct reduction in
hiring costs, only took place during a limited window period from 15 September 2014 to 31
December 2014 and was not followed by a recovery period in which counselors turn their
attention to control firms. Thus we could expect a net, positive impact on cumulative hires
and vacancy posting that lasts over time. We explore whether this was the case by calculating
cumulative vacancy and hiring impacts over the entire 16.5 months for which we collected
data (15 September 2014 - 31 January 2016). Figure 4 presents these monthly cumulative
effects on the number of vacancies posted with the PES and hires of registered jobseekers
in permanent contracts.32 Figure 4b shows that impacts on firm-level employment creation
for registered jobseekers appear progressively until April 2015 and then remain stable until
the end of the observation period. The increase in hires in treatment firms clearly occurred
during the sanctuary period and was not followed by a regression towards zero, as a pure
shift of future hires to the present would imply. These results are not consistent with the
assumption that the increase in hires we observe would be the result of the acceleration
of hires that were planned for the future. However, in examining the cumulative effect on
vacancy postings with the PES in Figure 4a, we see positive and significant effects during the
sanctuary period (15 Sep. - 31 Dec. 2014), but we see also they progressively decline starting
May 2015. Although standard errors are large, these results indicate that treatment firms
posted relatively less vacancies than control firms after the sanctuary period. This could be
due to the fact that certain treatment group firms started to refrain from using the PES to
post their vacancies and that subsequent hiring flows were partly operated outside the PES
channel. This would be the case if these firms were dissatisfied with the service provided
through the intervention. We will again return to this point when exploring heterogeneous
treatment effects in section 6.1.2.

4.6 Robustness checks

As a first robustness check, we explore which part of the hiring distribution is affected
by the intervention. Figure 3 presents results on the estimated cumulative distributions
of the number of hires and workdays in permanent contracts for both registered and non-

32A reminder on the interpretation: For month “x” the reported estimate corresponds to the impact on
the total number of vacancies or hires during the period starting on 15 September 2014 and ending on the
last day of the month “x” considered. The interpretation of the bars for vacancies and hires are the same as
the main results previously reported in Tables 2 and 4 which are represented by the bars and CIs for March
2015 (vacancies) and April 2015 (hires).
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registered jobseekers at the end of the sanctuary period. The figures also display p-values for
ranksum permutation tests of the null hypothesis of the same distribution in hires for both
treatment and control firms, using 10,000 permutations. We see that in all four cases the
dependent variable is zero for more than 60% of firms: relatively few firms make permanent
contract hires during the sanctuary period, consistent with the fact that 90% of our sample
consists of firms with less than 50 employees (Table 1).33 The figures confirm the previous
inference on the average treatment effect. For non-registered jobseekers the distributions
in the treatment and control groups are very close throughout the distribution and the
p-values for the ranksum permutation tests are both above 30%. In contrast, we see a
clear difference at the bottom of the distribution for the number of hires and workdays for
registered jobseekers. It clearly shows that the main effect driving the average treatment
effect is due to the hiring of at least one registered jobseeker in a permanent contract. The
robustness of the effects we detect is also confirmed by the ranksum permutation tests which
both have a p-value below 1%.

The robustness of our analysis is further confirmed in Appendix Section A and Table A.2.
Our point estimates are robust to the introduction of additional covariates following Belloni
et al. (2014), the computation of standard errors is not strongly affected by clustering level
and, lastly, inference is not affected by how we estimate the distribution of the test statistics
under the null hypothesis, the detection of a significant impact on hires being confirmed
when using randomization inference (Young, 2018).

5 Potential mechanisms

We now present evidence on some of the potential mechanisms underpinning the vacancy and
hiring effects. We begin by focusing on the services applied to permanent contract vacancies
posted by sample firms. We find that treatment is associated with a significant increase in
the implementation of preselection or, pre-screening and filtering, services. Next, we look at
the potential matches made to vacancies initiated through three channels: counselors, firms
and jobseekers. We show that the intervention was associated with a significant reduction
in the number of candidates finally received by the firm and that firms significantly reduced
their own search effort. This finding is supported by evidence that treatment vacancies are
substantially more likely to be successfully filled by a counselor initiated match.

33This is also consistent with only 57% of firms having hired a permanent employee in the pre-treatment
period (January 1st 2014 - September 15th, 2014)
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5.1 Service provision to vacancies

As highlighted in section 2.5, the vacancy services provided by the PES targeted different
parts of the recruitment process. We group the services into indices that cover four categories:
(1) services directed at the preparation of the vacancy for publication; (2) those that involve,
preselection or, pre-screening and filtering candidates; (3) those that highlight and market
jobseeker attributes to firms, and (4) services aimed at the final screening and post-hiring
phase.34 In order to stay within the experimental sample we sum the services by firm. Hence
firms that did not create a vacancy receive a zero for these outcomes.

Table 5 shows the results. Column 1 replicates the main vacancy creation impact from
column 1 in Table 2 for ease of comparison. Columns 2 and 3 break down this effect into
impacts on the number of vacancies that did not receive services and those that did. We
see that the majority of the vacancy effect is driven by vacancies created with at least one
of the services, roughly 70% of the effect. Columns 4-7 then show impacts on vacancies
created with the different types of service indices. We see small and insignificant effects on
vacancies created with preparation services in column 4. In contrast, we see robust impacts
on vacancies that received prescreening and filtering services: 5.8% of control firms received
this index of services and we detect an increase of 3.4 percentage points (+58%) in the
treatment group.35 In comparing effects and control group means in columns 3 and 5 we
see that essentially all treatment vacancies that were created with services were given the
presreening and filtering services. We also see a large percentage increase in the application
of marketing jobseeker attributes to firms (Emphasize jobseeker) - whereby the counselor
attempts to highlight characteristics that may be overlooked or initially unobservable to the
firm - but the baseline rate is extremely small. Finally, results on the implementation of final
screening and post-hiring services are also small and insignificant. These results indicate that
that the vacancy creation results are driven by vacancies that received PES services and that
these services were primarily based around pre-screening and filtering candidates.

Table A.3 breaks down the indices to better understand what types of frictions these
precreening and filtering services could have targeted, as described in Section 2.5. In col-
umn 3, we see that treatment firms create 0.032 more vacancies with what the PES labels
as the standard preselection service, an increase of 97% off the control group mean. With
this service the counselor takes responsibility for consolidating a list of candidates that are
pre-selected for the firm to examine. We also see that the implementation of the basic

34The same vacancy can receive multiple services.
35Remember that only 20% of firms posted a permanent contract vacancy in the control group hence this

corresponds to a 17 percentage point increase in the probability that a treatment firm vacancy receives this
pre-screening and filtering service.
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pre-selection was accompanied by strong effects on two additional services: special criteria
(column 4) and verification (column 5). Special criteria involves working with the employer
to establish a maximum of 1-5 prerequisites, on which to select candidates that are not
necessarily observable in the vacancy posting. This requires the counselor to get to know
the employer to understand the firms needs. The coefficient and control mean indicates
that treated firms are much more likely to receive this service for their vacancies, +122%.
Treatment vacancies were also much more likely to receive a service called “verification".
This service entails that the profile of the candidates matches exactly with the observable
job requirements in terms of experience, skill and education. But it also requires that coun-
selors restrain the number of candidates so that the employer eventually receives a restricted
number of preselected candidates, usually 5-10 maximum. Importantly, implementation of
verification implies that counselors take control of how firms receive applications. For in-
stance, they can make the vacancy private so that it is not publicly available on the internet,
only in agencies. This implies that organic applications by jobseekers are mechanically re-
duced, diminishing in turn the burden on the firm to filter candidates themselves. We can
test specifically if firms took-up this filtering service by looking at how many vacancies were
made private, i.e. not publicly available (column 6). We see that treatment increases the
proportion of vacancies that were made private by 57%, suggesting that firms wanted to
reduce the number of applicants that would apply directly to the firm. These results provide
evidence that the counselors were charged with finding good candidates to fill the vacancy
and that the number of candidates to review needed to be restrained. This comes from
both the counselor’s direct effort in prescreening candidates and also reducing the number
of organic candidates the firm has to filter and pre-screen.

We find that the intervention was associated with cost-reducing services related to two
fundamental types of frictions faced by firms in their recruitment process. One is the more
typical friction present when the labor market is strong. In this context, firms have trouble
generating candidates because there is higher competition among firms over relatively few
candidates. The other is perhaps more novel, in that firms may have demand for services
that reduce costs associated with having too many candidates to prescreen. To test whether
treatment led to an augmentation or reduction in the number of applicants received by the
firm, we now turn to examining effects on the matching process by looking at potential
matches made to vacancies though the counselor, employer and jobseeker channels.
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5.2 Matches made to vacancies

The PES collects data on the number of applications made to vacancies and also distinguishes
the channel of the application. We described these search effort data in Section 2. They
allow us to measure the search effort of (1) counselors who initiate applications on behalf
of their jobseekers; (2) firms who search for candidates for their vacancies in the PES CV
bank and invite applications to their vacancies; and (3) jobseekers who apply directly to
vacancies. It is also important to reiterate the fact that the PES is only one way in which
firms post vacancies and generate candidates. Hence we do not observe the behavior of the
firm, the vacancies posted or applications received outside of the PES. Nevertheless, the
PES is the largest recruitment platform in France and focusing on vacancies posted with the
PES provides considerable insight on the underlying mechanisms driving the experimental
results.

Since we now look at matching channels to vacancies we use the dataset of permanent
contract vacancies posted with the PES during the 6.5 month sanctuary period. We un-
derscore that this part of the empirical analysis is non-experimental. Indeed, the treatment
increased the number of vacancies posted with the PES and it would therefore be imprudent
to consider the two sets of vacancies as identical: comparisons between the two sets confound
a selection effect linked to new types of vacancies posted and a treatment effect related to
the efficiency of vacancy filling. We thus use inverse probability weighted regressions (IPW)
(Hirano et al., 2003) to try to account for the selection effects. We do not claim this fully
solves the issue of potential differences in the types of vacancies posted by treatment and
control firms, but we believe this makes the comparisons between treatment and control
vacancies more meaningful.36

Table 6 reports the difference in potential match volume to vacancies posted by treatment
and control firms and thus provides evidence on prescreening and search effort costs. The
dependent variable is the total number of applications during the two weeks following the
posting date of the vacancy.37 We see that treatment vacancies receive 3.7 fewer potential
matches overall, on average (column 4) and this effect is driven by the firm and jobseeker

36We predict vacancy selection S into treatment using the observable vacancy characteristics presented in
Table 3, Pr(S = 1 | wage, pred. wage, hours, experience, qualification) =

F
(
β0 + β1w + β2ŵ + β3w ∗ ŵ + β4Low Qual. +

8∑
h=2

γh1(Hoursh = 1) +

6∑
e=2

αe1(Expere = 1)
)

with F being the logistic function. We then run OLS regressions on an indicator for the specific type of service
that can be given to a vacancy on a treatment indicator with observations weighted by T

P̂r(S=1)
+ 1−T

1−P̂ r(S=1)
.

37Appendix Table A.4 shows results at 8 weeks. They are very similar suggesting that the majority of the
"action" on vacancies happens within the first couple of weeks after posting.
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channels. Treatment firm vacancies receive 2.7 less jobseeker applications, on average. This
represents a 39% drop in the number of jobseekers that "organically apply" to a vacancy.
This drop is not due to observable differences in the characteristics of vacancies because
we are using IPW estimates. Rather, this drop is more likely associated with the way
counselors handled the vacancies. The other portion of the overall reduction comes from
the firms themselves. Employers generate roughly 0.84 less potential matches off an average
of 1.1 firm-made potential matches in the control group, This shows that treatment firms
expended significantly less effort in presceening applicants for their vacancies. Interestingly,
we see a small, negative and insignificant treatment effect on the number of potential matches
generated by counselors (column 1). Given that we found large differences in service provision
that entailed that counselors were responsible for generating candidates for the vacancy, we
might expect large positive effects in this channel. This is not the case and further reflects the
nature of the pre-screening and filtering services: The large increase in the use of prescreening
and filtering services implies that counselors generate suitable candidates for the firm, but
also to limit the number of these candidates. Thus this matching channel captures a potential
change in the quantity and quality of the counselor-generated candidates.

This provides evidence that the implemented services had big impacts are the matching
process. Treated firms significantly reduce the amount of effort they expend in searching
for candidates to fill their vacancies as the PES engages in preselecting candidates for them.
In addition, the counselors are able to significantly reduce the number of jobseekers who
apply directly to the firm through filtering mechanisms. Overall, these results indicate that
treated firms were able to reduce their recruitment costs as caseworkers increased their effort.
This substitution between firm and caseworker search effort is an important result and is
consistent with further evidence on successful counselor-made matches.

5.3 Counselor made matches

The PES tracks another important metric related to the counselor initiated applications: its
success rate. Indeed this is one of the main metrics on which counselor performance is evalu-
ated in general.38 We saw previously that there was a negative, but statistically insignificant
difference in the number of applications that came through the counselor matching channel
between treatment and control vacancies. Yet this estimation hides potentially important
information on the efficiency of the counselor’s effort, i.e. the success rate and the speed at
which a successful match is achieved through the counselor channel.

38The successful match rate in the firm and jobseeker channels is subject to much more measurement error
according to discussions with the PES. This is simply because counselors have much less incentive in tagging
the potential match as successful in these other channels.
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Figure 5 illustrates the estimated nonparametric vacancy “survival function” (Kaplan-
Meier) censored at 8 weeks after vacancy creation, adjusted using our inverse propensity
weighting. Failure is defined as having received a successful counselor match to the perma-
nent contract vacancy. The event date is the day the counselor proposed the candidate that
would eventually be hired, not the actual hiring date. We see that treatment and control
survival rates diverge in the very first day of vacancy creation with the difference continuing
to diverge over the observation period. We can formally reject the null of equality of the
survival functions using a Cox regression based test with a p-value of 0.02.39 This result
indicates that counselors were able to propose attractive candidates quickly. To be clear
this result does not tell us that treatment vacancies are filled more quickly or more often,
in general.40 But, assuming that once a successful counselor match happens the vacancy
cannot be filled again, this does provide evidence that treatment vacancies were more likely
to be filled through counselor effort compared to control group vacancies.

Overall, we see that treatment significantly lowered the number of total potential matches
the firm generates or receives organically (jobseeker). And, on average, treatment vacancies
did not receive more or less counselor initiated matches. But we do find evidence that the
counselor matches they do receive are more likely to result in a successful match in the
treatment group. It is important to note that reduction in the firm and jobseeker channels
may be due to two distinct but non exclusive mechanisms. (1) The time to fill treatment
vacancies is reduced as counselors successfully fill vacancies faster. Thus the total number
of potential matches declines mechanically in the other two channels because the vacancy is
simply closed earlier. (2) For a given interval of time, the firm confers the recruitment process
to the counselor, thus reducing its own search for candidates while less “organic" jobseeker
applications get through as the counselor puts in place the different filtering mechanisms
highlighted above. We do not test exactly which effect dominates because the end result is
the same: The c

q(θ)
ratio decreases either through c decreasing as we move from c0 to c1, as

free PES services substitute for firm effort and monetary costs, or through an increase in the
vacancy filling rate, q0(θ) to q1(θ) (return to footnote 20 for further discussion), as matching
efficiency increases. This directly affects the job creation condition, (equation 4), effectively
lowering the marginal productivity threshold at which firms will create a job.

39Log-log and Shoenfeld residual tests (p-value = 0.88) support the proportional hazard assumption.
40Unfortunately, vacancy closing dates, regardless of a successful match, are subject to very high mea-

surement error. If a successful match is not recorded by a counselor, the IT system automatically closes the
vacancy only after three months with no other useful information. Nor do we have data on how and when
vacancies are filled though channels outside the PES.
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6 Implications

We now turn to discussing the experimental evidence in light of the congestion externalities
induced by the experiment and what theory and our data can tell us about the potential for
scaling-up a firm level ALMP of this type. We showed that our experimental results capture
a “close-to-true" measure of a change in treatment firms’ demand for labor because treated
firms represent a very small proportion of all recruiting firms in their respective micro-
markets. We now highlight that we must be more nuanced when (1) discussing employment
effects on aggregate and (2) in what conditions these types of program are more or less
effective. We’ll show that labor market conditions and the PES’ familiarity with firm needs
are important factors to consider when thinking about a wider implementation of this type
of intervention.

6.1 Equilibrium effects and scaling

6.1.1 Equilibrium effects

We made the claim in section 3 that the measure provided by our experiment (FC), is very
close to the direct effect (EC) and that the indirect effect (EF) is negligible (Figure 2b).
This is because our experiment is "marginal": the actual σ, calculated at the commute-
zone×sector (micro-market) is very small as Figure A.2 clearly shows.

However, this does not mean that indirect effects, even if they are very small, do not
matter at the aggregate level. This is because the potential congestion externalities accu-
mulate over a large number of firms. We can illustrate this using the ratio of the impact on
the aggregate number of hired workers per treated firm ED/σ to the measured impact AB
for a marginal experiment:

λ(θ) = lim
σ→0

ED(σ)/σ

AB
(11)

Figure 2d, curve (2), shows this ratio is usually below 1. For example, we saw that at
the moment of the intervention the French labor market was at one of its weakest points
in modern history (Figure A.1), with tightness hovering around 0.42. With this level of
tightness the simulations in Figure 2d show that the aggregate total effect per treated firm
to the direct measured impact ratio (curve 2) is roughly 0.68. This means that for each hire
in a treated firm the real increase in the total workforce in the market will be only 0.68. This
suggests that even with a marginal intervention equilibrium effects can matter. They can be
almost negligible at the individual level but these displacement effects end-up counting for
a substantial share of the measured effect.

Moreover, and as the figure shows, this ratio decreases in the initial tightness of the
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labor market. This ratio is actually the ratio of the slope of the demand curve to the sum
of the slopes of the Beveridge and demand curves. In weak labor markets, or low values
of tightness, the Beveridge curve is flat, thus the tightness adjustment that compensates
the disequilibrium in employment flows caused by a shift in the demand curve and the
placement of some jobseekers is small. Conversely, when the market is tight the shift in the
labor demand curve causes a large disequilibrium in employment flows.

As a result, we do not claim that the experimental impacts reflect the number of new
hires in the labor market per treated firm. Rather, we claim that our experimental results
correctly reflect the shift in firm labor demand associated with benefiting from vacancy cost
reducing services when treatment and control firms share the same market conditions, θ(σ).

6.1.2 Scaling-up

Indeed, our study was designed to answer the question of whether a firm-level ALMP is able
to boost labor demand. It was not designed to analyze questions related to scale-up. But
again our theoretical framework can help shed light on this issue. We find that the size of
the intervention is actually less of an issue than firm level displacement effects.

In returning to Figure 2c the dashed curve shows the ratio of the total aggregated effect
per participating firm ED/σ, which accounts for displacement effects, to the marginal impact
we measure with our marginal experiment (AB): ED(σ)/σAB.41 The figure shows that,
although not constant, the ratio is quite stable. For σ close to zero the ratio is 0.68 and for
σ = 1 it is 0.73. This suggests that, though through the lens of the model, what we learn
from our marginal experiment in term of employment created per treated firm is informative
about what to expect from an intervention implemented at a larger scale.

In sum, our marginal experiment shows that offering hiring services to firms has an
impact on their hires. However the net increase in employment is just a fraction of this impact
because of displacement effects. This fraction is unknown, in the case of our model we obtain
a value of 0.7, but we know that the larger the tightness the smaller this fraction will be.
Moreover, the framework shows that there is a simple close to linear relationship between our
estimated parameters and the aggregated impact when the scale of the intervention varies.

6.2 Evidence on the role of tightness

The model also implies that impacts on treated firms should increase with in tightness. Our
simulations reported in the curve (1) in figure 2d clearly shows this increasing pattern. The

41The curve is obtained assuming a tightness value of 0.42 which corresponds to the average market
conditions in the French economy at the moment the experiment was launched.
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intuition for this result being that in "bad times" firms don’t need help recruiting because
there is a plethora of candidates to choose from because the market is slack. Formally, when
θ decreases, c

q(θ)
tends to zero because vacancies are filled more and more quickly. Thus

the returns to reducing vacancy costs should have considerably smaller effects as tightness
diminishes.

Yet, at a glance, our experimental results run contrary to this. We find that a firm-level
ALMP increased labor demand in a context where times were seriously bad for jobseekers
and firms should have had no trouble in generating applicants.

Of course, one potential caveat is that the markets selected to participate in the experi-
ence may not have been representative of the French labor market at the time. To address
this we calculate tightness again at the micro-market level (commute-zone×sector) to obtain
a more granular indicator of the labor market conditions faced by sample firms at the be-
ginning of the intervention. A plot of the density appears in appendix figure A.3. It shows
that micro-market tightness is representative of overall tightness in the French economy at
that time, with a median value of 0.35.

Furthermore, this heterogeneity allows us to formally test whether the ATE on our main
outcomes depends on the local market tightness that firms actually face. We split the sample
into two sub-samples corresponding to below and above the median tightness, using,

yi = a+ β0Ti × (1− Ii) + β1Ti × Ii + d× Ii +
S∑
s=1

γs1s,i + ui (12)

where β0 and β1 represent the average treatment effects on the two specific sub-populations
defined as I = 0 and I = 1. We then test the null hypothesis H0 : β0 = β1.

Results are presented in Panel (a) of Table 7. In column 1 we see that the point estimate
on vacancy creation with the PES is larger in relatively tighter micro markets, but the p-
value from the test of equal effects by sub-sample is large as well as when comparing the
average treatment effect by quintile of tightness. In addition, ranksum tests strongly suggest
treatment impacts in both types of markets, with a p-value actually smaller in below median
tightness markets.

Regarding vacancies created with prescreening and filtering services, we see very similar
average effects by market conditions, again suggesting that the intervention had vacancy
creation impacts in both slack and relatively tight labor markets. We see a similar story
when turning to our main hiring outcomes in columns 3 and 4, hires of registered jobseekers,
and quality hires of registered jobseekers, respectively. We see a marginally larger point
estimate in low tightness micro markets which reverses when isolating to quality hires. But,
again, we clearly fail to reject the assumption of the same ATE in the two sub-samples or
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by quintile for each hiring outcome. And the related ranksum tests give p-values both under
10% for the equality of distributions between control and treatment firms in both types of
markets.

The take away from this analysis is that the effect appears to be present in relatively
tight markets, as standard theory might suggest, but also in depressed markets. This (non)
result is pertinent as it is in depressed markets that the PES might want to intervene and
it is in those markets that the gap between marginal and scaled interventions is expected to
be the smallest.

A critical question is why firms might benefit from the PES services under varying market
conditions. In a tight market, where firms have trouble attracting candidates, pre-selection
services address frictions simply by generating applicants for the firm to review. In a slack
market, another type of friction may exist in which firms pay high prescreening costs if they
open a vacancy as they have to screen many applicants, qualified or not that apply. These
two types of frictions come from two distinct labor market conditions, but still affect the
c

q(θ)
ratio in the same direction: an increase in prescreening or candidate generating frictions

leads to a larger instantaneous vacancy filling cost because it implies a longer time to find
the (right) candidate and make the hire. It appears that the intervention may have been
beneficial to firms under these different market conditions suggesting that recruitment costs
may be a function of tightness, c(θ): Firms have trouble generating candidates for their
vacancies "when times are good" as benchmark theory would predict, but also when times
are bad due to the number of applications they receive when opening a position.

6.3 Quality of the service offered to firms

Results so far have shown that the services offered by the PES to firms in their recruitment
activities are effective on average. The analysis has shown that the key aspect of these
services has to do with recommendations of jobseekers to firms. Hence, we might wonder
about the ability of the PES to deliver recommendations in an effective way to different
types of firms and this should also be considered when thinking about the implementation
or scale-up of similar interventions.

Delivering effective recruitment services requires that counselors understand the needs
and particularities of the firm. In addition, the pool of jobseekers that counselors would like
to place may be more or less adapted to the needs of firms. This creates another natural
dimension of heterogeneity over which to examine the effectiveness of the intervention. We
test whether treatment effectiveness varies with the PES’ familiarity with the firm (or the
firm’s familiarity with the PES). We build an index based on the various types of contact that
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counselors had with the firm before the intervention to proxy for the counselor’s familiarity
with the firm. The index is based on visits, telephone calls and face-to-face meetings at
the agency that counselors had with the firm in the 8 months preceding the prospection
campaign (January and August 2014). We create an indicator variable equal to one if the
firm had at least one of these contacts. This was the case for 39% of sample firms. We stress
that this evidence is suggestive because this dimension of heterogeneity was not pre-specified
and does not directly derive from the model.42

We again use equation (12) to estimate these heterogeneous treatment effects. Panel (b) of
Table 7 reports results on the main outcomes. We see no discernible heterogeneous effects on
vacancy creation with the PES. Impacts are very similar for both types of firms. In contrast
we find that employment creation is completely centered on firms that were previously in
contact with the PES. We find average treatment effects very close to zero for firms which
were not formerly in contact with PES counselors. But for firms which were, we detect
large significant effects: +0.124 hires of registered jobseekers in permanent contracts and we
reject the null of equal impacts (p-value of 2.1%). Similarly the strong heterogeneous effect is
apparent when isolating quality hires of registered jobseekers. The coefficient on the number
of these hires is 0.116, which is the order of magnitude of the impact on overall hires. These
results suggest that the new services helped the PES collect vacancies from both types of
firms, but that counselors may have only been effective at placing registered jobseekers with
firms they were already familiar with. Another interpretation is that the vacancy effect on
“no contact" firms is not really employment creation, but simply a substitution or duplication
of an existing vacancy. Table A.5 breaks down our main hiring impacts table by this baseline
dimension. Column 2 shows negative point estimates that are relatively large, though not
statistically significant, on registered jobseeker hires in firms that were not in contact with the
PES prior to the intervention. This negative effect on no-contact firms is actually the main
driver of the attenuation in overall impact on registered jobseekers when summing over all
contact types (column 2 in Table 4). Thus, rather than substitution between contract types,
this evidence may be more consistent with the idea that some firms reduced their hires of
registered jobseekers due to the intervention because the candidates proposed by counselors
were ill adapted to these firms needs. In addition, conferring a large part of the recruitment
process to PES counselors would have displaced their normal recruitment operations without
any benefit. Though only speculative, these striking heterogeneous impacts by the PES’
familiarity with the firm implies prudence in the targeting phase of similar interventions. It

42Unfortunately, we were unable to stratify ex ante on this dimension because of data availability in the
sampling phase. Nevertheless, sampling in the BMO database ensured that we had a significant proportion
of firms that had interacted with the PES in the months prior to the intervention. See Section 2.1 for more
details.
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may also speak to the fact that public employment services in general are faced with the
dilemma of finding the right balance between satisfying firms while at the same time fulfilling
their primary responsibility of placing marginalized jobseekers in stable employment.

7 Conclusion

We study the effect of a Public Employment Service’s (PES) intensive firm services program
in which thousands of small and medium sized firms were randomly selected to be prospected
and exposed to a robust set of free, vancancy cost reducing services. The experimental
evidence shows that this intervention positively affected firm labor demand. We find large
positive impacts on permanent contract vacancy postings with the PES which translates into
significant increases in hiring flows and workdays created for registered jobseekers in these
types of contracts. This suggests that active labor market policies (ALMPs) that focus on
firm labor demand may have significant added value in the labor market.

We develop a theoretical framework that allows us to conceptualize the equilibrium effects
and scale-up implications of this type of ALMP that targets the matching frictions that firms
face. The framework highlights that displacement effects are an important concern even
when the intervention is implemented on relatively few firms. However, these displacement
effects are much more moderate in weak labor markets. Finally our model shows that
aggregate employment impacts will be a fraction of the estimated impacts, but are only
weakly dependent on the scale of the intervention.

In exploring mechanisms, we find that treatment-group vacancies received significantly
more candidate prescreening and filtering services and that this was a key component of the
intervention. These services led to a substitution of effort from the firm to the counselor
to generate and filter applications. On average, treatment firms received significantly less
applicants for final screening than control firms. This is consistent with the fact that we do
not detect heterogeneous effects over the underlying level of market tightness. This implies
that pre-screening services may be effective in reducing "candidate generating costs" when
candidates are hard to come by, but also reduce the screening costs associated with large
flows of applications when there are many jobseekers and relatively few jobs.

Overall, our findings show that prescreening costs matter, reflecting recent developments
in the labor literature that have found that a more sophisticated understanding of vacancy
costs is important for understanding firm recruitment behavior under different labor market
conditions.
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Tables

Table 1: Balance check and descriptive statistics

Control Mean Treatment N

(1) (2) (3)

[1em] Firm Characteristics
≤ 10 employees 0.409 -0.00166 7438

(0.00158)
> 10 & ≤ 25 employees 0.322 0.00468 7438

(0.00559)
> 25 & ≤ 50 employees 0.166 -0.00320 7438

(0.00568)
> 50 employees 0.102 0.000189 7438

(0.00201)
Manufacturing 0.112 -0.000185 7438

(0.00711)
Construction 0.171 0.00279 7438

(0.00833)
Commerce 0.249 -0.00775 7438

(0.00955)
Service 0.422 0.00112 7438

(0.0117)
Other sectors 0.0458 0.00401 7438

(0.00578)
Vacancies posted with PES
Fixed-term 0.0763 -0.00824 7438

(0.00648)
Permanent 0.0908 -0.0116∗∗ 7438

(0.00573)
Temporary 0.111 0.00147 7438

(0.00684)
Hires by contract type
Fixed-term < 6 months 0.498 -0.00380 7438

(0.0120)
Fixed-term ≥ 6 months 0.158 0.00216 7438

(0.00822)
Permanent 0.433 0.0110 7438

(0.0125)
Temporary 0.226 -0.00493 7438

(0.00942)
Contact with PES
Calls 0.362 -0.00533 7438

(0.00971)
Visits 0.0554 0.0123∗∗ 7438

(0.00572)
Mail and faxes 0.147 -0.00687 7438

(0.00814)
Emails 0.225 0.00324 7438

(0.00927)
PES matching services
Jobseeker initiated match 0.154 -0.0115 7438

(0.00771)
Counselor initiated match 0.183 -0.0129 7438

(0.00786)
Employer initiated match 0.0236 0.000606 7438

(0.00322)
Successful match 0.0578 -0.000497 7438

(0.00546)
Spontaneous candidature 0.0138 -0.00245 7438

(0.00325)

Note: Rows display results from separate linear probability es-
timates of equation 1 for the given dependent variable. All de-
pendent variables are {0, 1} indicators for which we display the
weighted control group mean. Standard errors, in parentheses, are
clustered at the agency level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .0140



Table 2: Impact on vacancies posted with the Public Employment Service

Fixed-term and temp contracts

Permanent 0-1 month 1-6 months More than 6 months All fixed-term
& temp All

(1) (2) (3) (4) (5) (6)

Treatment 0.047∗∗∗ 0.007 0.014 0.004 0.024 0.071∗∗
(0.017) (0.008) (0.016) (0.005) (0.022) (0.030)

Ranksum p-value 0.001 0.147 0.082 0.288 0.027 0.000
Control Mean 0.199 0.078 0.200 0.037 0.314 0.513
N 7438 7438 7438 7438 7438 7438

Note: This table presents impacts on vacancies posted with the PES during the treatment period (15
September 2014- 31 March 2015) for different contract types. Impacts are estimated using equation 1.
Standard errors are clustered at the agency level (in parentheses). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3: Selection on vacancy characteristics

w ŵ Low Qualif. Experience Hours< 35 Hours= 35 Hours> 35

(1) (2) (3) (4) (5) (6) (7)

Treatment -0.017 -0.005 0.121∗∗∗ -0.156 -0.020 -0.003 0.022
(0.027) (0.028) (0.032) (0.137) (0.024) (0.029) (0.025)

Control Mean 9.918 9.893 0.633 2.169 0.130 0.661 0.209

N 1705 1825 1825 1825 1825 1825 1825

Note: We display characteristics for permanent contract vacancies during the treatment period and their correlation
with treatment status. w and ŵ are the log of the posted minimum yearly wage and the log of its outside sample
prediction obtained using dummy variables for the weekly hours, experience, profession and qualification categories,
respectively, and the interaction of the (profession × qualification) indicators from an OLS regression. Only 1,705
permanent contract vacancies have usable wage data. Experience is defined as the minimum required experience for
the post in years. Low qualification, Hours<35, Hours = 35, Hours>35 are indicator variables. Strata weighted control
group means are also shown. Standard errors are clustered at the agency level (in parentheses). ∗ p < .1, ∗∗ p < .05,
∗∗∗ p < .01
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Table 4: Impact on employment creation

Jobseekers Registered Non-registered All
Permanent All Permanent All Permanent All

(1) (2) (3) (4) (5) (6)

(a) Impact on hires

Treatment 0.046∗∗ 0.033 0.063 0.438 0.109∗∗ 0.472
(0.021) (0.214) (0.040) (0.540) (0.050) (0.654)

Control Mean 0.450 3.963 0.828 9.642 1.278 13.605
N 7438 7438 7438 7438 7438 7438

(b) Impact on workdays

Treatment 17.522∗∗ 7.764 26.243∗ 21.287 43.764∗∗ 29.050
(8.523) (10.547) (15.647) (18.162) (19.879) (23.300)

Control Mean 176.845 295.415 325.488 511.064 502.333 806.479
N 7438 7438 7438 7438 7438 7438

(c) Impact on quality hires

Treatment 0.046∗∗∗ 0.034 -0.002 -0.019 0.045∗∗ 0.012
(0.017) (0.023) (0.013) (0.017) (0.023) (0.032)

Control Mean 0.330 0.562 0.263 0.375 0.596 0.941
N 7438 7438 7438 7438 7438 7438

Note: Panel (a) displays impacts on contract flows. Panel (b) reports impacts on the
number of workdays created within these contracts. In Panel (c), the dependent variable
is defined as contract flows that lead individuals to stay off the PES rosters for at least 12
months after the contract start date. Results are displayed for all hires (column (1) and
(2)), hires of registered jobseekers (column (3) and (4)) and non-registered jobseekers
(column (5) and (6)). Results are presented on permanent contracts and then aggregated
over all contract types, denoted in column headers. For each outcome, the table presents
the average treatment effect estimated using equation 1. Standard errors are clustered
at the local employment agency level (in parentheses). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 5: Impacts on vacancy services

Vacancy creation Vacancy creation with service type

All No services With services Vacancy Prep Prescreening and filtering Emphasize jobseeker Screening and post hiring

(1) (2) (3) (4) (5) (6) (7)

Treatment 0.047∗∗∗ 0.015 0.032∗∗∗ 0.005 0.034∗∗∗ 0.006∗∗∗ 0.001
(0.017) (0.014) (0.007) (0.003) (0.007) (0.002) (0.001)

Control Mean 0.199 0.137 0.062 0.015 0.058 0.003 0.002
N 7438 7438 7438 7438 7438 7438 7438

Note: Columns 1-3 provide impact estimates on all permanent contract vacancies (replicating column (1) of Table 2) then breaks down the impact by
vacancies with and without services. Columns 4-7 show impacts on the number of vacancies created with the specific service index. Standard errors are
clustered at the agency level (in parentheses). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 6: Impact on matching rates by channel

Counselor Firm Jobseeker All

(1) (2) (3) (4)

Treatment -0.261 -0.841∗∗∗ -2.670∗∗∗ -3.707∗∗∗
(0.398) (0.289) (0.997) (1.145)

Control Mean 3.588 1.102 6.862 11.715
N 1705 1705 1705 1705

Note: This table presents inversely propensity weighted (IPW)
regression results for the intervention’s impact on the number
of applicants generated through each potential matching chan-
nel within the first two weeks after vacancy creation with the
PES.
Standard errors in parentheses are clustered at the agency
level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7: Heterogeneous impacts on vacancies and hires

Vacancies Vacancy with services Hires Quality hires

(1) (2) (3) (4)

(a) Tightness
Below median tightness 0.033 0.031∗∗∗ 0.056∗ 0.035

(0.023) (0.008) (0.033) (0.029)
Above median tightness 0.061∗∗ 0.038∗∗∗ 0.038 0.068∗

(0.025) (0.009) (0.031) (0.037)

Same ATE 0.386 0.550 0.711 0.507
Same ATE by quintile 0.613 0.519 0.679 0.794
Ranksum p-value low tightness 0.009 0.000 0.068 0.081
Ranksum p-value high tightness 0.020 0.000 0.087 0.011

(b) Previous contact
No contact 0.043∗∗ 0.031∗∗∗ -0.005 0.008

(0.021) (0.007) (0.024) (0.024)
Contact 0.052∗ 0.038∗∗∗ 0.124∗∗∗ 0.116∗∗

(0.031) (0.012) (0.046) (0.047)

Same ATE 0.819 0.549 0.021 0.045
Ranksum p-value no contact 0.001 0.000 0.435 0.569
Ranksum p-value contact 0.111 0.000 0.005 0.000

Note: The table presents heterogeneous impacts on the main outcome variables (permanent
contract vacancies and hires of registered jobseekers in permanent contracts). Panel (a) presents
results with respect to baseline tightness: whether the firm faces slack (below median) or tight
(above median) market conditions. Tightness is constructed at the (commute zone×sector) level.
Regression results are obtained using equation 12 with the p-values of the test of same average
treatment effects in the two sub-populations and across quintiles. Panel (b) presents results
depending on whether the firm had previous contact with the PES. The contact indicator is
constructed using an index of baseline counselor visits to the firm, telephone exchanges and
meetings at the agency. Results are obtained using equation 12 with the p-value of the test of
same average treatment effects in the two sub-populations displayed below estimation results.
Standard errors in parentheses are clustered at the agency level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figures

Figure 1: Compliance and treatment intensity

Note: Figures illustrate the average number of counselor initiated visits, meetings at the agency, phone calls
and jobseeker CVs spontaneously sent to firms (candidate promotion). The numbers are averaged into bins
corresponding to each month during the observation period for treatment and control firms. The shaded
region indicates the intensive treatment period (September - December 2014) in which caseworkers were
supposed to engage in in-depth interviews with firms to learn about their recruitment needs and market the
services.
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Figure 2: Equilibrium employment and the role of the size of the experiment and labor
market tightness

(a) Equilibrium (b) Equilibrium

(c) Size of the experiment (d) Tightness

(a) Equilibrium from Beveridge and labor demand curves in both weak and regular labor markets. Labor demand correspond to
the aggregation of labor demand with and without the intervention (σ = 35% of firms offered recruitment services).
(b) Zoom on adjustment around equilibrium (σ = 60% of firms offered recruitment services).
Letters in figures (c) and (d) refers to letters in figure (b). AB represents the impact of a marginal experiment - FC and EC
represents respectively the measured effect and the impact on the treated for an experiment of scale σ - ED represents the total
aggregated effect, accounting for the size of the experiment and displacement effects
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Figure 3: Impacts on cumulative distributions of hires and workdays

(a) Hiring Registered Jobseekers (b) Hiring Non-registered Jobseekers

Ranksum 10,000 permutation test p-value: 0.008 Ranksum permutation test p-value: 0.340

(c) Workdays Registered Jobseekers (d) Workdays Non-registered Jobseekers

Ranksum 10,000 permutation test p-value: 0.010 Ranksum 10,000 permutation test p-value: 0.381

Note: These figures present estimates of the difference in the cumulative distribution of hiring outcomes of registered jobseekers in the
control and treatment groups. The solid line provides the average m0 of the outcome variable y in the control group of the dummy
variable d = 1(y ≤ x) with x the value given on the horizontal axis. The dashed line provides the average m1 of d in the treatment
group. The shaded area is delimited by adding to m0 ±1.96se where se is the standard error of the difference between m1 and m0.
Below the figure appears the p-value of ranksum tests computed using 10,000 permutations within assignment strata.
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Figure 4: Cumulative impacts over entire study period

(a) Vacancies (b) Hires

Note: Bars display average treatment effects on cumulative outcomes by month estimated using equation
1. Vertical lines around treatment effects represent 95% confidence intervals. (a) Vacancies posted for
permanent contracts from 15 September 2014 to the month considered. (b) Hiring in a permanent contracts
for registered jobseekers.

Figure 5: Successful counselor match “survival functions"

Note: Curves illustrate nonparametric survival functions for treatment and control group vacancies. Failure
is defined as a successful counselor initiated match and vacancy filling times t are censored at 8 weeks.
We observe t1 if t1 < t2 where tk is the date at which the event "match initiated by actor k" occurs,
k = 1 correspond to a match initiated by the caseworker and t2 a match initiated by the firm or by the
jobseeker. Assuming t1 is independent of t2 and tk has a constant hazard hk, the survival of t1 writes

h2

h1+h2
+ h1

h1+h2
exp(−(h1 + h2)t).
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A Robustness

We first test the robustness of our statistical inference using a different standard error com-
putation. We then implement randomization inference for the usual student test, using
10,000 permutations tests. Finally, we estimate a specification that includes baseline covari-
ates. The set of potential covariates is comprised of all sectors (23 sectors), dummy variables
indicating prior contact with the PES (e-mail, profile promotion, telephone, visits); hires
in fixed-term contracts, permanent contracts and temporary hires; potential matches initi-
ated by the firm, a counselor or jobseeker; vacancies posted for fixed-term and permanent
contracts; and finally local labor market tightness variables in 4 categories. To select the
relevant covariates to be included we implement the double post lasso procedure developed in
Belloni et al. (2014). It has the advantage of transparently selecting the relevant covariates
in a way that avoids specification searching to then introduce them in the regression. The
covariates selected for inclusion in the regression is the joint set of variables selected in two
separate lasso procedures. The first lasso seeks to explain the dependent variable yi while
the second lasso seeks to explain the treatment variable Ti. Strata fixed effects are included
in the analysis for both lasso procedures.43 The specification is thus formulated as,

yi = a+ bTi + selected(x)ic+
S∑
s=1

γs1s,i + ui (13)

Results for all four robustness checks are presented in Table A.2. We consider both hires
and workdays under permanent contracts for registered jobseekers (respecively column (1)
and (2)) and for non registered jobseekers (column (3) and (4)). Panel (a) presents estimated
standard errors either clustered at the local employment agency level (as they appear in table
4) or not clustered, simply obtained using the White-Huber robust formula. We see little
difference between the two standard errors though non clustered standard errors are always
larger due to potential negative correlation in firm hiring outcomes within agencies.

Panel (b) of Table A.2 presents the robustness analysis related to randomization inference.
As shown in Young (2018), using the asymptotic approximation of the distribution of t-
statistics as a standard normal can lead to severe problems with inference. This is especially
the case when the distribution of the outcome variables have heavy tails and when there
are outliers. The use of randomization inference allows us to compute an exact p-value of
the implemented test. This is however at the cost of a switch of the null hypothesis to the
stronger absence of any individual impact H0 : y(0) = y(1). This is in contrast to the former

43We use the stata iterated lasso command presented in (Ahrens et al., 2018), in which the penalization
is computed iteratively from the data.
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assumption of a zero ATE for the t-statistic. The first line in panel (b) provides the p-value
associated with the use of asymptotic distribution (a standard normal variable) and the
p-value associated with randomized inference obtained after 10,000 of permutation within
our strata. As can be seen from the table, the results for randomized inference and the
asymptotic distribution are very similar.44 This does not come as a surprise for registered
jobseekers for which Figure 3 show clear differences. However, for non-registered jobseekers
we expected substantial differences in the two p-values. The similarity of p-values using
the asymptotic distribution or randomized inference tend to show that although differences
detected for non-registered jobseekers only appear at the top of the distribution, they are
not related to outliers.

Last, we examine the robustness of the main results to the inclusion of covariates in panel
(c). We present results of the estimation of equation 12 when we add covariates following
the Belloni procedure as described above. Over the 43 additional variables we consider, very
few of them are selected. Depending on the outcome variable, the lasso procedure selects
the number of vacancies posted and the number of hires in permanent contracts in 2014
before the experiment; the number of hires in fixed-term contracts, as well as two sector
dummy variables. There is almost no impact of adding the additional covariates either on
the estimated coefficients or on their standard errors.

44We note that the p-value from randomized inference is smaller than the p-value obtained using the
asymptotic distribution (it is actually outside the confidence interval calculated using 10,000 permutations).
Thus using the asymptotic distribution is conservative in these cases.
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Table and Figure Appendix

Table A.1: Value of parameters

a Level of demand 1
δ Discount factor 0.999
s Separation rate 0.0095
µ Efficacy of matching 0.233
η Unemployment-elasticity of matching 0.5
γ Real wage flexibility 0.7
c0 Recruiting cost 0.215
α Marginal returns to labor 0.666
ω Steady-state real wage 0.671

Note: Parameter values are taken from ?.

53



Table A.2: Standard error computation and adding covariates

Jobseekers Registered Non-registered
Hires Workdays Hires Workdays
(1) (2) (3) (4)

(a) Clustered and non clustered standard errors
Treatment 0.046∗∗ 17.522∗∗ 0.063 26.243∗

(0.021) (8.523) (0.040) (15.647)
White-Huber robust SEs 0.023 9.224 0.043 16.658

(b) p-values from asymptotics and randomization inference for t-test
p-val 0.034 0.042 0.116 0.096
p-val permutation 0.024 0.037 0.102 0.086

(c) Adding covariates
Treatment 0.047∗∗ 17.812∗∗ 0.062 25.814

(0.022) (8.634) (0.041) (16.367)

Note: Panel (a) displays estimated coefficients from equation 1. Standard errors in
parenthesis are clustered at the local employment agency level. White-Huber robust
non clustered standard errors appear just below.
Panel (b) presents p-values of t=Coef./Std assuming a standard normal distribution
and using permutation tests with 10,000 permutations.
Panel (c) coefficients estimated with additional covariates from equation 13. Co-
variates to include follows the procedure explained in section 2.2. Standard errors
clustered at the agency level. *p < .1, **p < .05, ***p < .01
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Table A.3: Selection on vacancy services provision

Vacancy Prep Prescreening and filtering Emphasize jobseeker Screening and post hiring

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Analysis
of post

Drafting
support Preselection Prerequisites Verification Private Valorization Evaluation Interview

support
Adaptation
support

(a) Vacancies created with [column title] service

Treatment 0.001 0.005∗ 0.032∗∗∗ 0.033∗∗∗ 0.028∗∗∗ 0.030∗∗∗ 0.004∗∗∗ 0.002∗ -0.000 0.001
(0.001) (0.003) (0.005) (0.005) (0.006) (0.006) (0.001) (0.001) (0.001) (0.001)

Control Mean 0.002 0.013 0.033 0.027 0.034 0.053 0.003 0.000 0.001 0.002
N 7438 7438 7438 7438 7438 7438 7438 7438 7438 7438

Note: Panel (a) shows impacts on vacancy creation with the specific service (column header) available to the counselor used to create the services indices in columns 4-7 of Table 5.
Standard errors, in parentheses, are clustered at the agency level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.4: Impact on matching rates by channel over 8 weeks

(1) (2) (3) (4)
Counselor Firm Jobseeker All

Treatment -0.279 -0.858∗∗∗ -2.915∗∗∗ -3.917∗∗∗
(0.645) (0.292) (1.028) (1.326)

Control Mean 4.869 1.136 7.409 13.705
N 1705 1705 1705 1705

Note: This table presents inversely propensity weighted (IPW)
regression results for the intervention’s impact on the number
of applicants generated through each potential matching chan-
nel within the first eight weeks after vacancy creation with the
PES.
Standard errors, in parentheses, are clustered at the agency
level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.5: Heterogenous impact on employment creation by previous contact with PES

Jobseekers Registered Non-registered All
Permanent All Permanent All Permanent All

(1) (2) (3) (4) (5) (6)

(a) Impact on hires
No contact -0.005 -0.270 0.044 -0.349 0.040 -0.619

(0.024) (0.186) (0.051) (0.641) (0.063) (0.718)
Contact 0.124∗∗∗ 0.494 0.090 1.643∗ 0.214∗ 2.138∗

(0.046) (0.410) (0.081) (0.987) (0.112) (1.239)

Same ATE 0.021 0.067 0.662 0.098 0.219 0.057

(b) Impact on workdays
No contact -2.177 -13.618 20.608 10.849 18.431 -2.768

(9.450) (10.677) (20.036) (22.562) (24.754) (26.897)
Contact 47.817∗∗ 40.277∗ 34.276 36.418 82.093∗ 76.696

(18.331) (21.782) (31.871) (35.652) (43.906) (48.713)

Same ATE 0.023 0.029 0.738 0.568 0.252 0.178

(c) Impact on quality hires
No contact 0.001 -0.017 -0.015 -0.032 -0.013 -0.051

(0.018) (0.023) (0.016) (0.020) (0.026) (0.034)
Contact 0.115∗∗∗ 0.112∗∗ 0.017 0.001 0.133∗∗ 0.109∗

(0.037) (0.047) (0.027) (0.030) (0.053) (0.066)

Same ATE 0.007 0.012 0.346 0.378 0.026 0.033

Note: Impacts depending on whether the firm had previous contact with the PES.
The contact indicator is constructed using an index of baseline counselor visits to the
firm, telephone exchanges and meetings at the agency. Results are obtained using
equation 12 with the p-value of the test of same average treatment effects in the two
sub-populations displayed below estimation results. Panel (a) displays impacts on
contract flows. Panel (b) reports impacts on the number of workdays created within
these contracts. Results are displayed for all hires (column (1) and (2)), hires of
registered jobseekers (column (3) and (4)) and non-registered jobseekers (column (5)
and (6)). Results are presented on permanent contracts and then aggregated over all
contract types, denoted in column headers. Standard errors are clustered at the local
employment agency level (in parentheses). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure A.1: Aggregate tightness in France

Note: The figure presents detrended aggregate tightness in the French labor market from the first quar-
ter of 2007 to first quarter of 2017. The highlighted grey region indicates the sanctuary period of the
study. Source: French Ministry or Labor (DARES). URL: https://dares.travail-emploi.gouv.fr/dares-etudes-
et-statistiques/statistiques-de-a-a-z/article/les-tensions-sur-le-marche-du-travail-par-metier
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Figure A.2: Proportion of experiment amoung all recruiting firms

Note: The figure illustrates variation in the proportion of treatment firms within all potentially re-
cruiting firms in local labor markets (commute zone×sector) during the experimental period. The
database of potentially recruiting firms comes from French governments open access data repository. URL:
https://www.data.gouv.fr/fr/datasets/base-sirene-des-entreprises-et-de-leurs-etablissements-siren-siret/
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Figure A.3: Density of tightness within experiment

Note: The figure presents the density of tightness at the commute-zone level. The vertical line corresponds
to the median which is the value used to split the sample into low and high tightness sub-samples.
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