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Abstract

We develop an optimal policy assignment rule that integrates two distinctive approaches commonly used
in economics—targeting by observables and targeting through self-selection. Our method can be used
with experimental or quasi-experimental data to identify who should be treated, be untreated, and self-
select to achieve a policymaker’s objective. Applying this method to a randomized controlled trial on
a residential energy rebate program, we find that targeting that optimally exploits both observable data
and self-selection outperforms conventional targeting for a utilitarian welfare function as well as welfare
functions that balance the equity-efficiency trade-off. We highlight that the Local Average Treatment
Effect (LATE) framework (Imbens and Angrist, 1994) can be used to investigate the mechanism behind
our approach. By estimating several key LATEs based on the random variation created by our experi-
ment, we demonstrate how our method allows policymakers to identify whose self-selection would be
valuable and harmful to social welfare.
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1 Introduction

Targeting has become a central question in economics and policy design. When policymakers face

budget constraints, identifying those who should be treated is critical to maximizing policy impacts. Ad-

vances in machine learning and econometric methods have led to a surge in research on targeting in many

policy domains, including job training programs (Kitagawa and Tetenov, 2018), social safety net programs

(Finkelstein and Notowidigdo, 2019; Deshpande and Li, 2019), energy efficiency programs (Burlig, Knittel,

Rapson, Reguant, and Wolfram, 2020), behavioral nudges for electricity conservation (Knittel and Stolper,

2021), and dynamic electricity pricing (Ito, Ida, and Takana, forthcoming).

Economists generally consider two distinctive approaches to the design of effective targeting. The first

approach is based on observable characteristics. In this approach, policymakers use individuals’ observable

data to explore optimal targeting (Kitagawa and Tetenov, 2018; Athey and Wager, 2021). The second

approach is based on self-selection. In this approach, policymakers consider individuals’ self-selection

as valuable information to target certain individual types (Heckman and Vytlacil, 2005; Heckman, 2010;

Alatas, Purnamasari, Wai-Poi, Banerjee, Olken, and Hanna, 2016; Ito, Ida, and Takana, forthcoming).

A priori, which approach is desirable for policymakers is unclear. For example, referring to the two

distinctive approaches above as “planner’s decisions" and “laissez-faire," Manski (2013) summarizes,

“The bottom line is that one should be skeptical of broad assertions that individuals are better

informed than planners and hence make better decisions. Of course, skepticism of such as-

sertions does not imply that planning is more effective than laissez-faire. Their relative merits

depend on the particulars of the choice problem."

—Charles F. Manski, Public Policy in an Uncertain World

A common view in the literature, reflected in this quote, is that the appropriate approach depends on the

context, and therefore, researchers and policymakers need to decide which to use on a case-by-case basis.

In this study, we develop an optimal policy assignment rule that systematically integrates these two

distinctive approaches commonly used in economics. Consider a treatment from which the social welfare

gains are heterogeneous across individuals and can be positive, negative, or zero, depending on who takes the

treatment. Our idea is that policymakers can leverage both of the observable and unobservable information

by identifying three types of individuals based on their observable characteristics: i) individuals who should
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be untreated, ii) those who should be treated, and iii) those who should choose by themselves whether to

receive the treatment. Once these individual types are identified, policymakers can design a targeting policy

that takes advantage of observed and unobserved heterogeneity in the treatment effect.

We begin by formulating this idea by characterizing a social planner’s optimal policy assignment prob-

lem following the statistical treatment choice literature (Manski, 2004). Thereafter, we highlight that the

Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be used to investigate

the mechanism behind our approach. When individuals have an option to take a treatment, we can define

two individual types. Takers are individuals who would take the treatment and non-takers are those who

would not take the treatment. We demonstrate that the planner’s decision rule can be characterized by the

LATEs for takers and non-takers as well as the average treatment effect (ATE), all conditional on individuals’

observable characteristics.

Thereafter, we show that all of the optimal policy assignment rule, LATEs for takers and non-takers, and

the ATE can be identified and estimated by a randomized controlled trial (RCT) or a quasi-experiment with

three randomly-assigned groups: an untreated group, a treated group, and a self-selection group in which

individuals choose whether to take the treatment. To estimate the optimal policy assignment, we use the

empirical welfare maximization (EWM) method developed by Kitagawa and Tetenov (2018) with policy

trees (Zhou, Athey, and Wager, forthcoming). Further, we demonstarte that the conventional estimation

strategy for the LATE (Imbens and Angrist, 1994) can be applied to the three randomly-assigned groups to

estimate the LATEs for takers and non-takers.

The theoretical framework described above clarifies what variation has to be generated by an RCT or

quasi-experiment to estimate the optimal policy assignment. With this insight, we designed an RCT on a

residential electricity rebate program and implemented a field experiment in collaboration with the Japanese

Ministry of Environment. The policy goal of the rebate program is to incentivize energy conservation in

peak demand hours when the marginal cost of electricity tends to be substantially higher than the time-

invariant residential electricity price. In our context, the social welfare gain from this rebate program can

be heterogeneous across individuals and can be positive, negative, or zero given the fact that there was a

per-household implementation cost. This implies that optimal targeting could improve the social welfare

gain from this program.

We randomly assigned households to an untreated group, a treated group, and a self-selection group

to generate data for our empirical analysis. Using the data from this RCT, we estimate the optimal policy
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assignment, the ATE, and LATEs for takers and non-takers. We begin by presenting substantial hetero-

geneity in the rebate program’s causal impact on peak-hour electricity usage. Customers with different

values of household income, self-efficacy in energy conservation, the number of people usually at home on

weekdays, and electricity usage in the pre-experimental period responded differently to the treatments. This

finding suggests that the optimal policy assignment is likely to differ across household types.

Building upon this insight, we use our framework to quantify the program’s social welfare gain for

each of the five policies: i) all consumers get untreated, ii) all consumers get treated, iii) all consumers self-

select, iv) optimal targeting without self-selection (selection-absent targeting), and v) optimal targeting with

self-selection (selection-driven targeting). Our findings suggest that although the conventional targeting

(selection-absent targeting) outperforms non-targeting policies, the selection-driven targeting substantially

improves welfare relative to the selection-absent targeting. The optimal assignment suggests that 24% of

households should be untreated, 31% should be treated, and 45% should self-select. The selection-driven

targeting would provide an additional 47% of social welfare gain from the rebate program relative to the

selection-absent targeting.

We then use the LATE framework described above to investigate the mechanism behind our optimal

policy assignment. Given the random assignment in our field experiment, we are able to estimate the LATEs

for takers and non-takers conditional on observables. This implies that we can estimate these LATEs for each

of the three groups obtained by the optimal assignment rule. Consider households who would be assigned

to the self-selection group by the optimal assignment rule. For these households, we find that the LATE

for takers is positive and large, and the LATE for non-takers is negative. Hence, self-selection is useful for

the planner to sort customers in this group to get treated or untreated by their choice. In contrast, these

two LATEs for those who are not assigned to the self-selection group suggest that allowing self-selection

hurts social welfare because the planner can obtain higher social welfare gains by assigning them to either

compulsory treatment or compulsory un-treatment.

Our main empirical analysis is based on the conventional utilitarian social welfare function. That is, the

planner’s goal is to optimize the efficiency of the policy, ignoring the equity implications. We emphasize

that our framework is not restricted to the utilitarian social welfare function. To shed light on this point,

we consider a social welfare function that balances the equity-efficiency trade-off. We use a framework

developed by Saez (2002) and used by Allcott, Lockwood, and Taubinsky (2019) and Lockwood (2020).

In this framework, the planner can include Pareto weights into a social welfare function to balance the
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equity-efficiency trade-off. We demonstrate that our method can quantify the optimal targeting for different

degrees of redistribution goals. With this method, the planner can improve the equity of the policy at the

cost of having a lower efficiency gain. We find that the selection-driven targeting still outperforms the

selection-absent targeting even if we take into account redistribution goals.

Related literature and our contributions—Our study is related to three strands of the literature. First,

many recent studies in economics have explored targeting based either on “observables" or “unobservables"

through self-selection. Along with the papers cited earlier in this introduction, recent studies on targeting

based on individuals’ observable characteristics include Johnson, Levine, and Toffel (2020); Murakami, Shi-

mada, Ushifusa, and Ida (forthcoming); Cagala, Glogowsky, Rincke, and Strittmatter (2021); Christensen,

Francisco, Myers, Shao, and Souza (2021); Gerarden and Yang (2021) and studies on targeting based on self-

selection include Dynarski, Libassi, Michelmore, and Owen (2018); Lieber and Lockwood (2019); Unrath

(2021); Waldinger (2021). However, we are not aware of any existing study that builds an algorithm that

systematically integrates these two distinctive targeting approaches to maximize a policy’s social welfare

gain.

Second, the medical statistics literature has studied hybrid sampling designs that combine randomization

and treatment choice by patients. See, e.g., Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003), Long,

Little, and Lin (2008), and references therein. In the medical literature, the sampling process used in our

experiment is referred to as “a doubly randomized preference trial" (Rücker, 1989). An example of a clinical

trial that implements a doubly randomized preference design is the Woman Take Pride study analyzed in

Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003). These studies focus on assessing whether letting

patients choose their own treatment can have a direct causal effect on their health status beyond the causal

effect of the treatment itself. See Knox, Yamamoto, Baum, and Berinsky (2019) for partial identification

analysis in such a context and an application to political science. Double randomized preference trials have

received less attention in economics. The only study we are aware of is Bhattacharya (2013), which uses

double randomization between randomized control trials and planner’s allocation to assess the efficiency of

the planner’s treatment allocations. To our knowledge, no work has analyzed double randomized preference

trial data to integrate targeting by observable characteristics and targeting through self-selection.

Third, our econometric framework builds on the growing statistical treatment choice literature. Gener-

ally assuming discrete characteristics, earlier studies in this literature (Manski, 2004; Dehejia, 2005; Hirano

and Porter, 2009; Stoye, 2009, 2012; Chamberlain, 2011; Tetenov, 2012, among others) formulate estima-
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tion of a treatment assignment rule as a statistical decision problem. The empirical welfare maximization

approach proposed by Kitagawa and Tetenov (2018) estimates a treatment assignment rule by maximizing

the in-sample empirical welfare criterion over a class of assignment rules. This approach can accommodate

multi-armed treatment assignment and a rich set of household characteristics, including continuous char-

acteristics, as is the case for our empirical application. We employ a class of tree partitions considered in

Athey and Wager (2021) and Zhou, Athey, and Wager (forthcoming) as our class of policy rules. Finally,

building on the LATE framework by Imbens and Angrist (1994), we demonstrate that the newly-defined es-

timators, the LATEs for takers and non-takers, can be used to investigate the mechanism behind the optimal

policy assignment in the presence of self-selection. These LATE estimands can be viewed as the complier’s

average treatment effects under a multi-valued discrete instrument, which indexes the three arms randomly

assigned in the experiment.

2 Conceptual Framework

In this section, we present a theoretical framework of optimal policy assignment in the presence of self-

selection. We begin by formulating an optimal policy assignment problem in Section 2.1. In Section 2.2, we

present that the Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be used

to investigate the mechanism behind our approach. In Section 2.3, we describe how to empirically estimate

the optimal policy assignment and LATEs using data from an RCT and the EWM method.

2.1 Optimal Policy Assignment in the Presence of Self-Selection

Consider a planner who wishes to introduce a policy intervention (program) to a population of interest.

Instead of the uniform assignment over the entire population, the planner is interested in targeted assignment

for heterogeneous individuals. A novel feature of our setting is that the planner can control not only who is

compulsorily exposed to the program but also who is given an option to opt-in to the program. Interpreting

an individual’s take-up of the program as their exposure to the treatment, the planner’s goal is therefore

to assign each individual in the population to one of the three arms: compulsorily treated (indexed as T ),

compulsorily untreated (indexed as U ), and self-selection (indexed as S). An individual assigned to T or U

is exposed to or excluded from the program with no opt-out or opt-in option, whereas an individual assigned

to S chooses whether to take it up by themselves.
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The planner’s goal is to optimize a social welfare criterion by assigning individuals to these three arms.

Following the statistical treatment choice literature (Manski, 2004), we specify the planner’s social welfare

criterion to be the sum of individuals’ welfare contributions. An individual’s welfare contribution is a known

function of the individual’s response to being assigned to arm T , U , or S, and the per-person cost of the

treatment. An individual’s welfare contribution may not correspond to their utility. Hence, if an individual

is assigned to S, their utility maximizing decision may not correspond to the choice that maximizes the

planner’s objective.

Let WT , WU , and WS denote the potential welfare contributions that would be realized if an individual

were assigned to T , U , and S.

We assume that the planner observes a pre-treatment characteristic vector for each individual x ∈ X ,

where X denotes the support of the characteristics. Depending on these observable characteristics, the

planner assigns each individual to one of the three arms. Let GT ⊆ X denote a set of the pre-treatment

characteristics x such that any individual whose x belongs to GT is assigned to T . Similarly, let GU and

GS denote sets of the pre-treatment characteristics x such that the individuals with x ∈ GU are assigned to

U and individuals with x ∈ GS are assigned to S, respectively.

We call a partition G := (GT , GU , GS) an assignment policy. G describes how individuals are assigned

to arms according to their observable characteristics x. The realized welfare contribution after assignment

for an individual with characteristics x is either WT , WU , or WS depending on x ∈ GT , x ∈ GU , or

x ∈ GS . Hence, her welfare contribution under the policy G can be written as

∑
j∈{T,U,S}

Wj · 1{x ∈ Gj}. (1)

Viewing individual characteristics and their potential welfare contributions as random variables, the average

welfare contribution under assignment policy G can be written as

W(G) ≡ E

 ∑
j∈{T,U,S}

Wj · 1{X ∈ Gj}

 , (2)

where the expectation is with respect to (WT ,WU ,WS , X).

We defineW(G) as our social welfare function. The social welfare function depends on the assignment

policy G through the post-assignment distribution of individual welfare contributions, which can be manip-
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ulated by changing which individuals are assigned to which arms. This form of social welfare is standard in

the statistical treatment choice literature. Wj is not restricted to any specific functional form. Therefore, the

planner can choose an appropriate social welfare function, including utilitarian and non-utilitarian welfare

functions. In our empirical analysis, we highlight this point in Section 6.

The planner’s objective is to find the optimal assignment policy G∗ that maximizes the social welfare

W(G) over a set of possible assignment policies. If the planner can implement any assignment policy, this

set of assignment policies corresponds to the set of measurable partitions of X . Accordingly, G∗ can be

defined by

G∗ ∈ arg max
G∈G̃
W(G), (3)

where G̃ := {G = (GT , GU , GS) : G is a measurable partition of X}.

It is desirable that individuals with characteristics x be assigned to an arm that provides the largest

conditional mean welfare contribution among {E[Wj |x] : j ∈ {T,U, S}}. In the absence of a self-selection

treatment arm, the planner’s assignment policy is to allocate them to either T or U . The optimal choice is

then determined by comparing E[WT |x] and E[WU |x]. That is, an optimal assignment policy exploits only

heterogeneity in the average welfare contribution conditional on observable characteristics x, which can be

assessed by the planner prior to assignment. We use G† to denote this sub-optimal policy assignment and

call it the selection-absent targeting.

Once individuals are permitted to self-select into treatment, social welfare can be improved beyond the

level attained by the selection-absent targeting. This is because an individual may possess private informa-

tion, which drives or helps predict their response to the treatment, and choose whether to receive treatment

based on it. Importantly, there can be significant heterogeneity in the usefulness of self-selection for the

planner’s objective. Individuals with some values of x choose by themselves the treatment that is optimal in

terms of the social welfare. In contrast, individuals with other values of x may choose treatment that does

not improve social welfare. Thus, an optimal assignment policy that identifies who should be assigned to S

along with T and U could further improve welfare. We use G∗ to denote this optimal policy assignment and

call it the selection-driven targeting. In this case, the planner allocate individuals with x to either T , U , or

S by comparing E[WT |x], E[WU |x], and E[WS |x].
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2.2 Using the LATE Framework to Investigate the Mechanism

In this section, we present a simple model that clarifies how the optimal assignment policy G∗ assigns

T , U , and S to individuals in accordance with individual observable characteristics x. We highlight that the

framework of the Local Average Treatment Effect (LATE) developed by Imbens and Angrist (1994) can be

used to uncover the mechanism behind our approach.

Let DS ∈ {0, 1} denote the individual’s take-up of treatment when assigned to S. The choice DS may

depend on both observable characteristics X and unobservable characteristics (i.e., private information).

We define the LATEs for takers and non-takers as follows, which will be useful statistics to characterize the

mechanism of optimal policy assignment.

Definition 2.1. (The LATEs for takers and non-takers) Let DS ∈ {0, 1} denote an individual’s treatment

take-up when they self-select into treatment and (WT ,WU ) denote the treated and untreated potential

outcomes. We define the LATE for takers by E[WT − WU |DS = 1] and the LATE for non-takers by

E[WT −WU |DS = 0].1

Additionally, we make the following assumption, which is not required for the validity of our method in

Section 2.1 but useful to investigate the mechanism.

WS = WT · 1{DS = 1}+WU · 1{DS = 0}. (4)

An implicit assumption here is that an individual’s response to the treatment is the same irrespective of

whether they self-select themselves or are assigned to it by the planner. This is similar to the exclusion

restriction for instrumental variables, with an indicator for assignment to the self-selection treatment corre-

sponding to an instrumental variable.2

We use p1(x) = P (DS = 1|x) and p0(x) = P (DS = 0|x) to denote the probability of take-up

1An alternative way to define E[WT −WU |DS = 1] and E[WT −WU |DS = 0] is to use the average treatment effects on
the treated (ATT) and the average treatment effects on the untreated (ATU). E[WT −WU |DS = 1] is the ATT for individuals
assigned to group S and E[WT −WU |DS = 0] is the ATU for individuals assigned to group S. In our context, these terms could
create confusion because there is another ATT for those assigned to the compulsory treatment group (T ) and another ATU for those
assigned to the compulsory untreated group (U ). To avoid this confusion, we use the terms defined in definition 2.1.

2This exclusion restriction is not required for the validity of our method in Section 4 because what the planner needs to do is to
compare E[WT |x], E[WU |x], and E[WS |x], and the planner does not need to decompose E[WS |x].
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conditional on x. Using equation (4), E[Wj |x] can be decomposed by,

E[Wj |x] =


p1(x) · E[WT |DS = 1, x] + p0(x) · E[WU |DS = 0, x] if j = S

p1(x) · E[Wj |DS = 1, x] + p0(x) · E[Wj |DS = 0, x] if j ∈ {T,U}.
(5)

We can use equation (5) to investigate how the planner ranks the three assignments (T,U, S) for indi-

viduals with x. First, consider what condition makes the planner prefer S over U . Equation (5) implies

that E[WS −WU |x] = p1(x) · E[WT −WU |DS = 1, x]. Assuming p1(x) > 0, E[WS −WU |x] ≥ 0

if only if E[WT − WU |DS = 1, x] ≥ 0. That is, the LATE for takers has to be greater than or equals

to 0. Second, consider what condition makes the planner prefer S over T . Equation (5) implies that

E[WS − WT |x] = p0(x) · E[WU − WT |DS = 0, x]. Assuming p0(x) > 0, E[WS − WT |x] ≥ 0 if

only if E[WT −WU |DS = 0, x] ≤ 0. That is, the LATE for non-takers has to be less than or equals to 0.

Finally, the condition that makes the planner prefer T over U is trivial such that E[WT −WU |x] ≥ 0.

Combining the three conditions, we can characterize the optimal assignment policyG∗ as defined in equation

(3) that has the form G∗ = (G∗T , G
∗
U , G

∗
S) with

G∗T = {x ∈ X : E[WT −WU |x] ≥ 0 and E[WT −WU |DS = 0, x] > 0},

G∗U = {x ∈ X : E[WT −WU |x] < 0 and E[WT −WU |DS = 1, x] < 0},

G∗S = {x ∈ X : E[WT −WU |DS = 1, x] ≥ 0 and E[WT −WU |DS = 0, x] ≤ 0}.

(6)

Equation (6) implies that the key statistics that characterize the optimal assignment mechanism are the

ATE (E[WT − WU |x]), the LATE for takers (E[WT − WU |DS = 1, x), and the LATE for non-takers

(E[WT −WU |DS = 0, x]), all conditional on observables.

Figure 1 illustrates how an optimal policy G∗ partitions customers, using the two-dimensional charac-

teristic space X as an example. Among the six subspaces from A to F, ATE(x) := E[WT −WU |x] (i.e.,

the ATE) is non-negative only in B, C, and D; ATET (x) := E[WT −WU |DS = T, x] (i.e., the LATE for

takers) is non-negative only in C, D, and E; ATENT (x) := E[WT −WU |DS = U, x] (i.e., the LATE for

non-takers) is non-negative only in A, B, and C. Therefore, according to the optimal policy characterization

(6), B and C are assigned to G∗T ; A and F are assigned to G∗U ; and D and E are assigned to G∗S .

[Figure 1 about here]
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2.3 Estimation

In this section, we describe how data from an RCT allows us to estimate the optimal policy assignment

(G∗) presented in Section 2.1 and LATEs for takers and non-takers described in Section 2.2.

To estimate G∗, we use the EWM method in Kitagawa and Tetenov (2018). Let the RCT data be a

size n random sample of (Wi, Zi, Xi), where Zi ∈ {T,U, S} is individual i’s randomly-assigned treatment

arm, Wi is their observed outcome (welfare contribution), and Xi are their observable pre-treatment char-

acteristics. Letting {WT,i,WU,i,WS,i} denote potential outcomes for individual i, the observed outcome

Wi is subject to Wi =
∑

j∈{T,U,S}Wj,i1{Zi = j}. We assume that {WT,i,WU,i,WS,i, Xi}i=1,...,n are

independently and identically distributed as {WT ,WU ,WS , X}.

Using the RCT data and a class G of policies G, the EWM method estimates an optimal policy G∗ by

maximizing the empirical analogue of the social welfare function over G:

Ĝ∗ ∈ arg max
G∈G
Ŵ(G),

Ŵ(G) ≡ 1

n

n∑
i=1

∑
j∈{T,U,S}

(
Wi · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi ∈ Gj}
)
, (7)

where Ŵ(G) is an empirical welfare function of G that produces an unbiased estimate of the population

social welfare W(G). Observations are weighted by the inverse of the propensity scores, P (Zi = j|Xi),

which are known from the RCT design.

The EWM approach is model-free: It does not require any assumptions or a functional form specification

for the potential outcome distributions. However, the class of policies G must be specified, taking into

account any feasibility constraints for assignment policies. If the class G is too rich, the EWM solution

ĜEWM will overfit the RCT data, and the social welfare attained by the estimated policy falls.

We use a class of decision trees (Breiman, Friedman, Olshen, and Stone, 2017) as G. The main reasons

for this choice are the ease of interpretation of the decision tree based assignment policies and the availability

of partition search algorithms from the classification tree literature. To illustrate the interpretation of a

decision tree-based assignment policy, Figure 2 presents an example decision tree of depth 2 for a two-

dimensional X . By traversing a tree from its top node to a bottom node, we map from x to one of the tree

assignment options. This tree structure generates a partition of the characteristic space X as in Figures 2

(b). A decision tree of depth 2 partitions X into four subspaces, with individuals whose x belongs to each
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subspace assigned to one of the three options. Generally, a decision tree of depth L partitions X into 2L

subspaces.

[Figure 2 about here]

A decision tree of depth L comprises two components: (i) a set of inequalities allocated to the nodes

in the top L − 1 layers and (ii) a set of options allocated to the terminal nodes. Thus searching an optimal

decision tree of depth L corresponds to searching for an optimal combination of inequalities in the nodes in

the top L− 1 layers and an assignment option for each terminal node. For instance, in the example decision

tree of depth 2 in Figure A.1, searching for the optimal tree is equivalent to optimally choosing an X for

each node in the first and second layers (i.e., triplet of indices (j, k, l) ∈ {1, . . . ,K} of the elements of X

whereK denotes the dimension ofX), threshold values (a1, a2, a3) for these same nodes, and an assignment

option (opt1, . . . , opt4) ∈ {T,U, S}4 for each of the bottom nodes. Learning an optimal decision tree of

depth L by the EWM method corresponds to finding a tree partition that maximizes the empirical welfare

function W(Ĝ) over a class G of decision trees of depth L. The complexity of the policy class G can be

controlled by fixing the depth of possible decision trees (see, e.g., Zhou, Athey, and Wager, forthcoming).

In our empirical application in Section 4, we estimate equations (7).

Now, we demonstrate that the LATE for takers (E[WT −WU |Ds = 1, x]) and non-takers (E[WT −

WU |DS = 0, x]) can be also identified and estimated by the RCT data. Under the assumptions that the

experimental assignment Z is randomly assigned and that equation (4) holds, our identification strategy

is the same as that of Imbens and Angrist (1994).3 In what follows, we denote the observed take-up by

D ∈ {0, 1}, which obeys D = 1{Z = T}+1{Z = S,DS = 1}. Furthermore, we suppress the dependence

on x for ease of notation, although all expectations are taken conditional on x.

First, we discuss the identification and estimation of the LATE for takers. As illustrated in Section 2.2,

the ITT between S and U (i.e., E[WS −WU ]) equals to p1 ·E[WT −WU |DS = 1]. Then, the experimental

variation of S and U allows us to identify the ITT and p1 by E[W |Z = S] − E[W |Z = U ] and P (D =

1|Z = S), respectively. As a result, the LATE for takers can be identified by

E [WT −WU |DS = 1] =
E [W |Z = S]− E [W |Z = U ]

P (D = 1|Z = S)
. (8)

3In general, the identification of LATE requires monotonicity assumption. In our application, this assumption is automatically
satisfied by the nature of arms. In fact, if we defineDT ∈ {0, 1} andDU ∈ {0, 1} as the individual’s potential take-up of treatment
when assigned to T and U , it always holds that 1 ≡ DT ≥ DS ≥ DU ≡ 0 since non-compliance is not allowed under T and U .

11



This identification result is simply the application of the conventional LATE framework to experimental

groups S and U . Thus, we can estimate this LATE by running the instrumental variable (IV) estimation

using data from two groups (Z ∈ {S,U}) with the randomly-assigned Z as an instrument for take-up D.

Similarly, the ITT between T and S (i.e., E[WT −WS ]) can be written as p0 · E[WT −WU |DS = 0].

Then, the experimental variation of T and S allows us to identify the ITT and p0 by E[W |Z = T ] −

E[W |Z = S] and P (D = 0|Z = S), respectively. As a result, the LATE for non-takers can be identified by

E [WT −WU |DS = 0] =
E [W |Z = T ]− E [W |Z = S]

P (D = 0|Z = S)
. (9)

As compared to the case of LATE for takers, this result can be regarded as the application of conventional

LATE framework to experimental groups T and S. In our empirical application in Section 5.1, we estimate

equations (8) and (9).

3 Field Experiment and Data

The framework in Section 2 highlighted that data from an RCT can be used to estimate the optimal

policy assignment in the presence of self-selection. In this section, we describe how we designed and imple-

mented such an RCT in the context of a residential energy rebate program in Japan. Section 3.1 provides an

overview of the field experiment. Section 3.2 presents summary statistics and balance test results. Section

3.3 examines heterogeneity in the treatment effects and self-selection. Substantial heterogeneity found in

this analysis suggests that optimal targeting that we empirically investigate in Section 4 could substantially

improve the policy outcome.

3.1 Field Experiment

We conducted our field experiment in the summer of 2020 in collaboration with the Ministry of the

Environment, Government of Japan in the Kansai (around Osaka) and Chubu (around Nagoya) regions of

Japan. To include a broad set of households, we invited customers in these regions both by letter and email

with a participation reward with 2000 JPY (≈ 20 USD , given 1 ¢ ≈ 1 JPY in the summer of 2020). A

total of 4446 customers pre-registered for the experiment. Non-residential customers, those who canceled

their electricity contracts in the middle of the experiment, and those who have incomplete high-frequency
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electricity usage data, were excluded. This left us with 3870 residential customers. That is, our experiment

was an RCT for households who agreed to participate in the experiment, which is common in the literature

of residential electricity demand (Wolak, 2006, 2011; Ito, Ida, and Takana, forthcoming). Therefore, the

external validity of the sample is an important question, which we explore in Section 3.2.4

We randomly assigned the 3870 households to one of the following three groups: untreated group (U ),

treated group (T ), and self-selection group (S).5

Untreated group (U ): 1577 customers did not participate in the rebate program.

Treated group (T ): 1486 customers participated in the rebate program.

Selection group (S): 807 customers were asked to choose whether they intended to participate in the

rebate program.

The rebate program in our experiment is called the “peak-time rebate" (PTR) program (Wolak, 2011).

The fundamental inefficiency in electricity markets in many countries is that residential electricity prices do

not fully reflect the time-varying marginal cost of electricity. In peak hours, the time-invariant residential

price tends to be too low relative to time-variant marginal cost. This creates a text-book example of short-

run deadweight loss. The goal of peak-time rebate programs is to lower this deadweight loss by setting the

rebate incentive close to the marginal cost.

It is well known that the PTR is likely to be inferior to simply setting the hourly prices equal to c for

two reasons (Wolak, 2011). First, although the PTR provides customers a marginal incentive to reduce their

electricity usage, it does not “penalize" the customers if they increase their usage. Second, if a policymaker

does not carefully set the “baseline usage", which we discuss below, customers may have an incentive to

manipulate their baseline usage to obtain a rebate. This is why economists tend to consider that dynamic

pricing is a better option than the PTR (Wolak, 2011; Ito, Ida, and Takana, forthcoming).

However, it is often difficult or impossible for policymakers to implement dynamic pricing for broad

population because of political feasibility. The PTR is politically favorable in many countries because

participating customers do not lose money, although they have a marginal incentive to conserve. This is why

the Japanese government, the partner of our experiment, intended to study the PTR rather than dynamic
4We obtained an Institutional Review Board approval from the ethics committee of the Inter-Graduate School Program for

Sustainable Development and Survivable Societies, Kyoto University. Furthermore, We registered the experiment in the AEA RCT
Registry (Ida, Ishihara, Kido, and Sasaki, 2020).

5The random assignment process was designed such that U : T : S= 2: 2: 1. A relatively large number of households were
assigned to the U and T groups in consideration that the data for these groups was going to be used for other studies.
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pricing in this research project, and in fact implemented a similar policy in reality in the summer of 2022.6

The objective of our PTR was to reduce residential electricity consumption in the system peak hours (be-

tween 1 pm and 5 pm) during the week of August 24 to 30, 2020. To prevent customers from manipulating

their baseline usage, we did not tell them how the baseline was calculated until August. The baseline usage

is each customer’s average electricity usage during the peak hours from July 1 to 31. During the treatment

week (from August 24 to 30), customers who enrolled in the rebate program received a rebate that was equal

to the energy conservation during the peak hours relative to the baseline (kWh) times 100 JPY per 1kWh.

Customers who enrolled in the program were notified about the information about the treatment week, peak

hours, and reward calculation procedure in the beginning of August.

Customers in the selection group (S) were asked to send an email or a prepaid post card during the two-

week period from July 31 to August 11 if they intended to participate in the rebate program. The take-up

rate was 37.17%, which was rather higher than those for Critical Peak Pricing (CPP) in previous studies.7

As mentioned above, the PTR never make consumers pay more, unlike the CPP treatment, which may have

contributed to the higher take-up rate. At the same time, although the PTR would not make any participating

household worse off financially, the take-up rate was far from 100%, which could imply that there were non-

financial reasons for a relatively low take-up, including inertia to participate in a new program.

3.2 Data and Summary Statistics

Our primary data is household-level electricity consumption over a 30-minute interval. We collected this

data in the pre-experimental period (from July 1 to 31, 2020) and in the experimental period (from August

24 to 30, 2020). Moreover, we conducted a survey before the experiment to collect a variety of household

characteristics.

Table 1 presents summary statistics and balance check. Columns 1, 2, and 3 present the sample averages

by the randomly-assigned group (Z = {U, T, S}) with the standard deviations in brackets. Columns 4 to

6 report the difference in sample means with the standard error in parentheses. The first three variables are

electricity usage (watt hour per 30-minute) in peak hours (from 1 pm to 5 pm), pre-peak hours (from 10 am
6In June 2022, the Japanese government announced the launch of a electricity rebate program called “Setsuden Point Program"

to address the expected shortage of electricity supply in the summer of 2022. Similar to the rebate program studied in our field
experiment, the Setsuden Point rebate program provided a rebate for electricity customers if they reduced their electricity usage.
Likewise, California used similar electricity rebate programs in the California electricity crisis in 2000-2002 and subsequent years
(Reiss and White, 2008; Ito, 2015).

7The take-up rate for the CPP was 20% in Fowlie, Wolfram, Baylis, Spurlock, Todd-Blick, and Cappers (2021) and 16% (without
a take-up incentive) in Ito, Ida, and Takana (forthcoming).
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to 1 pm), and post-peak hours (from 5 pm to 8 pm). The rest of the variables are from the survey. “Number of

people at home" is the number of household members usually at home on weekdays. The survey also asked

the self-efficacy in energy conservation using the 5-point Likert scale, in which higher scores imply higher

self-efficacy. The household income is reported in 1000 JPY. “All electric" equals one if a customer has an

all-electric service with no natural gas service. The survey also asked the numbers of room air conditioners,

electric fans, household members, and the total living area.

[Table 1 about here]

Columns 4, 5, and 6 suggest that all variables are balanced between the randomly-assigned groups,

except for the household income. We do not observe statistically significant difference between the U and S

groups, and the T and S groups. However, we do observe a statistically significant difference between the

U and T groups (p-value is 0.021). In our empirical analysis, we include household fixed effects to consider

the influence of their time-invariant characteristics.

As we described above, our experiment was an RCT for households who agreed to participate in the

experiment, and therefore, the external validity of the sample is an important question. To investigate this

point, we collected data from a random sample of 2070 customers who resided in the experimental locations

but did not participate in the experiment. Table A.1 suggests that the experimental sample has higher sample

averages in the monthly electricity usage, number of people at home on weekdays, self-efficacy in energy

conservation, and household income.

3.3 Heterogeneity in the Program’s Impact on Peak-Hour Electricity Usage

The rebate program aimed at incentivizing energy conservation in peak hours. A key variable in our

social welfare function is, therefore, electricity usage in peak hours as we present in Section 4.1. Before

we proceed to the analysis of social welfare gains in Section 4, this section provides a simple analysis on

heterogeneity in the rebate program’s impact on peak-hour electricity usage.

Consider estimating the intention-to-treat (ITT) of the randomly-assigned groups Z = {T, S} relative

to Z = U by the OLS with an estimating equation,

yit = βTTit + βSSit + λi + θt + εit, (10)
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where yit is the natural log of electricity usage for household i in a 30-minute interval t. We include data

from the pre-experimental period and experimental period.8 A dummy variable Tit equals one if household

i is in group T and t is in the treatment period. A dummy variable Sit equals one if household i is in group S

and t is in the treatment period. We include household fixed effects λi and time fixed effects θt for each 30-

minute interval to control for time-specific shocks such as weather. Given that Z = {U, T, S} is randomly

assigned, βT and βS provides the ITT of Z = {T, S} relative to Z = U . Because there is no self-selection

in group T , β is also the average treatment effect (ATE) of T relative to U . We cluster standard errors at the

household level.

In Table 2, we report the estimation results of equation (10). We begin by demonstrating the ITT for the

entire sample in Column 1. The compulsory treatment (T ) resulted in a reduction in peak-hour electricity

usage by 0.097 log points (9.2%). The self-selection treatment (S) induced a reduction by 0.052 log points

(5.1%). The p-value of the difference in these two ITTs is 0.088.9

[Table 2 about here]

Along with these overall program impacts, an important question for our analysis is whether there is

substantial heterogeneity in the effects. If different household types respond to T and S differently, the op-

timal targeting policy presented in Section 2 could enhance the welfare gain from the policy. We investigate

this question in the remaining columns of Table 2.10 Each pair of columns splits the sample into two groups:

those with a below median value of a particular variable and those with an above median value.

We find evidence of rich heterogeneity in the program’s impact. In columns 2 and 3, for instance, we

split customers by peak-hour electricity usage relative to pre-peak hour usage, based on data in the pre-

experimental period. For households with lower values of this variable, we find that β̂T = −0.108 and

β̂S = −0.022, and the p-value for the difference is 0.013. In contrast, for households with higher values of

this variable, β̂T = −0.079 and β̂S = −0.073, and the p-value for the difference is 0.88. That is, in terms

of the ITT for peak-hour electricity usage, T provides a larger reduction than S for a subgroup, but this is

not the case for other groups. We find similar heterogeneity when we split the sample based on the number
8Because of randomization, the pre-experimental data is not necessary for obtaining the consistent estimator. The primary

benefit of including the pre-experimental data is that the inclusion of household fixed effects can substantially increase the precision
of the estimates because residential electricity usage tends to form a significant part of household-specific time-invariant variation.

9For the self-selection group, we can use the ITT and take-up rate to obtain the local average treatment effect for takers (LATE),
which is -0.14. This LATE is larger (in absolute value) than the ATE obtained by the T group, suggesting the possibility of selection
on welfare gains similar to the findings in Ito, Ida, and Takana (forthcoming).

10This table presents results on the covariates selected for estimating the optimal policy in Section 4.2.
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of people at home, the self-efficacy in energy conservation, and household income.

This heterogeneity in the program’s impact on peak-hour electricity usage implies that optimal targeting

is likely to enhance the welfare gain from the policy. However, although the simple analysis in Table 2 is

useful, there are two caveats in this analysis. First, these ITTs are not equivalent to the social welfare gains,

and therefore, do not necessarily provide full information to rank T and S. For example, these ITTs are

related to but do not directly measure consumer surplus or social surplus. Furthermore, the cost of the policy

(i.e., the implementation cost per participating household) is not included. Second, the true heterogeneity

can be more complex as covariates may have nonlinear and interaction effects on the program’s impact. For

this reason, we conduct more comprehensive analysis based on a machine-learning method (the decision

tree) in Section 4.

4 Optimal Assignment Policy and Welfare Gains

In this section, we apply the framework we developed in Section 2 to our experimental data. In our

framework, the planner’s objective is to find the optimal policy assignment rule G∗ = (G∗T , G
∗
U , G

∗
S) that

maximizes the expected welfare gainW(G) in equation (2). We begin by definingW(G) in our empirical

context in Section 4.1, describe exogenous parameters and estimation details in Section 4.2, and report the

estimation results in Section 4.3.

4.1 Construction of the Social Welfare Criterion

We use p and c to denote the price and marginal cost of electricity. In peak hours, the time-invariant

residential price p tends to be too low relative to c. The goal of peak-time rebate programs is to reduce

welfare loss from this economic inefficiency by setting the rebate incentive equal to c.

Consider a household that takes the rebate program. We use YU and YT to denote the potential untreated

and treated outcomes of electricity consumption. We assume a locally-linear demand curve for electricity

usage. Then, the short-run social welfare gain from this program is be written by 1
2(p−c)(YT−YU ). Further,

we consider that the reduction in consumption creates an additional long-run social welfare gain as it saves

the cost of power plant investments. We denote this long-run gain by δ(YT − YU ), where δ is the price per

kW in the capacity market. Finally, the participation to the rebate program incurs an implementation cost

per customer by a.
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Then, for each j ∈ {T,U, S}, the social welfare gain from the rebate program can be written by,

Wj := b · (Yj − YU )− a · 1{Dj = 1}, (11)

where b = 1
2(p − c) + δ, Yj is the potential outcome of electricity usage for j ∈ {T,U, S}, and Dj = 1 if

the consumer is treated. Equation (11) implies that Wj = 0 if the consumer is untreated (j = U ).

As presented in Section 2, the planner’s objective is determining the optimal policy assignment rule

G∗ = (G∗T , G
∗
U , G

∗
S) that maximizes W(G) ≡ E

[∑
j∈{T,U,S}Wj · 1{X ∈ Gj}

]
. By inserting equation

(11) to this objective function, −b · YU becomes a constant and does not depend on the policy assignment

G. Therefore, to find G∗, we can maximize W(G) by replacing Wj with W̃j := b · Yj − a · 1{Di = 1}.

As described in Section 2.3, we use the EWM to estimate the optimal policy by maximizing the following

objective function over a class of policies G: 1n
∑n

i=1

∑
j∈{T,U,S}

Wi·1{Zi=j}
P (Zi=j|Xi)

·1{Xi ∈ Gj} , where i indicates

each household, n is the sample size, Wi = b · Yi − a · 1{Di = 1}, Yi is the observed electricity usage for

household i, Di = 1 if household i is treated, and Zi ∈ {T,U, S} is the randomly-assigned group in our

experiment.

4.2 Estimation Details

Equation (11) includes four exogenous parameters: p, c, a, and δ. We use data from the Japanese

electricity market during our experimental period to set the values for these parameters. p is the unit price

of electricity. We set to p = 25 JPY/kWh, approximately the regulated price of electricity in Japan, which

is independent of the time of a day.11 c is the marginal cost of production for electricity. We specify

c = 125 JPY/kWh, so that the difference between p and c is equal to the rebate per kWh, which is 100

JPY. The wholesale price of electricity sometimes soars during peak hours such as summer afternoons or

winter evenings, reflecting supply constraints. In the past, the wholesale price has occasionally exceeded

100 JPY/kWh in summer afternoons.12

11In Japan, until April 1 2016 household electricity was supplied by local power companies and retail prices were regulated.
Since then, entry into the retail electricity industry has been fully liberalized, allowing all households to freely choose their price
menu. However, as a transitional measure, the regulated price for households is being maintained for the time being, and is set at
approximately 25 JPY/kWh regardless of the time of day.

12The wholesale electricity market, where the power generation sector and the retail sector trade electricity, is operated by the
Japan Electric Power Exchange (JEPX). Most trading takes place in the “day-ahead market” where both sectors trade electricity on
the day before the actual demand period. Trading results are disclosed, and we confirm that the price exceeded 100 JPY/kWh on
July, 25, 2018. Moreover, the price has exceeded even 125 JPY/kWh. For example, the price reached 250 JPY/kWh on January,
15, 2021.
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Parameter a represents the administrative cost of implementing our energy saving program. This cost

comprises several items, including the installation cost of the Home Energy Management System (HEMS)

required to participate. In 2016, the Japanese government estimated the cost of implementing a demand

reduction program, including the installation cost of HEMS, to be 291.1 JPY per household per season (Ida

and Ushifusa, 2017).13 We use this as the value of the administrative cost.

Parameter δ represents the long-term benefits of a unit reduction in energy consumption. Here, we

consider the effect of a unit reduction on the capacity market, where future supply capacity is traded between

the power generation and retail sectors. In Japan, the capacity market was established in 2020, with the first

auction held at that time. In that auction, the Japanese government provided a reference price 9,425 JPY/kW

to bidders, which we use as the value for δ.

To estimate the optimal policyG∗, we need to solve the optimization problem with the objective function

in Section 4.1. To do so, we specify the policy class to be the class of decision trees of depth 6. We select

five variables among candidates to be used in constructing the decision trees. These are Peak - Pre-peak,

Peak - Post-peak, household income, the number of household members usually at home on weekdays, and

a measure of the households’ self-efficacy in energy conservation. These variables are selected based on

their ability to predict electricity consumption and the conditional average treatment effects. Specifically,

we select these variables by running two off-the-shelf machine learning algorithms, lasso and random forest,

with all the available covariates and assessing the importance of each variable. When using lasso to assess

importance, we regress Yi on all the available covariates with a l1-penalization term. We order variables in

terms of importance by increasing the penalization parameter step-wise and checking which variables remain

selected for large penalization parameter values. When using random forest, we estimate the conditional

average treatment effects using the causal forest algorithm of (Wager and Athey, 2018) with all available

covariates included. We use the frequency with which a variable is used to split nodes as a measure of its

importance. These selected variables are those that appeared on the lists of important variables produced by

both methods.

We use the decision tree at depth 6, and exactly maximize the empirical welfare criterion by applying

the exhaustive search algorithm of Zhou, Athey, and Wager (forthcoming). An important technical detail of
13We do not include the installation cost for a smart meter in the administrative cost. Since the Great East Japan Earthquake of

March 11, 2011 and the accident at the Fukushima Daiichi Nuclear Power Plant, the Japanese government has stipulated that smart
meters should be installed in all homes by the end of the decade, so this cost is “sunk” in that it will be paid regardless of whether
a demand reduction program is implemented or not.
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the EWM estimation is that the optimized empirical welfare value from the estimation will be an upwardly

biased estimate of the true welfare attained by the estimated policy. This is known as the winner’s bias (see,

e.g., Andrews, Kitagawa, and McCloskey, 2019), and is caused by using the same data twice: once to learn

the policy and once to infer the policy’s welfare.14 To control for the winner’s bias in our point estimates and

confidence intervals, we create artificial test data by fitting a causal forest (Wager and Athey, 2018) to run

regressions of the outcome onto all the covariates, and generating data with permuted regression residuals.

We include detailed explanations about our estimation procedure in Appendices A.2 and A.3.

4.3 Results of the Optimal Policy Assignment

We estimate the optimal policy assignment that maximizes social welfare based on the algorithm we

described in equation (7) in Section 2. We compare five alternative policies: 1) assigning everyone to U ,

2) assigning everyone to T , 3) assigning everyone to S, 4) the selection-absent targeting G†, and 5) the

selection-driven targeting G∗.

In Table 3, we present the welfare performances of three benchmark policies without targeting (100%

U , 100% T , and 100% S) followed by the suboptimal and optimal targeting policies (G† and G∗).15 For

each policy, we estimate the ITT of the welfare gain in JPY per household per season.16

[Table 3 about here]

We find that the 100% T policy induces a welfare gain of 120.7 per consumer, but the effect is not

statistically significant. The 100% S policy results in a welfare gain by 180.6 per consumer and is marginally

significant at p-value = 0.107. These results suggest that without targeting, we cannot reject that the policy’s

net welfare gain can be zero.

Recall that our policy intervention induces both cost (from the implementation cost) and benefit (from

the energy conservation), and therefore, the net welfare gain from a consumer can be positive, negative, or

zero. This implies that we could be able to increase the policy performance by targeting policies, G† and

G∗. Results in Table 3 suggest that the selection-absent targeting (G†) attains a welfare gain by 387.8 per

consumer. Our algorithm identifies that 52.4% of consumers should be treated, and 47.6% of them should

be untreated.
14The estimation and inference procedures proposed by Andrews, Kitagawa, and McCloskey (2019) cannot be directly applied

to decision tree based policies because the number of candidate policies is infinite.
15Figure A.2 depicts the estimated decision trees of the optimal selection-driven targeting (Ĝ∗).
16The ITT is equivalent to the ATE when a policy does not allow for self-selection.
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Furthermore, we find that the selection-driven targeting (G∗) results in a welfare gain of 553.7 per

consumer. With this policy, our algorithm identifies that 31.4% of consumers should be treated, 23.9% of

them should be untreated, and 44.7% of them should self-select.

In Table 4, we statistically test the null hypothesis that a policy’s welfare gain is larger than another pol-

icy’s welfare gain. The 100% S generates a lager welfare gain than the 100% T policy, but the difference is

not statistically significant (p-value is 0.29). Both of our targeting policies (G† andG∗) generate statistically

larger welfare gains than non-targeting policies. Finally, we find that the selection-driven targeting (G∗)

results in a 43% (= 553.7/387.8 − 1) larger welfare gain than the selection-absent targeting (G†), and the

difference is statistically significant at p-value of 0.003 .

[Table 4 about here]

Table 5 presents the covariates distribution by the optimal policy assignment group Ĝ∗ = (Ĝ∗U , Ĝ
∗
T , Ĝ

∗
S).

Columns 1, 2 and 3 show the mean and standard deviation by group, and columns 4, 5 and 6 show the

difference between the means and its standard errors. For example, the means of household income indicate

that higher-income households are more likely to be assigned to U rather than T or S. Similarly, the means

of self-efficacy in energy conservation suggest that households with lower efficacy in energy conservation

are more likely to be assigned to U .

[Table 5 about here]

5 Mechanism Behind the Optimal Policy Assignment

In this section, we investigate the mechanism behind the optimal policy assignment G∗. To do so, we

analyze the LATEs for takers and non-takers in Section 5.1 and the counterfactual ITTs in Section 5.2.

5.1 Using the LATE Framework to Uncover the Mechanism

As presented in Section 2.2, an advantage of our research design is that we can identify both of the LATE

for takers (E[WT −WU |DS = 1]) and the LATE for non-takers (E[WT −WU |DS = 0]). In this section,

we demonstrate that these two LATEs can be used to examine the mechanism behind the selection-driven

targeting.
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Recall that in our empirical context, we define takers and non-takers in the following way with the

notations used in Section 2.1. If a consumer is assigned to the self-selection group (S), the consumer has a

binary choice between getting treated or untreated. We use DS = {0, 1} to denote this potential outcome.

That is, DS = 1 (takers) means that the consumer would take the treatment if she is assigned to S, and

DS = 0 (non-takers) means that she would not take the treatment if she is assigned to S.

As shown in equation (8) in Section 2.2, we can use the conventional LATE framework by Imbens and

Angrist (1994) to demonstrate that E [WT −WU |DS = 1] = E[W |Z=S]−E[W |Z=U ]
P (D=1|Z=S) , where Z = {S,U} is

randomly assigned in our RCT, Z = S is the selection group, Z = U is the untreated group, and D is the

observed treatment take-up for those who were assigned to Z = S. The numerator of the right hand side of

the equation is the difference in the ITTs between groups S and U , and the denominator is the take-up rate

in groups S. Therefore, the sample analogue of this equation can be estimated from our experimental data.

17 A unique feature of our research design is that we have a randomly-assigned compulsory treatment group

(Z = T ) along with groups Z = {S,U}. As presented in equation (8) in Section 2.2, we can use two groups

Z = {S, T} to estimate the LATE for non-takers by E [WT −WU |DS = 0] = E[W |Z=T ]−E[W |Z=S]
P (D=0|Z=S) .

Note that the LATEs for takers and non-takers can be estimated conditional on X because the random-

ization of Z = (U, T, S) holds given X . This implies that we can estimate these LATEs by customer types

based on X . Now consider the optimal assignment rule computed by the selection-driven targeting policy,

Ĝ∗ = (Ĝ∗U , Ĝ
∗
T , Ĝ

∗
S). This policy divides customers into three groups based on their observables: those who

should be untreated (X ∈ Ĝ∗U ), those who should be treated (X ∈ Ĝ∗T ), and those who should self-select

(X ∈ Ĝ∗S).

In Figure 3, we estimate equations (8) and (9) for these three groups, Ĝ∗U , Ĝ∗T , and Ĝ∗S . For those who

are assigned to the selection group (Ĝ∗S), the LATE for takers is 2062 and the LATE for non-takers is −823.

This implies that self-selection is a useful tool for this group to let customers sort into the treatment choice

that is in line with the planner’s objective.

[Figure 3 about here]
17Equation (8) demonstrates that the LATE for takers is equivalent to the LATE for compliers when we consider two groups with

a binary instrument Z = {U, S}. This also implies that we can use the conventional IV estimation to estimate equation (8) under
the regular assumptions for identifying the LATE. In particular, a key assumption is the exclusion restriction presented in equation
(4). Kitagawa (2015) provides a statistical test to investigate the validity of the exclusion restriction. We plot the subdensities of
the outcome distributions and test the null hypothesis that the exclusion restriction holds with our data. We find that the p-value of
this test is near one for various choices of tuning parameter values in the method, implying that we fail to reject the null. While this
result does not prove the validity of the assumption, it provides supporting evidence for the the validity of the exclusion restriction
in our context.
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By contrast, if we allow self-selection for customers in Ĝ∗U , it would decrease welfare because the LATE

for takers in this group is−2335. Similarly, if we allow self-selection in Ĝ∗T , it would lower welfare because

self-selection would make non-takers out of the treatment even though their LATE is positive and large at

1019. Therefore, the LATE for takers and non-takers presented in Figure 3 highlights how our algorithm

chooses who should get treated, untreated, and choose to get treated by themselves.

5.2 Counterfactual Intention-to-Treat Analysis

Another way to investigate the mechanism behind our algorithm is to estimate the counterfactual ITTs

separately for each of the three groups Ĝ∗U , Ĝ∗T , and Ĝ∗S . For instance, consider customers in Ĝ∗U , who

should be untreated according to the optimal assignment rule. Note that within this group, our experiment

provided a random variation of Z = (U, T, S). Therefore, we can use this variation to estimate three ITTs

as if they were assigned to U , T , and S. Similarly, we can estimate these three ITTs for customers in Ĝ∗T

and those in Ĝ∗S .

Table 6 presents these counterfactual ITTs for each of Ĝ∗U , Ĝ∗T , and Ĝ∗S . Results for customers in Ĝ∗U

imply that their ITTs would be negative (−905.4 and−923.0) if they were assigned to T and S, respectively.

That is, the welfare gains is maximized if they are assigned to U . Similarly, results for customers in Ĝ∗T and

Ĝ∗S suggest that their welfare gains are maximized when they are assigned to T and S, respectively.

[Table 6 about here]

Hence, the policy assignment computed by Ĝ∗ coincides with the arm that attains the highest welfare

gain for every subgroup of {X ∈ Ĝ∗j}, j ∈ {U, T, S}. In other words, the estimated policy Ĝ∗ captures

households’ heterogeneous responses by using both observed and unobserved characteristics to maximize

social welfare. This result is true by construction because our algorithm finds the optimal assignment by

maximizing the ITT of the welfare gain. Yet, Table 6 is useful to visualize the mechanism by observing that

we indeed see the optimal ITTs in the diagonal line.

6 Welfare Maximization with Redistribution

In Section 4, we presented the results based on the utilitarian welfare function. However, our method

is not necessarily restricted to a conventional utilitarian framework. Rather, one can apply our method to
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any welfare function most appropriate for a policy goal. In this section, we shed light on this point by

considering a policy goal that balances the equity-efficiency trade-off.

Table 7 presents the redistribution implications of the optimal utilitarian policy presented in Section 4.

The efficiency gain (553.7 in the table) is the ITT of the welfare gain of the optimal policy (the selection-

driven targeting) based on the utilitarian welfare function. As presented in Table 4, this targeting policy (Ĝ∗)

maximizes the utilitarian welfare gain compared to other policy options.

[Table 7 about here]

However, Table 7 suggests that this policy may create a concern for equity. We compare the average

rebate that would be distributed to consumers across the household income distribution. We find that the

optimal targeting policy would distribute more rebates to higher income households. That is, although this

targeting maximizes the efficiency gain from the policy, it may not be appealing to policymakers who weigh

on redistribution implications.

To address this equity concern, we consider a social welfare function that balances the equity-efficiency

trade-off by using a framework developed by Saez (2002) and used by Allcott, Lockwood, and Taubinsky

(2019) and Lockwood (2020). Consider Pareto weights for a household: w = h−ν where h is household

income and ν is a scalar parameter that represents a policymaker’s preference for redistribution. With this

specification, a higher ν implies a stronger preference for redistribution, ν =∞ corresponds to the Rawlsian

criterion, and ν = 0 corresponds to utilitarianism. When ν = 1, it approximately corresponds to the weight

that would arise under logarithmic utility from income. We modify our utilitarian social welfare function by

using this weight for each consumer’s surplus from the policy intervention. In Appendix A.4, we show that

the social welfare function with this Pareto weight can be written by:

Wj = b̃ · (Yj − YU )− (1− w)Rj − a · 1{Dj = 1}, (12)

for j ∈ {T,U, S}, where b̃ = 2−w
2 (p − c) + δ, w = h−ν/H is the normalized weight, and H is the

sum of h−ν over all households. Rj is the potential amount of rebate for arm j and it is defined by Rj =

(c− p) ·max{Ybase−Yj , 0} · 1{Dj = 1}, where Ybase denotes the baseline consumption of rebate payment

for the household. When ν = 0, w is equal to 1 for all households, and hence, the equation (12) becomes

the utilitarian welfare function in (11).18

18The potential amount of rebate Rj does not appear in the utilitarian weight because it is just a lump-sum transfer between
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In Table 7, we present the results with ν = 1 and ν = 2 below the result for the utilitarian welfare

function, which is equivalent to the case with ν = 0. We find that the welfare function with ν = 2 is able

to roughly equalize the average rebate distributed to households across the income distribution. However,

as we expect, the efficiency gain (i.e., the welfare gain evaluated based on the utilitarian welfare function) is

compromised as we increase the weight on the preference for redistribution.

These results indicate that policymakers can choose the welfare function that most appropriately bal-

ances the equity-efficiency trade-off and apply our method to such welfare functions. We also present in

Table A.2 that the selection-driven targeting maximizes the welfare function with all values of ν that are

considered in our analysis.

7 Conclusion

We develop an optimal policy assignment rule that systematically integrates two distinctive approaches

commonly used in the literature—targeting by “observables” and targeting through “self-selection.” Our

method identifies who should be treated, untreated, and self-select into a treatment to maximize a policy’s

social welfare gain. To generate data required to estimate optimal policy assignment, we designed a ran-

domized controlled trial for a residential energy rebate program. We show that targeting that leverages

information on both observables and self-selection outperforms conventional targeting for a standard util-

itarian welfare function as well as welfare functions that balance the equity-efficiency trade-off. Finally,

we highlight that the LATE framework (Imbens and Angrist, 1994) can be used to uncover the mechanism

behind our approach. We introduce new estimators, the LATEs for takers and non-takers, to demonstrate

how our method identifies whose self-selection is useful and harmful for the planner to maximize social

welfare.

consumers and producers. However, once we allow differential weight for each consumer’s surplus, Rj is not cancelled out in the
welfare function.
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Figures

Figure 1: Example of Optimal Policy Assignment G∗

X1

X2

A B

F C

E D

G∗T

G∗U

G∗S

{x | ATE(x) ≥ 0}
{x | LATET (x) ≥ 0}
{x | LATENT (x) ≥ 0}

Notes: This figure illustrates how an optimal policy rule G∗ described in equation (6) partitions customers, using the two-
dimensional characteristic space X as an example. Let ATE(x) := E[WT −WU |x], LATET (x) := E[WT −WU |DS =
T, x] (i.e., the LATE for takers), and LATENT (x) := E[WT −WU |DS = U, x] (i.e., the LATE for non-takers). Among
the six subspaces from A to F, ATE(x) is non-negative only in B, C, and D; ATET (x) is non-negative only in C, D, and E;
ATENT (x) is non-negative only in A, B, and C. Therefore, according to the optimal policy characterization (6), B and C are
assigned to G∗T ; A and F are assigned to G∗U ; and D and E are assigned to G∗S .
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Figure 2: Illustration of the Decision Tree

(a) Decision tree with depth-2

X1 ≥ a1

X2 ≥ a2

T

True
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False
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True

S

False

False

(b) Partition of X by the decision tree

X1

X2

a1

a2

a3

GS GU

GT

GS

Notes: This figure illustrates the decision tree described in Section 2.3 by using an example case with two variables and depth-
2. Note that in our empirical analysis, we use more than two variables and depth deeper than 2, so this figure is only for
illustration. Policy assignment T , U , S corresponds to the treated, untreated, and selection groups.
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Figure 3: Mechanism Behind the Algorithm: The LATEs for Takers and Non-Takers
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Notes: This figure shows the estimation results in Section 5.1. For each of the three groups in the optimal assignment (x ∈
Ĝ∗U , x ∈ Ĝ∗T , x ∈ Ĝ∗S), we estimate the LATE for takers (E[WT −WU |DS = 1]) and the LATE for non-takers (E[WT −
WU |DS = 0]) to investigate the mechanism behind the optimal assignment. In the figure, we show the point estimates with
the 95% confidence intervals. For example, for those who are assigned to the selection group (Ĝ∗S), the LATE for takers is
2062 and the LATE for non-takers is −823. This implies that self-selection is a useful tool for this group to let customers sort
into the treatment choice that is in line with the planner’s objective. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.
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Tables

Table 1: Summary Statistics and Balance Check

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Untreated Treated Selection U vs. T U vs. S T vs. S
(Z = U ) (Z = T ) (Z = S)

Peak hour usage (Wh) 192 190 189 2.57 2.87 0.29
[141] [138] [134] (5.03) (5.91) (5.93)

Pre-peak hour usage (Wh) 179 176 180 3.79 −1.11 −4.89
[137] [135] [142] (4.92) (6.07) (6.11)

Post-peak hour usage (Wh) 299 297 293 1.94 6.02 4.08
[175] [171] [174] (6.26) (7.54) (7.56)

Number of people at home 2.48 2.44 2.47 0.04 0.01 −0.03
[1.24] [1.24] [1.27] (0.04) (0.05) (0.06)

Self-efficacy in energy 3.45 3.46 3.49 −0.01 −0.04 −0.02
conservation (1-5 scale) [0.85] [0.85] [0.83] (0.03) (0.04) (0.04)

Household income 645 613 637 31.69 8.45 −23.23
(JPY 10,000) [399] [362] [391] (13.75) (17.06) (16.67)

All electric 0.32 0.31 0.30 0.01 0.02 0.00
[0.47] [0.46] [0.46] (0.02) (0.02) (0.02)

Number of air conditioners 3.14 3.11 3.08 0.03 0.05 0.02
[1.69] [1.71] [1.67] (0.06) (0.07) (0.07)

Number of fans 2.80 2.73 2.77 0.07 0.04 −0.04
[1.63] [1.63] [1.56] (0.06) (0.07) (0.07)

Number of household members 2.76 2.73 2.75 0.04 0.01 −0.03
[1.27] [1.27] [1.28] (0.05) (0.06) (0.06)

Total living area (m2) 107.29 105.51 103.42 1.78 3.87 2.09
[48.57] [49.61] [46.14] (1.78) (2.03) (2.07)

Notes: Columns 1-3 present the sample mean and standard deviations in blackets for the pre-experiment consumption data and
demographic variables by randomly-assigned group: untreated (Z = U ), treated (Z = T ), and selection (Z = S). Columns 4-6
show the difference in the sample means with the standard error of the difference in parentheses. The number of households are
1,577 (U ), 1,486 (T ), and 807 (S). The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table 2: Intention-to-Treat Estimates

Peak hour usage Peak hour usage
− Pre-peak hour usage − Post-peak hour usage

(in pre-experiment) (in pre-experiment)

All Low High Low High

Treated group (Z = T ) -0.097 -0.108 -0.079 -0.089 -0.094
(0.021) (0.028) (0.031) (0.030) (0.028)

Selection group (Z = S) -0.052 -0.022 -0.073 -0.070 -0.023
(0.027) (0.034) (0.041) (0.037) (0.037)

Number of customers 3,870 1,935 1,935 1,937 1,933
Number of observations 1,176,480 588,240 588,240 589,152 587,328
p-value (T = S) 0.088 0.013 0.880 0.595 0.047
Take-up rate in group S 37.2% 36.9% 37.4% 39.9% 34.7%

Number of people at home Self-efficacy Household income

Low High Low High Low High

Treated group (Z = T ) -0.096 -0.098 -0.134 -0.057 -0.071 -0.125
(0.027) (0.034) (0.028) (0.031) (0.028) (0.031)

Selection group (Z = S) -0.022 -0.094 -0.036 -0.072 -0.036 -0.060
(0.034) (0.042) (0.035) (0.040) (0.038) (0.037)

Number of customers 2,245 1,625 1,967 1,903 2,036 1,834
Number of observations 682,480 494,000 597,968 578,512 618,944 557,536
p-value (T = S) 0.020 0.934 0.004 0.715 0.336 0.094
Take-up rate in group S 37.6% 36.6% 33.8% 40.6% 34.8% 39.7%

Notes: This table shows the estimation results for equation (10) using the full-sample (the first column of the upper
panel) or sub-samples (the remaining columns). The dependent variable is the log of household-level electricity
consumption over a 30-minute interval. We include household fixed effects and time fixed effects for each 30-minute
interval. The standard errors are clustered at the household level to adjust for serial correlation. To investigate the
heterogeneity of the treatment effects, we focused on the five variables selected for estimating the optimal policy in
Section 4.2 and divided the sample into five sets of two sub-groups. For the five different variables, the first sub-
group includes households who are below the median of this variable and the second includes those who are above the
median. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table 3: Welfare Gains from Each Policy

Policy Welfare Gain Share of customers in each arm

GU GT GS

100% untreated 0 100% 0.0% 0.0%
(—)

100% treated 120.7 0.0% 100% 0.0%
(98.8)

100% self-selection 180.6 0.0% 0.0% 100%
(112.1)

Selection-absent targeting (Ĝ†) 387.8 47.6% 52.4% 0.0%
(55.7)

Selection-driven targeting (Ĝ∗) 553.7 23.9% 31.4% 44.7%
(68.0)

Notes: This table summarizes characteristics of three benchmark policies (100% untreated, 100% treated, and 100% self-selection),
selection-absent targeting (Ĝ†), and selection-driven targeting (Ĝ∗). The column titled “Welfare Gain” shows the estimated ITT of
welfare gain in JPY per household per season, with its standard error in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in
the summer of 2020.

Table 4: Comparisons of Alternative Policies

Difference in Welfare Gains p-value

100% self-selection vs. 100% treated 59.9 0.293
(110.0)

Selection-absent targeting (Ĝ†) vs. 100% treated 267.2 0.004
(99.7)

Selection-absent targeting (Ĝ†) vs. 100% self-selection 207.3 0.038
(116.9)

Selection-driven targeting (Ĝ∗) vs. 100% treated 433.0 0.000
(106.8)

Selection-driven targeting (Ĝ∗) vs. 100% self-selection 373.1 0.000
(113.3)

Selection-driven targeting (Ĝ∗) vs. Selection-absent targeting (Ĝ†) 165.8 0.003
(61.1)

Notes: This table compares welfare gains from each policy. For each row, the column “Difference in Welfare Gains” shows
the estimated welfare gain of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY
per household per season, with its standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis:
H0 :WL ≥WR. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table 5: Covariate Distribution by Optimally Assigned Group Ĝ∗

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Ĝ∗U Ĝ∗T Ĝ∗S Ĝ∗U vs. Ĝ∗T Ĝ∗U vs. Ĝ∗S Ĝ∗T vs. Ĝ∗S

Peak hour usage (Wh) 203 180 191 23.03 11.98 −11.05
[146] [136] [135] (6.18) (5.79) (5.08)

Pre-peak hour usage (Wh) 198 167 175 30.56 23.08 −7.48
[150] [133] [132] (6.23) (5.86) (4.97)

Post-peak hour usage (Wh) 329 255 310 73.22 18.82 −54.40
[176] [176] [164] (7.67) (7.00) (6.41)

Number of people at home 2.87 2.27 2.38 0.60 0.48 −0.11
[1.34] [1.32] [1.08] (0.06) (0.05) (0.05)

Self-efficacy in energy 3.30 3.49 3.53 −0.19 −0.23 −0.04
conservation (1-5 scale) [1.02] [0.82] [0.75] (0.04) (0.04) (0.03)

Household income 787 597 572 190.12 215.11 25.00
(JPY 10,000) [433] [397] [318] (18.23) (16.15) (13.73)

All electric 0.36 0.25 0.33 0.11 0.03 −0.08
[0.48] [0.43] [0.47] (0.02) (0.02) (0.02)

Number of air conditioners 3.41 2.82 3.16 0.58 0.24 −0.34
[1.72] [1.66] [1.67] (0.07) (0.07) (0.06)

Number of fans 2.99 2.58 2.78 0.41 0.20 −0.21
[1.75] [1.57] [1.55] (0.07) (0.07) (0.06)

Number of household members 3.17 2.54 2.67 0.63 0.50 −0.13
[1.31] [1.36] [1.14] (0.06) (0.05) (0.05)

Total living area (m2) 115.41 97.16 106.73 18.25 8.68 −9.57
[47.77] [49.13] [47.37] (2.11) (1.94) (1.81)

Notes: This table shows the covariate distribution by group based on the optimal policy assignment Ĝ∗. The last column shows
the difference in the sample means and its standard errors in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.
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Table 6: Mechanism Behind the Algorithm: Counterfactual Analysis of the ITT

Consumer types based on the optimal assignment rule Ĝ∗

Ĝ∗U Ĝ∗T Ĝ∗S

Counterfactual ITT (if assigned to U ) 0 0 0
(——) (——) (——)

Counterfactual ITT (if assigned to T ) −905.4 662.5 257.8
(157.8) (131.4) (117.5)

Counterfactual ITT (if assigned to S) −923.0 67.9 772.5
(166.7) (150.9) (119.7)

Notes: This figure shows the estimation results in Section 5.2. For each of the three groups in the optimal assignment (x ∈ Ĝ∗U , x ∈
Ĝ∗T , x ∈ Ĝ∗S), we estimate three counterfactual ITTs: ITT if assigned to U , ITT if assigned to T , and ITT if assigned to S, with the
standard errors in parentheses. The table indicates that the policy assignment computed by Ĝ∗ coincides with the arm that attains
the highest welfare gain for every subgroup of {x ∈ Ĝ∗j}, j ∈ {U, T, S}. The monetary unit is given as 1 ¢= 1 JPY in the summer
of 2020.

Table 7: Incorporating Equity-Efficiency Trade-off

Efficiency gain Average rebate by the quartiles of household income

[0%,25%] (25%,50%] (50%,75%] (75%,100%]

Utilitarian (ν = 0) 553.7 72.8 93.7 144.1 148.9
(68.0) (10.3) (12.9) (19.1) (18.9)

With a redistribution goal (ν = 1) 431.2 77.0 132.3 140.2 116.5
(69.2) (13.0) (17.4) (18.1) (17.6)

With a redistribution goal (ν = 2) 366.1 105.2 115.7 109.9 119.2
(69.3) (14.8) (16.5) (16.2) (20.8)

Notes: The first column “Efficiency gain” shows the welfare gain from the policy measured by the utilitarian welfare function.
Other columns present the average rebate amount in each of the quartile of the income distribution. The utilitarian policy maximizes
the efficiency gain but its rebate distributions are regressive. In Section 6, we consider a welfare function with a redistribution goal
with a Pareto parameter ν. The policies with ν = 1 and 2 reduce regressivity at the cost of sacrificing the efficiency gain. The
monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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A Online Appendix (Not for Publication)

A.1 The external validity of the experimental sample

We randomly sampled 2070 customers from the target population who did not participate in this ex-

periment, and conducted a similar survey to the one for the experimental sample. The purpose of this was

to investigate the external validity of our experimental sample by comparing the mean for each variable

between the control group from our experimental sample and this random sample. Columns 1 and 2 of

Table A.1 present summary statistics for the untreated group and the random sample. Column 3 presents

differences in means, with the standard errors of these differences in parentheses. We observe larger means

for four variables in the untreated group than in the random sample, and the differences are statistically

significant. Our experimental sample has larger pre-experiment electricity usage per month, a larger number

of people at home on weekdays, higher self-efficacy in energy conservation, and higher household income.

This implies that our sample includes a larger number of customers who are willing and able to reduce their

electricity consumption, which should be taken into consideration when discussing the generalizability of

this study.

[Table A.1 about here]

A.2 Optimization of tree

We basically perform tree optimization using the tree search algorithm proposed by Zhou, Athey, and

Wager (forthcoming), which is implemented in policy_tree function from R package policytree.

Given a depth of tree, their algorithm compares all possible trees of that depth in terms of an objective func-

tion and chooses the optimal one. Therefore, in principle, the exhaustive nature of the algorithm allows us

to find the globally optimal tree of that depth. Another approach to find a global optimum is to formulate

the tree optimization problem as a Mixed Integer Programming (MIP) and solve the problem using com-

mercial solver. However, Zhou, Athey, and Wager (forthcoming) empirically shows that their approach is

faster than MIP approach. Furthermore, their algorithm is essentially different from the greedy optimization

procedure employed in tree-based classification methods including CART (Breiman, Friedman, Olshen, and

Stone, 2017) in terms of quality of solution. The latter algorithm takes top-down approach: starting from

the root node, it determines each split without any consideration of its possible impact of future splits in the
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tree. In classification problems, it is known that the MIP approach outperforms CART in terms of 0-1 loss

(Bertsimas and Dunn, 2017).

However, in our application, it is not practical to use their algorithm directly to obtain a globally optimal

tree of depth greater than 3. According to their analysis of computational complexity, the running time

of their algorithm scales on the order of O((2np)L−1d), where n is the sample size, p is the number of

covariates, L (≥ 3) is the depth of tree, and d is the number of arms. That is, when other factors are

fixed, computation time increases exponentially in tree depth. In our computing environment (AMD Ryzen

9 3950X 3.5GHz), a solution was obtained in about an hour for depth 3, while it was not obtained in a

reasonable time for depths greater than 3.

Due to this difficulty in finding a globally optimal tree of depth 6, we adapt an approximate algorithm

as follows. Specifically, we first optimize a root tree of depth 3 using the policy_tree function for the

entire sample. This operation divides the sample into 8 subsamples. Then, for each subsample, another tree

of depth 3 is optimized using policy_tree function, and the resulting tree is grafted on the root tree. As

a result, this procedure generates a tree of depth 6. It does not generally result in a global optimal tree of

depth 6. However, it is expected that our approach outperforms the completely greedy approach since our

algorithm partly considers the effect of the current split on future splits.

A.3 Artificial Test Data

We describe our method for generating artificial test data in detail. First, to motivate our construction of

artificial test data, we briefly discuss why bias in point estimates of welfare gain is introduced when one uses

the same data to learn an optimal policy and to estimate its welfare gain. Simply speaking, this occurs due

to noise in the observed electricity consumption Y and the observed take-up status D of treatment, which

are random components in W . Specifically, the observed electricity consumption Y can be decomposed as

the sum of an essential term and noise as follows:

Y =E[YU |X] · 1{Z = U}+ E[YT |X] · 1{Z = T}+ E[YS |X] · 1{Z = S}︸ ︷︷ ︸
essential term

+ εU · 1{Z = U}+ εT · 1{Z = T}+ εS · 1{Z = S}︸ ︷︷ ︸
noise term

,
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where εj := Yj − E[Yj |X] for each j ∈ {U, T, S}. The observed choice D can be similarly decomposed.

While only the essential term is necessary for learning an optimal policy, a learning algorithm inevitably

responds to the noise term and overfits the training sample at hand. Therefore, when one evaluates the

welfare performance of the estimated policy on the same training sample, the welfare estimate is biased

upward because the policy fits the noise term as well. This implies that, if we replace the noise term in

the training sample with another independent noise sample, we can eliminate the bias from the estimate of

welfare performance.

Motivated by this observation, we generate test data {Y test
i , Zi, D

test
i , Xi}ni=1 by generating another sam-

ple of noise. Here, Y test
i denotes test electricity consumption and Dtest

i denotes test take-up status of treat-

ment. For Y test
i we use the following procedure to generate artificial data: For j ∈ {T,U, S} and samples

i ∈ Ij := {i : Zi = j},

1. Estimate E[Yj,i|Xi] and calculate residuals ε̂i = Yi − Ê[Yj,i|Xi].

2. Estimate E[ε2j,i|Xi] by regressing ε̂2i on Xi and calculate σ̂i =
√
Ê[ε2j,i|Xi].

3. Sample {ε̃i}i∈Ij from the standardized residuals {ε̂i/σ̂i}i∈Ij with replacement and calculate εtest
i =

ε̃i · σ̂i.

4. Construct Y test
i = Ê[Yj,i|Xi] + εtest

i .

In the first and second steps, one can apply any nonparametric methods to estimate the conditional means.

In our application, we estimate the conditional means using random forests (Friedberg, Tibshirani, Athey,

and Wager, 2021; Wager and Athey, 2018).

We generate test take-up status {Dtest
i }ni=1 by different procedures since take-up status takes values in

zero and one. For samples i ∈ IU and i ∈ IT , we set Dtest
i = 0 and Dtest

i = 1, respectively. For samples

i ∈ IS ,

1. Estimate P (DS,i = 1|Xi) to obtain P̂ (DS,i = 1|Xi).

2. Sample {Dtest
i }i∈IS according to Dtest

i ∼ P̂ (DS,i = 1|Xi).

As is the case of Y test
i , one can apply any nonparametric methods to estimate the conditional probability. In

our application, we estimate that quantity using random forest.

40



A.4 Social Welfare Function with a Redistribution Goal

This section describes the derivation of each household’s potential welfare contribution. First, we focus

on the change in each household’s utility resulting from the introduction of the rebate program. Under the

assumption that the utility function of each household is quasi-linear and the electricity demand function is

linear, assigning a household to arm j ∈ {T,U, S} changes its utility as follows

CSj =
c− p

2
· (Yj − YU ) +Rj ,

where Rj = (c − p) ·max{Ybase − Yj , 0} · 1{Dj = 1}. The first term represents the change in consumer

surplus due to an increase in the price of electricity from p to c, while the second term represents the rebate

received by reducing electricity consumption below the baseline consumption Ybase.

Then, given the Pareto weights w for a household, it is natural to define the weighted potential welfare

contribution by

Wj = w · CSj + ∆PSj − a−Rj + δ · (Yj − YU ).

The welfare contribution is the sum of five terms. w ·CSj is the consumer surplus weighted with the Pareto

weight. ∆PSj is change of producer surplus, and hence we have ∆PSj = (p−c)(Yj−YU ). The constant a

denotes the cost taken to implement rebate program. Note that this cost does not include the rebate payment,

which is instead reflected in −Rj . Finally, the term δ · (Yj − YU ) is the long-run gain. Using the concrete

expression of CSj , we can rewrite the welfare contribution as follows

Wj =

(
(2− w)(p− c)

2
+ δ

)
· (Yj − YU )− (1− w) ·Rj − a,

which is equation (12). Further, when w = 1, the welfare contribution boils down to

Wj =

(
p− c

2
+ δ

)
(Yj − YU )− a,

which in turn corresponds to equation (11).
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A.5 Appendix Tables

Table A.1: The external validity of the experimental sample

Experimental sample Random sample Difference
in the untreated group of population between sample

and population

Monthly electricity usage in July (kWh) 356 304 51.86
[205] [177] (6.34)

Number of people at home 2.48 2.31 0.17
[1.24] [1.20] (0.04)

Self-efficacy in energy conservation 3.45 3.32 0.13
(1-5 Likert scale) [0.85] [0.97] (0.03)

Household income (JPY10,000) 645 581 63.83
[399] [384] (13.06)

Number of households 1,577 2,070

Notes: We randomly sampled 2070 customers from the target population who did not participate in this experiment,
and conducted a similar survey to the one for the experimental sample. The purpose of this survey was to investigate
the external validity of our experimental sample by comparing the mean for each variable between the control group
from our experimental sample and this random sample. Columns 1 and 2 show summary statistics for the untreated
group and the random sample. Column 3 presents differences in means, with the standard errors of these differences
in parentheses. We observe larger means for four variables in the untreated group than in the random sample, and the
differences are statistically significant. Our experimental sample has larger pre-experiment electricity usage per month,
a larger number of people at home on weekdays, higher self-efficacy in energy conservation, and higher household
income. This implies that our sample includes a larger number of customers who are willing and able to reduce their
electricity consumption, which should be taken into consideration when discussing this study’s generalizability. The
monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table A.2: Comparisons of Selection-absent and Selection-driven Targeting in Welfare Function with Re-
distributional Goal

Difference in Welfare Gains p-value

G∗ vs. G† (with ν = 1) 167.1 0.005
(64.4)

G∗ vs. G† (with ν = 2) 157.9 0.019
(75.8)

Notes: This table compares welfare gains with G∗ (selection-driven targeting) and those with G† (selection-absent targeting)
with a redistributional goal. The column “Difference in Welfare Gains” shows the estimated welfare gain of the selection-driven
targeting relative to selection-absent targeting in terms of welfare function weighted Pareto weight with parameter ν ∈ {1, 2}, with
the standard errors in parentheses. For each row, the column “Difference in Welfare Gains” shows the estimated welfare gain of
the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY per household per season, with its
standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis: H0 :WL ≥WR. The monetary unit
is given as 1 ¢ = 1 JPY in the summer of 2020.
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A.6 Appendix Figures

Figure A.1: Decision tree of depth 2

Xj ≥ a1

Xk ≥ a2

opt1

True

opt2

False

True

Xl ≥ a3

opt3

True

opt4

False

False

Notes: (j, k, l) ∈ {1, . . . ,K}3, (a1, a2, a3) ∈ R3, and (opt1, . . . , opt4) ∈ {T,U, S}4. Searching for the optimal decision
tree of depth 2 is equivalent to finding the best combination of indices (j, k, l) ∈ {1, . . . ,K}3 of X and threshold values
(a1, a2, a3) ∈ R3 in the top 2 layers, and options (opt1, . . . , opt4) ∈ {T,U, S}4 in the bottom layer.
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Figure A.2: Optimal Assignment Ĝ∗ (Panel A: From Depth 1 to 3)
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Notes: This figure presents the depth 1 to 3 of the optimal assignment Ĝ∗. Each household answers yes-no questions from its top,
and is given one number from 8 to 15. Households given a number less than or equal to 11 go to Panel B below. Other households
go to Panel C below. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Figure A.2: Optimal Assignment Ĝ∗ (Panel B: From Depth 4 to 6, Left Side)
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Notes: This figure presents the left side of depth 4 to 6 of the optimal assignment Ĝ∗. Each household given a number at most
11 in Panel A refers to tree with the same node id. Then, following the yes-no questions from its top, each household assigned
to one of U , T , and S.
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Figure A.2: Optimal Assignment Ĝ∗ (Panel C: From Depth 4 to 6, Right Side)
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Notes: This figure presents the right side of depth 4 to 6 of the optimal assignment Ĝ∗. Each household given a number at least
12 in Panel A refers to tree with the same node id. Then, following the yes-no questions from its top, each household assigned
to one of U , T , and S.

47


	Introduction
	Conceptual Framework
	Optimal Policy Assignment in the Presence of Self-Selection
	Using the LATE Framework to Investigate the Mechanism 
	Estimation

	Field Experiment and Data
	Field Experiment
	Data and Summary Statistics
	Heterogeneity in the Program's Impact on Peak-Hour Electricity Usage

	Optimal Assignment Policy and Welfare Gains 
	Construction of the Social Welfare Criterion
	Estimation Details
	Results of the Optimal Policy Assignment

	Mechanism Behind the Optimal Policy Assignment
	Using the LATE Framework to Uncover the Mechanism 
	Counterfactual Intention-to-Treat Analysis

	Welfare Maximization with Redistribution 
	Conclusion
	Online Appendix (Not for Publication)
	The external validity of the experimental sample 
	Optimization of tree
	Artificial Test Data
	Social Welfare Function with a Redistribution Goal
	Appendix Tables
	Appendix Figures


