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KEY  VOCABULARY 

 

1. POWER: The likelihood that, when a program/treatment has an effect, you will be able to distinguish the effect from zero 

i.e. from a situation where the program has no effect, given the sample size. 

 

2. SIGNIFICANCE: The likelihood that the measured effect did not occur by chance. Statistical tests are performed to 

determine whether one group (e.g. the experimental group) is different from another group (e.g. comparison group) on certain 

outcome indicators of interest (for instance, test scores in an education program.) 

 

3. STANDARD DEVIATION: For a particular indicator, a measure of the variation (or spread) of a sample or population. 

Mathematically, this is the square root of the variance. 

 

4. STANDARDIZED EFFECT SIZE: A standardized (or normalized) measure of the [expected] magnitude of the effect of a 

program. Mathematically, it is the difference between the treatment and control group (or between any two treatment arms) for 

a particular outcome, divided by the standard deviation of that outcome in the control (or comparison) group. 
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5. CLUSTER: The unit of observation at which a sample size is randomized (e.g. school), each of which typically contains several 

units of observation that are measured (e.g. students). Generally, observations that are highly correlated with each other should 

be clustered and the estimated sample size required should be measured with an adjustment for clustering.  

 

6. INTRA-CLUSTER CORRELATION COEFFICIENT (ICC): A measure of the correlation between observations within a 

cluster. For instance, if your experiment is clustered at the school level, the ICC would be the level of correlation in test scores 

for children in a given school relative to the overall correlation of students in all schools.  

 

I NTRODUCTION 

 

This exercise will help explain the trade-offs to power when designing a randomized trial. Should we sample every student in just 

a few schools?  Should we sample a few students from many schools?  How do we decide? 

 

We will work through these questions by determining the sample size that allows us to detect a specific effect with at least 80 

percent power, which is a commonly accepted level of power. Remember that power is the likelihood that when a 

program/treatment has an effect, you will be able to distinguish it from zero in your sample. Therefore at 80% power, if an 

intervention’s impact is statistically significant at exactly the 5% level, then for a given sample size, we are 80% likely to detect 

an impact (i.e. we will be able to reject the null hypothesis.)  

 

In going through this exercise, we will use the example of an education intervention that seeks to raise test scores. This exercise 

will demonstrate how the power of our sample changes with the number of school children, the number of children in each 

classroom, the expected magnitude of the change in test scores, and the extent to which children within a classroom behave more 

similarly than children across classrooms. We will use a software program called Optimal Design, developed by Stephen 

Raudenbush et al. with funding from the William T. Grant Foundation. Additional resources on research designs can be found on 

their web site.  

USI NG THE OPTIMAL DESIGN SOFTWARE 

 

Optimal Design produces a graph that can show a number of comparisons: Power versus sample size (for a given effect), effect 

size versus sample size (for a given desired power), with many other options. The chart on the next page shows power on the y-

axis and sample size on the x-axis. In this case, we inputted an effect size of 0.18 standard deviations (explained in the example 

that follows) and we see that we need a sample size of 972 to obtain a power of 80%. 
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We will now go through a short example demonstrating how the OD software can be used to perform power calculations. If you 

haven’t downloaded a copy of the OD software yet, you can do so from the following website (where a software manual is also 

available): 

 

http://sitemaker.umich.edu/group-based/optimal_design_software 

 

Running the HLM software file “od” should give you a screen which looks like the one below: 

 

 
 

 

 

The various menu options under “Design” allow you to perform power calculations for randomized trials of various designs.  
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Let’s work through an example that demonstrates how the sample size for a simple experiment can be calculated using OD. 

Follow the instructions along as you replicate the power calculations presented in this example, in OD. On the next page we 

have shown a sample OD graph, highlighting the various components that go into power calculations. These are:  

 

 Significance level (α): For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance level 

of 95%) is commonly accepted. 

 

 Standardized effect size (δ): Optimal Design (OD) requires that you input the standardized effect size, which is the effect  

size expressed in terms of a normal distribution with mean 0 and standard deviation 1. This will be explained in further 

detail below. The default value for δ  is set to 0.200 in OD.  

 

 Proportion of explained variation by level 1 covariate (R2): This is the proportion of variation that you expect to be able 

to control for by including covariates (i.e. other explanatory variables other than the treatment) in your design or your 

specification. The default value for R2 is set to 0 in OD. 

 

 Range of axes (≤x≤ and ≤y≤): Changing the values here allows you to view a larger range in the resulting graph, which 

you will use to determine power. 

https://www.povertyactionlab.org/


 E X E R C I S E  C  .  P O W ER  C A L CU L A TI O N S U SI N G O P T I M A L D E SI GN   .   A B D U L L A T I F  J A M EE L P O V ER TY  A C TI ON  L A B   

P O V E R TY A C T I ON L A B .O R G  

 

Significance level 

Standardized effect size 

Proportion of explained variation by level 1 covariate 

Range of axes 

Graph showing power (on y-axis) vs. total 
number of subjects (n) on x-axis 

Inputted parameters; in this case, α was 

set to 0.05 and δ was set to 0.13. 

https://www.povertyactionlab.org/


P O V E R TY A C T I ON L A B .O R G  

We will walk through each of these parameters below and the steps involved in doing a power calculation. Prior to that though , it 

is worth taking a step back to consider what one might call the “paradox of power”. Put simply, in order to perfectly calculate the 

sample size that your study will need, it is necessary to know a number of things: the effect of the program, the mean and 

standard deviation of your outcome indicator of interest for the control group, and a whole host of other factors that we deal 

with further on in the exercise. However, we cannot know or observe these final outcomes until we actually conduct the 

experiment! We are thus left with the following paradox: In order to conduct the experiment, we need to decide on a sample 

size…a decision that is contingent upon a number of outcomes that we cannot know without conducting the experiment in the 

first place. 

 

It is in this regard that power calculations involve making careful assumptions about what the final outcomes are likely to be – for 

instance, what effect you realistically expect your program to have, or what you anticipate the average outcome for the control 

group being. These assumptions are often informed by real data: from previous studies of similar programs, pilot studies in your 

population of interest, etc. The main thing to note here is that to a certain extent, power calculations are more of an art t han a 

science. However, making wrong assumptions will not affect accuracy (i.e, will not bias the results). It simply affects the 

precision with which you will be able to estimate your impact. Either way, it is useful to justify your assumptions, which requires 

carefully thinking through the details of your program and context. 

 

With that said, let us work through the steps for a power calculation using an example. Say your research team is interested in 

looking at the impact of providing students a tutor. These tutors work with children in grades 2, 3 and 4 who are identified as 

falling behind their peers. Through a pilot survey, we know that the average test scores of students before receiving tutoring is 26 

out of 100, with a standard deviation of 20. We are interested in evaluating whether tutoring can cause a 10 percent increase in 

test scores. 

 

1) Let’s find out the minimum sample that you will need in order to be able to detect whether the tutoring program causes a 10 

percent increase in test scores. Assume that you are randomizing at the school level i.e. there are treatment schools and control 

schools. 

 

I. What will be the mean test score of members of the control group? What will the standard deviation be? 

 

Answer: To get the mean and standard deviation of the control group, we use the mean and standard deviation from 

our pilot survey i.e. mean = 26 and standard deviation = 20. Since we do not know how the control group’s 

scores will change, we assume that the control group’s scores will not increase absent the tutoring program and will 

correspond to the scores from our pilot data. 

  

II. If the intervention is supposed to increase test scores by 10%, what should you expect the mean and standard deviation of the 

treatment group to be after the intervention? Remember, in this case we are considering a 10% increase in scores over the 

scores of the control group, which we calculated in part I. 

 

 

 

Answer: Given that the mean of the control group is 26, the mean with a 10% increase would be 26*1.10 = 28.6. 

With no information about the sample distribution of the treatment group after the intervention, we have no reason for 

thinking that there is a higher amount of variability within the treatment group than the control group (i.e. we assume 

homogeneous treatment impacts across the population). In reality, the treatment is likely to have heterogeneous i.e. 

differential impacts across the population, yielding a different standard deviation for the treatment group. For now, we 

assume the standard deviation of the treatment group to be the same as that of the control group i.e. 20. 
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III. Optimal Design (OD) requires that you input the standardized effect size, which is the effect size expressed in terms of a 

normal distribution with mean 0 and standard deviation 1. Two of the most important ingredients in determining power are 

the effect size and the variance (or standard deviation). The standardized effect size basically combines these two ingredients 

into one number. The standardized effect size is typically denoted using the symbol δ (delta), and can be calculated using the 

following formula: 

 

δ =  
(Treatment Mean − Control Mean)

(Standard  Deviation)
 

 

Using this formula, what is δ? 

 

Answer: 𝛅 =  
(𝟐𝟖.𝟔−𝟐𝟔)

𝟐𝟎
= 𝟎. 𝟏𝟑  

 

IV. Now use OD to calculate the sample size that you need in order to detect a 10% increase in test scores. You can do this by 

navigating in OD as follows:  

 

Design  Person Randomized Trials  Single Level Trial  Power vs. Total number of people (n) 

 

 

 
  

 

There are various parameters that you will be asked to fill in: 

 

 
 

You can do this by clicking on the button with the symbol of the parameter. To reiterate, the parameters are:  

 

 Significance level (α): For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance 

level of 95%) is commonly accepted. 

 

 Standardized effect size (δ): The default value for δ is set to 0.200 in OD. However, you will want to change this 

to the value that we computed for δ in part C. 

 

 Proportion of explained variation by level 1 covariate (R2): This is the proportion of variation that you expect to be 

able to control for by including covariates (i.e. other explanatory variables other than the treatment) in your design 

or your specification. We will leave this at the default value of 0 for now and return to it later on. 

 

 Range of axes (≤x≤ and ≤y≤): Changing the values here allows you to view a larger range in the resulting graph,  

which you will use to determine power; we will return to this later, but can leave them at the default values for 

now. 
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What will your total sample size need to be in order to detect a 10% increase in test scores at 80% power? 

 

Answer: Once you input the various values above into the appropriate cells, you will get a plot with power on the y-

axis and the total number of subjects on the x-axis. Click your mouse on the plot to see the power and sample size for 

any given point on the line. 

  

Power of 80% (0.80 on the y-axis of your chart) is typically considered an acceptable threshold. This is the level of 

power that you should aim for while performing your power calculations. You will notice that just inputting the various 

values above does not allow you to see the number of subjects required for 80% power. You will thus need to increase 

the range of your x-axis; set the maximum value at 3000. This will yield a plot that looks the one on the following 

page.  

 

To determine the sample size for a given level of power, click your mouse cursor on the graph line at the appropriate 

point. While this means that arriving at exactly a given level of power (say power of exactly 0.80) is difficult, a very 

good approximate (i.e. within a couple of decimal places) is sufficient for our purposes.  

 

Clicking your mouse cursor on the line at the point where Power ~ 0.8 tells us that the total number of subjects, called 

“N”, is approximately 1,850. OD assumes that the sample will be balanced between the treatment and control groups. 

Thus, the treatment group will have 1850/2 = 925 students and the control group will have 1850/2 = 

925 students as well. 
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EST IMATING SAMPLE SI ZE FOR A  SI MPLE EXPERIMENT  

 

All right, now it is your turn! For the parts A – I below, leave the value of R2 at the default of 0 whenever you use OD; we will 

experiment with changes in the R2 value a little later.  

 

You decide that you would like your study to be powered to measure an increase in test scores of 20% rather than 10%. Try 

going through the steps that we went through in the example above. Let’s find out the minimum sample you will need in order t o 

detect whether the tutoring program can increase test scores by 20%. 

 

A. What is the mean test score for the control group? What is the standard deviation? 

 

Remember, the mean and standard deviation of the control group are simply the mean and standard deviation from the pilot survey. 

 

 

Mean: 26   

 

Standard deviation: 20 

 

B. If the intervention is supposed to increase test scores by 20%, what should you expect the mean and standard deviation of the 

treatment group to be after the intervention? 

 

Mean=26*1.2 = 31.2. With no other information, we assume the standard deviation of the treatment group to be the same as that 

of the control group i.e. 20. 

 

Mean: 31.2 

 

Standard deviation: 20 

 

C. What is the desired standardized effect size δ? Remember, the formula for calculating δ  is: 

 

δ =  
(Treatment Mean − Control Mean)

(Standard  Deviation)
 

   

𝛅: 
(𝟑𝟏. 𝟐 − 𝟐𝟔)

(𝟐𝟎)
=  𝟎. 𝟐𝟔 

 

 

  

 

D. Now use OD to calculate the sample size that you need in order to detect a 20% increase in test scores.  

 

Sample size (n): ~470 students 

 

Treatment: n/2 = 235 students 
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Control: n/2 = 235 students 

 

E. Is the minimum sample size required to detect a 10% increase in test scores larger or smaller than the minimum sample size 

required to detect a 20% increase in test scores? Intuitively, will you need larger or smaller samples to measure smaller effect  

sizes? 

 

Answer: Smaller. While we required a sample of at least 1,850 students to detect a 10% increase, we only needed a sample of 470 

students to detect a 20% increase in test scores. Intuitively, smaller effect sizes will require larger samples (as we see here) since there is 

a greater chance that the true effect will be masked by variance in the sample/ the sampling distributions of control and treatment 

groups are more likely to overlap. 

 

[Sketch out for participants two overlapping bell curves representing control and treatment sampling distributions; in one scenario, 

show the control distribution overlapping with the treatment distribution more than in the other (representing smaller and larger effect 

sizes respectively.) Use these two scenarios to explain why a smaller effect size would require a larger sample, since  larger samples are 

more likely to give you narrower sampling distributions (remind them of the Law of Large Numbers from the previous lecture), which 

will overlap less and thus increase your power.] 

 

F. Your research team has been thrown into a state of confusion! While one prior study led you to believe that a 20% increase in  

test scores is possible, a recently published study suggests that a more conservative 10% increase is more plausible. What 

sample size should you pick for your study? 

 

Answer: You should pick the more conservative/larger sample size of 1,850 students. While a sample of this size would still allow 

you to measure an increase of 20% should that happen, a smaller sample would not allow you to detect increases of less than 20%. 

 

G. Both the studies mentioned in part F found that although average test scores increased after the tutoring intervention, the 

standard deviation of test scores also increased i.e. there was a larger spread of test scores across the treatment groups. To 

account for this, you posit that instead of 20, the standard deviation of test scores may now be 25 after the tutoring program. 

Calculate the new δ for an increase of 10% in test scores. 

 

𝛅: 
(𝟐𝟖. 𝟔 − 𝟐𝟔)

(𝟐𝟓)
=  𝟎. 𝟏𝟎𝟒 

 

H. For an effect of 10% on test scores, does the corresponding standardized effect size increase, decrease, or remain the same i f 

the standard deviation is 25 versus 20? Without plugging the values into OD, all other things being equal, what impact does a 

higher standard deviation of your outcome of interest have on your required sample size? 

 

Answer: The standardized effect size when the standard deviation is 25 is 0.104 (as calculated in part G, which is smaller than the 

value of 0.13 (as calculated in the example case.) As we saw in part E, measuring a smaller effect size will necessitate a larger sample, 

thus a larger standard deviation of the outcome of interest – in this case test scores – will necessitate a larger sample. 

 

[Sketch out for participants two overlapping bell curves representing control and treatment sampling distributions; in one scenario, 

show the control distribution overlapping with a narrower treatment distribution than in the other (representing sampling distributions 

with smaller and larger variances respectively.) Use these two scenarios to explain why a larger variance implies a smaller standardized 

effect size, which would require a larger sample for similar reasons to those explained in part E. Remind participants that the standard 

error of the sampling distribution is a function of the standard deviation of the population (σ/√n) and since the standard error is 

increasing in the standard deviation, a higher standard deviation is intuitively likely to lead to more “noise”, thereby decreasing your 

power.] 
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I. Having gone through the intuition, now use OD to calculate the sample size required in order to detect a 10% increase in test 

scores, if the pre-intervention mean test scores are 26, with a standard deviation of 25. 

 

Sample size (n): ~2,900 students 

 

Treatment: n/2 = 1,450 students 

 

Control: n/2 = 1,450 students 

 

J. One way by which you can increase your power is to include covariates i.e. control variables that you expect will explain 

some part of the variation in your outcome of interest. For instance, baseline, pre-intervention test scores may be a strong 

predictor of a child’s post-intervention test scores; including baseline test scores in your eventual regression specification 

would help you to isolate the variation in test scores attributable to the tutoring intervention more precisely. You can account 

for the presence of covariates in your power calculations using the R2 parameter, in which you specify what proportion of the 

eventual variation in your outcome of interest is attributable to your treatment condition.  

 

Say that you have access to the pre-intervention test scores of children in your sample for the tutoring study. Moreover, you 

expect that pre-intervention test scores explain 50% of the variation in post-intervention scores. What size sample will you 

require in order to measure an increase in test scores of 10%, assuming standard deviation in test scores of 25, with a pre-

intervention mean of 26. Is this more or less than the sample size that you calculated in part I? 

 

As you calculated in part H, the δ is 0.104. Using this value for δ, you get an n of ~1,450. This is less than the sample size 

calculated in part I.  

 

[Note to TAs: OD has a bug in it where plotting multiple graphs for differing values of the R2 yields different results than plotting a 

single graph at a time. The answers given here are when you just plot a single graph, with R2 set to 0.500.] 

 

Sample size (n): ~1,450 students 

 

Treatment: n/2 = 725 students 

 

Control: n/2 = 725 students 

 

K. One of your colleagues on the research team thinks that 50% may be too ambitious an estimate of how much of the variation 

in test scores post-intervention is attributable to baseline scores. She suggests that 20% may be a better estimate. What happens 

to your required sample size when you run the calculations from part J with an R2 of 0.200 instead of 0.500? What happens if 

you set R2 to be 1.000?  

 

Tip: You can enter up to 3 separate values on the same graph for the R2 in OD; if you do, you will end up with a figure like the one below: 
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Answer: Decreasing the R2 from 0.500 to 0.200 increases the required sample size, as seen in the graph above. Intuitively, this is 

because you are now able to explain less of the variation in post-intervention scores using other variables i.e. there is more variation in 

your outcome of interest (test scores) that you cannot siphon out. For the same reason, increasing the R2 from 0 to 0.500 decreased 

your sample size. 

 

Setting the R2 to 1 does not produce any graph at all (notice that there is no line for that value in the graph above.) This is because 

an R2 of 1 essentially means that all of the variation in your outcome of interest is being explained by covariates i.e. none of it is 

attributable to your intervention. This would be the case regardless of the size of the sample, so a sample size calculation here is 

meaningless. 

 

 

SOME WRI NKLES: LI MITED RESOURCES AND IMPERFECT COMPLIANCE 

 

L. You find out that you only have enough funds to survey 1,200 children. Assume that you do not have data on baseline 

covariates, but know that pre-intervention test scores were 26 on average, with a standard deviation of 20. What standardized 

effect size (δ) would you need to observe in order to survey a maximum of 1,200 children and still retain 80% power? Assume 

that the R2 is 0 for this exercise since you have no baseline covariate data. 

 

Hint: You will need to plot “Power vs. Effect size (delta)” in OD, setting “N” to 1,200. You can do this by navigating in OD as follows: 

Design  Person Randomized Trials  Single Level Trial  Power vs. Effect Size (delta). Then, click on the point of your graph that 

roughly corresponds to power = 0.80 on the y-axis. 

 

δ = ~0.163  
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M. Your research team estimates that you will not realistically see more than a 10% increase in test scores due to the intervent ion.  

Given this information, is it worth carrying out the study on just 1,200 children if you are adamant about still being powered 

at 80%? 

 

Answer: Recall from the example above (or run through the calculation again, it won’t take very long) that given the parameters 

noted in part L, a 10% increase in test scores corresponds to a δ of 0.13. As you saw in part L, at 80% power, you will not be able to 

detect a standardized effect of less than 0.163, which is more than the effect that you realistically expect to see. Given this, you should 

think very seriously about whether or not you should carry on with the study given your constraints. 

 

N. Your research team is hit with a crisis: You are told that you cannot force people to use the tutors! After some small focus 

groups, you estimate that only 40% of schoolchildren would be interested in the tutoring services. You realize that this 

intervention would only work for a very limited number of schoolchildren. You do not know in advance whether students are 

likely to take up the tutoring service or not. How does this affect your power calculations? 

 

Answer: It affects the mean of the treatment group because only 40% of the group will experience any increase in test scores, if at 

all. The rest of the treatment group should still have the same test scores. This is similar to saying that the effect size will be “smaller”. 

 

O. You have to “adjust” the effect size you want to detect by the proportion of individuals that actually gets treated. Based on  this, 

what will be your “adjusted” effect size and the adjusted standardized effect size (δ) if you originally wanted to measure a 10% 

increase in test scores? Assume that your pre-intervention mean test score is 26, with a standard deviation of 20, you do not 

have any data on covariates, and that you can survey as many children as you want.  

 

Hint: Keep in mind that we are calculating the average treatment effect for the entire group here. Thus, the lower the number of children 

that actually receives the tutoring intervention, the lower will be the measured effect size. 

 

Answer: The adjusted effect size will simply be: (proportion that takes-up tutoring)*(unadjusted effect size) 

 Adjusted effect size = 0.40*0.10 = 0.04 

 δ = (0.04*26)/20 = 0.052 

 

P. What sample size will you need in order to measure the effect size that you calculated in part O with 80% power? Is this 

sample bigger or smaller than the sample required when you assume that 100% of children take up the tutoring intervention 

(as we did in the example at the start)? 

 

Sample size (n): ~11,580 students 

 

Treatment: n/2 = 5,790 students 

 

Control: n/2 = 5,790 students 

  

As we see above, the sample adjusted for partial compliance is significantly larger than the sample required with perfect compliance. It 

is thus critical to account for imperfect compliance with your intervention when calculating your sample size and power. 

 

[TAs may additionally want to read the following post on Development Impact and use it to illustrate just how dramatic the effects of 

partial compliance/incomplete take-up can be: http://blogs.worldbank.org/impactevaluations/power-calculations-101-dealing-

with-incomplete-take-up]  
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CLUSTERED DESIGNS 

 

Thus far we have considered a simple design where we randomize at the individual-level i.e. school children are either assigned to 

the treatment (tutoring) or control (no tutoring) condition. However, spillovers could be a major concern with such a design:  If 

treatment and control students are in the same school, let alone the same classroom, students receiving tutoring may affect the 

outcomes for students not receiving tutoring (through peer learning effects) and vice versa. This would lead us to get a biased 

estimate of the impact of the tutoring program.  

 

In order to preclude this, your research team decides that it would like to run a cluster randomized trial, randomizing at the 

school-level instead of the individual-level. In this case, each school forms a “cluster”, with all the students in a given school 

assigned to either the treatment condition, or the control one. Under such a design, the only spillovers that may show up would 

be across schools, a far less likely possibility than spillovers within schools.  

 

Since the behavior of individuals in a given cluster will be correlated, we need to take an intra-cluster or intra-class 

correlation (denoted by the Greek symbol ρ) into account for each outcome variable of interest. Remember, ρ is a 

measure of the correlation between children within a given school (see key vocabulary at the start of this exercise.) ρ tells us how 

strongly the outcomes are correlated for units within the same cluster. If students from the same school were clones (no 

variation) and all scored the same on the test, then ρ would equal 1. If, on the other hand, students from the same schools were 

in fact independent and there was zero difference between schools or any other factor that affected those students, then ρ would 

equal 0. 

 

The ρ or ICC of a given variable is typically determined by looking at pilot or baseline data for your population of interest. 

Should you not have the data, another way of estimating the ρ is to look at other studies examining similar outcomes amongst 

similar populations. Given the inherent uncertainty with this, it is useful to consider a range of ρs when conducting your power 

calculations (a sensitivity analysis) to see how sensitive they are to changes in ρ. We will look at this a little further on. While the 

ρ can vary widely depending on what you are looking at, values of less than 0.05 are typically considered low, values between 

0.05-0.20 are considered to be of moderate size, and values above 0.20 are considered fairly high. Again, what counts as a low ρ 

and what counts as a high ρ can vary dramatically by context and outcome of interest, but these ranges can serve as initial rules of 

thumb. 

 

Based on a pilot study and earlier tutoring interventions, your research team has determined that the ρ is 0.17. You need to 

calculate the total sample size to measure a 15% increase in test scores (assuming that test scores at the baseline are 26 on 

average, with a standard deviation of 20, setting R2 to 0 for now). You can do this by navigating in OD as follows:  

 

Design  Cluster Randomized Trials with person-level outcomes  Cluster Randomized Trials  Treatment at Level 2  

Power vs. total number of clusters (J) 

 

https://www.povertyactionlab.org/
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In the bar at the top, you will see the same parameters as before, with an additional option for the intra-cluster correlation. Note 

that OD uses “n” to denote the cluster size here, not the total sample size. OD assigns two default values for the effect siz e (δ) 

and the intra-cluster correlation (ρ), so do not be alarmed if you see four lines on the chart. Simply delete the default values and 

replace them with the values for the effect size and intra-cluster correlation that you are using.  

 

Q. What is the effect size (δ) that you want to detect here? Remember that the formula for calculating δ is: 

 

δ =  
(Treatment Mean − Control Mean)

(Standard  Deviation)
 

   

𝛅: 
(𝟐𝟗. 𝟗 − 𝟐𝟔)

(𝟐𝟎)
=  𝟎. 𝟏𝟗𝟓 

 

R. Assuming there are 40 children per school, how many schools would you need in your clustered randomized trial?  

 

Answer: ~160 schools 

 

S. Given your answer above, what will the total size of your sample be? 

 

Sample size:  N = 160*40 = 6,400 

 

Treatment:   (J/2)*n = 80*40 = 3,200 

 

Control:   (J/2)*n = 80*40 = 3,200 

 

T. What would the number of schools and total sample size be if you assumed that 20 children from each school were part of the 

sample? What about if 100 children from each school were part of the sample? 

 

 20 children per school 40 children per school 100 children per school 

Number of schools: 176 160 149 

Total no. of students: 3,520 6,400 14,900 

https://www.povertyactionlab.org/
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U. As the number of clusters increases, does the total number of students required for your study increase or decrease? Why do 

you suspect this is the case? What happens as the number of children per school increases? 

 

Answer: Sample size decreases as the number of clusters increases i.e. you need fewer students in total as the number of clusters 

increases. This is because a larger number of clusters gives us more variation. Moreover, we notice that the total sample size increases 

as the number of children per school increases i.e. the decrease in the number of clusters does not make up the increase in the number of 

children per cluster. Intuitively, with the ICC being moderately high at 0.17, adding more observations per cluster does not buy you as 

much power as adding more clusters (since there is greater variation across clusters than within clusters.) This will be illustrated with 

the next question. 

 

 

V. You realize that you had read the pilot data wrong: It turns out that the ρ is actually 0.07 and not 0.17. Now what would the 

number of schools and total sample size be if you assumed that 20 children from each school were part of the sample? What 

about if 40 or 100 children from each school were part of the sample? 

 

 20 children per school 40 children per school 100 children per school 

Number of schools: 98 80 70 

Total no. of students: 1,960 3,200 7,000 

 

 

W. How does the total sample size change as you increase the number of individuals per cluster in part V? How do your answers 

here compare to your answers in part T? 

 

Answer: Sample size decreases as the number of clusters increases i.e. you need fewer students in total as the number of clusters 

increases. Moreover, we notice that the total sample size increases as the number of children per school increases i.e. the decrease in the 

number of clusters does not make up the increase in the number of children per cluster. However, we notice that the increase in sample 

size is more moderate than in part T; the total sample size for a cluster size of 100 was over 4 times as much as that for a cluster size 

of 20 in part T, whereas in part V, the sample size for a cluster size of 100 is about 3.5 times as much as that for a cluster size of 20. 

Intuitively, this is because the intra-cluster correlation in this case is lower than in the previous case, so while adding individuals to 

clusters is still more inefficient than adding clusters from a power perspective, it is less inefficient when the intra-cluster correlation is 

not that high.  

 

X. Given a choice between offering the tutors to more children in each school (i.e. adding more individuals to the cluster) versus 

offering tutors in more schools (i.e. adding more clusters), which option is best purely from the perspective of improving statistical 

power? Can you imagine a situation when there will not be much difference between the two from the perspective of power? 

 

Answer: Adding more clusters is generally a more efficient way to gain power than adding more individuals per cluster. By adding 

more clusters, you gain more variation as opposed to adding more individuals per cluster where you are gaining more observations that 

are likely to be correlated with the observations you already have. One situation in which it may not make much difference is when the 

intra-cluster correlation is close to 0. In this case, adding more individuals to a cluster is not too different from adding more clusters 

since individuals within a cluster are not much more correlated in their behavior than individuals across clusters.  

 

https://www.povertyactionlab.org/
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[Encourage participants to compare the total sample size for different cluster sizes when the intra-cluster correlation is set to 0 as a 

way of making this more apparent. On the same chart, you can also try varying the number of individuals per cluster and the number 

of clusters, for a given standardized effect size, to illustrate how much more power adding clusters rather than individuals to a cluster 

can buy you when the ICC is non-zero.] 
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