
P O V E R T Y A C T I O N L A B . O R G     

 

 
 

 

EXERCISE: HOW TO DO POWER 

CALCULATIONS  

 

TABLE OF CONTENTS 

Introduction (5 mins) .................................................................................................................................................... 2 

Using the EGAP Power Calculator .............................................................................................................................. 3 

Estimating Sample Size Using Results From a Similar Study (10 mins) ...................................................................... 3 

Estimating Sample Size Using Data From a Pilot Study (20 Mins) ............................................................................. 5 

Limited Resources and Imperfect Compliance (10 mins) ....................................................................................... 9 

Clustered Designs (20 mins)....................................................................................................................................... 10 

Resources .................................................................................................................................................................... 14 
 



P O V E R T Y A C T I O N L A B . O R G  

 

 

KEY VOCABULARY 

Significance 

level: 

The probability of committing a type I error (a false positive: concluding that the 

program has an effect when it actually does not). Statistical tests are typically 

performed at significance levels of 1%, 5%, or sometimes 10% to determine whether 

one group (e.g., the experimental group) is different from another group (e.g., the 

comparison group) on certain outcome indicators of interest (for instance, test scores 

in an education program). The significance level is typically denoted by alpha (α).  

Standard 

deviation: 

For a particular indicator, a measure of the variation (or spread) of a sample or 

population. Mathematically, this is the square root of the variance. 

Standardized 

effect size: 

A standardized (or normalized) measure of the [expected] magnitude of the effect of 

a program. Mathematically, it is the difference between the treatment and control 

group (or between any two treatment arms) for a particular outcome, divided by the 

standard deviation of that outcome in the control (or comparison) group. 

Type II error: A false negative: finding no evidence of impact when a program/treatment actually 

has an effect. Type II error is often denoted by kappa (κ).  

Power: The likelihood of avoiding a type II error, that is, the probability that your statistical test 

will distinguish the program effect (correctly) from zero when the program/treatment 

actually has an effect, given the sample size and the population the sample is drawn 

from). Power mirrors the significance level, α: as α increases (e.g., from 1% to 5%), the 

probability of rejecting the null hypothesis increases, which translates to a more 

powerful test. 

Cluster: The unit level at which a sample is randomized (e.g., school), each of which typically 

contains several units of observation that are measured (e.g., students). Generally, 

observations within the same unit of randomization that are potentially correlated 

with each other should be clustered, and the required sample size should be 

calculated with an adjustment for clustering. 

Intra-cluster 

correlation 

coefficient 

(ICC): 

A measure of the correlation between observations within the same cluster. For 

instance, if your experiment is clustered at the school level and the outcome of 

interest is test scores, the ICC would be the level of correlation in test scores for 

children in a given school relative to the overall distribution of test scores of students in 

all schools. 

 

INTRODUCTION (5 MINS) 

In this exercise, we will practice power calculations using estimates of effect sizes and outcome variance. The 

exercise will also help explain the considerations that go into determining sample size and randomization 

design when designing a randomized evaluation for an education intervention. Should the intervention be at 

the school level or the student level? Should we sample every student in just a few schools? Should we sample 
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a few students from many schools? How many students or schools must we sample to confidently avoid 

making a type II error? 

 

We will work through these questions by determining the sample size that allows us to detect a specific effect 

with at least 80% power, which is a commonly accepted level of power (such as by organizations that fund 

research). Recall that power is the probability of avoiding a false negative, also known as a type II error. That 

is, power is the likelihood that, when a treatment or program has an effect, you will be able to distinguish 

this effect from zero in your sample. Therefore, if our sample is chosen for 80% power and we accept that 

an intervention had an impact if it is statistically significant at the 5% level (a commonly accepted level of 

significance), then at the given sample size, we are 80% likely to correctly reject the null hypothesis (typically, 

the null hypothesis is that the program had no effect). Alternatively, if a study has not been set up to achieve 

a commonly accepted level of power, it is considered to be “underpowered” and is at risk of a type II error. 

 

Throughout this exercise, we will use the example of an education intervention that seeks to raise test scores. 

We will explore how our study’s power changes with the total number of students, the number of students 

in each classroom, the expected magnitude of the change in test scores, and the extent to which students 

within a classroom appear more similar than students across classrooms. 

 

We will walk through how to do simple power calculations in two ways: (1) by using results from a similar 

study to estimate the effect size and standard deviation of the outcome variable for our program, and (2) by 

using pilot data from our program (the Balsakhi study in the lecture) to calculate these components ourselves.1 

USING THE EGAP POWER CALCULATOR 

 

For this exercise, we will use a calculator for power calculations developed by Alexander Coppock for EGAP 

(Evidence in Governance and Politics). The calculator was developed using the Shiny package in R and can 

be used to conduct power calculations for individual-level randomization, clustered designs, and with binary 

or continuous outcome variables. The calculator can be accessed at https://egap.shinyapps.io/power-app/. 

ESTIMATING SAMPLE SIZE USING RESULTS FROM A SIMILAR STUDY (10 MINS) 

Let’s work through this part together. (TA lead the large group.) Recall, the key components needed to 

estimate sample size using a simple (non-clustered) design are: 

• Significance level (α): Typically denoted by α, the significance level is the probability of a type I 

error, or falsely concluding that there is an effect when there is none (falsely rejecting the null 

hypothesis). The EGAP calculator default value of α=0.05 is commonly accepted.  

 

1 The “similar study” results shown in Table 1 are fictional and were created for the purposes of this exercise. The “pilot data” 
provided is a random subset of the actual Balsakhi program survey data. The full dataset for the Balsakhi program is available on 
the J-PAL Dataverse: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UV7ERB. 

https://egap.shinyapps.io/power-app/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UV7ERB
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• Power (1-κ): The probability of avoiding a type II error, where a type II error is falsely concluding 

there is no effect when there is one. Power is typically set at 80%, though some researchers aim for 

90%. 

• The effect size of the program for the outcome of interest.  

• The variance (or the root of the variance, the standard deviation) of the outcome of interest. 

 

More complex designs, such as clustered designs or using covariates to improve the precision of your 

estimates, require additional components to estimate sample size, which will be explained in further detail 

below. 

 

The paradox of power is that we cannot know two of the above components, namely the effect size and the 

variance of the outcome of interest, until we conduct the experiment! That is, in order to conduct the 

experiment, we need to decide on a sample size—but this decision is contingent on a number of outcomes 

that we cannot know without conducting the experiment in the first place. 

  

In this regard, power calculations involve making careful assumptions about certain outcomes, such as the 

effect you realistically expect your program may have or the variation you expect in the outcome variable. 

These assumptions are often informed by real data, such as from previous studies of similar programs, or pilot 

studies in your population of interest. Making wrong assumptions will not bias the results of the study but 

will affect the likelihood of a type II error, or failing to detect an effect when there is one. Regardless of the 

source of the data you use to inform your power calculations, it is important to justify your assumptions, 

which requires carefully thinking through the details of your program and context. 

 

We will start by using data from a previous study looking at a similar program to inform our power 

calculations. Table 1 shows the regression results from a program in Andhra Pradesh, India that sought to 

increase student test scores through intensive tutoring. The table also shows the mean and standard deviation 

of the pre-treatment outcome variable, pre-test scores. We will use the effect size and distribution of test 

scores in this study as a benchmark to conduct power calculations for our own study.  

 

Table 1 

Effect of the Andhra Pradesh Tutoring Program on Post-test Scores 

Received tutor 
3.8*** 

(1.12) 

Constant  

 

35.9 

(0.83) 

Average pre-test score 36.4 

Standard deviation of pre-test score 15.2 
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N 694 

Notes: Test scores are out of 60 possible points. Standard error is in 
parentheses.  
***Statistically significant at the 1% level. 

 

 

A. What is β, the treatment effect size? 

 

Answer: 3.8 points – the treatment effect is the increase in test scores for those who 

received the tutoring program. 

 

B. What is the standard deviation of the dependent variable? 

 

Answer: 15.2 – test score is our dependent variable. Currently, we do not expect the 

tutoring program to change the spread of test scores, so we use the standard deviation of 

pre-test scores. 

 

 

If you haven’t already, open the EGAP calculator in your web browser by going to: 

https://egap.shinyapps.io/power-app/. Next, set the desired power and significance – for this exercise 

we’ll use the standard values of α=0.05 and 1-κ=0.8. Keep the maximum number of subjects at the default 

and leave the “Clustered design?” and “Binary dependent variable?” boxes unchecked right now; we’ll return 

to these later. 

 

C. Plug in the values you found in questions A and B. Given these parameters and a significance level of 

α=0.05, what is the sample size needed for 80% power?  

 

Answer: 503 

 

D. The EGAP calculator gives the total sample size. Assuming half allocated to treatment and half allocated 

to control, how many do you need in your treatment and control groups? 

 

Number in treatment: 252 (can’t have half a person) 

Number in control: 252 (can’t have half a person) 

ESTIMATING SAMPLE SIZE USING DATA FROM A PILOT STUDY (20 MINS) 

Now it’s your turn! Suppose you have data from a pilot study your team did for this project. This data can be 

found in (xls file). Here, test scores are again our outcome of interest, and the pilot study was done in the 

same population from which you’ll draw your sample for the main study of the Balsakhi tutoring program. 

https://egap.shinyapps.io/power-app/
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E. What is the mean and standard deviation of the dependent variable?  

Mean: 33 

Standard deviation: 14.3 

 

F. After the tutoring program, what do you expect for the mean test score in the control group? What 

standard deviation do you expect?  

Mean: 33 – we do not expect the tutoring program to affect the distribution of test scores 

for the control group, meaning both the mean test score and the standard deviation of 

the test score should remain the same. 

Standard deviation: 14.3 – see above. 

After deliberations with your partner organization, you’ve decided that you need an effect size of at least 10% 

for the program to be worth the its costs, which is roughly what the previous study from A-D found. 

G. If you observe a 10% increase in test scores as a result of the tutoring program, what is the mean test 

score for the treatment group after the intervention? What do you expect for the standard deviation of 

test scores in the treatment group? What is the effect size? 

Mean test score in treatment group: 33 x 1.1 = 36.3 

Standard deviation of test scores in treatment group: 14.3 – currently, we do not expect 

the tutoring program to change the spread of test scores in the treatment group (though, 

realistically, it is probably the case that students would respond differently to tutoring, 

which would increase the variance of test scores. We will return to this below.) 

Effect size: 36.3 - 33 = 3.3 

H. Given α=0.05 and the standard deviation of the outcome variable you found above, what is the minimum 

sample size you need to detect the effect size you found in G with 80% power? 

Total number of participants: 590 

Number in treatment: 590/2 = 295 

Number in control: 590/2 = 295 

 

A new study has come out finding a 5% increase in test scores as a result of a tutoring program in a different 

city in Gujarat (the same state where your program will take place). While the prior study of the tutoring 

program in Andhra Pradesh led you to believe that a 10% increase in test scores is possible, the more recent 

study suggests that a smaller increase of 5% is more reasonable. 

I. What is the effect size for a 5% increase in test scores? 
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Answer: A 5% increase in test scores mean a post-tutoring score of 33 x 1.05 = 34.65 

Effect size = 34.65 – 33 = 1.65 

J. Now calculate the minimum sample size that is needed to detect the effect size you found in I. Use the 

standard deviation you found in part G. 

Total number of students: 2359 
Number in treatment: 1180 (can’t have ½ student) 
Number in control: 1180 (can’t have ½ student) 

 

K. Explain what you found about sample sizes needed to detect a 5% increase in test scores versus a 10% 

increase in test scores, given no changes in the variance of the outcome variable. Intuitively, will you 

need larger or smaller samples to measure effect sizes that are smaller, relative to their spread? Why? 

Answer: You will need a larger sample to detect an effect size that is smaller, relative to 

the standard deviation. While we require a sample of at least 2359 students to detect an 

effect size of 5%, we only require a sample of 590 students to detect a 10% increase in test 

scores. Intuitively, given the same variation in test scores, for smaller effect sizes there 

will be a greater chance that the true effect will be masked by this variance. For larger 

sample sizes, we expect narrower sampling distributions for treatment and control 

groups. 

[Optional: Sketch out for participants two scenarios of overlapping bell curves 

representing control and treatment sampling distributions. The control distribution 

(mean, variance) should be the same in both scenarios. In one scenario, show the 

treatment distribution overlapping with the control distribution more than in the other 

scenario, leaving the variance of the treatment distribution the same in both scenarios. 

The scenario with more overlap between the two distributions represents a smaller 

effect size, relative to the variance, while the scenario with less overlap between the two 

distributions represents a larger effect size, relative to the variance. You can also sketch 

out a third set of overlapping bell curves, where the variance for both distributions is 

smaller than in the first two scenarios (and where there is thus less overlap between the 

treatment and control distributions). This represents a larger sample size. Remind 

participants of the Law of Large Numbers from the previous lecture and that larger 

samples are more likely to give you narrower sampling distributions, which will overlap 

less. This is a graphical representation of how power decreases with the effect size, 

relative to the variance, but increases with the sample size.] 

For example: 
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Smaller effect size, relative to the variance 

 

 

Larger effect size, relative to the variance 

 

Smaller variance (note that the means are the same as in the first graphic above, with the 

smaller effect size, but the variance is smaller) 

L. Recall that in the first part of the exercise, you used an effect size of 10%, based on results from a previous 

study, to do your power calculations. With the new study suggesting that a 5% increase in test scores is 
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more reasonable, you are now faced with a dilemma: what sample size should you pick for your study, 

and why?  

Answer: If you have the funding to cover the larger sample size, you should err on the 

side of caution and go with the more conservative estimate. The risk of using the smaller 

sample size, based on an effect size of 10%, is that the tutoring program will increase test 

scores, but the true effect size will be too small to detect based on a sample of 590, as found 

above. This would lead to a type II error and waste resources. 

While the new study found that test scores increased after the tutoring intervention, it also found that the 

standard deviation of test scores increased, meaning that there was a larger spread of test scores across the 

treatment group. This is because students respond differently to tutoring; some students’ test scores increased 

dramatically after the tutoring program, while others’ increased only slightly. To account for the higher 

variance in test scores, you posit that instead of the standard deviation you found in G, the standard deviation 

of test scores may now be 16.5 after the tutoring program. 

M. Without going through the calculations, does the minimum sample size needed to detect a 10% increase 

in test scores increase, decrease, or remain the same when the standard deviation of test scores rises to 

16.5? 

Answer: It increases. The size of the treatment effect, relative to the standard deviation, 

has decreased. Intuitively, because the underlying variation in test scores in the treatment 

group has increased without the distribution shifting left or right, you are more likely to 

randomly select by chance a treatment group that is on the bottom tail of the distribution 

(and so looks more similar to the control group after the intervention).  

N. Having gone through the intuition, now calculate the minimum sample size needed to detect a 10% 

increase in test scores, given a standard deviation in test scores of 16.5. 

Answer: The calculator outputs 785 in total. Since you can’t have half a person, this 

amounts to is 393 each in the treatment and control groups, so 786 in total. 

LIMITED RESOURCES AND IMPERFECT COMPLIANCE (10 MINS) 

Sometimes, rather than calculate a budget based on sample size, we have a maximum budget and need to 

decide whether it is worth doing the study (that is, whether we are sufficiently powered to detect a given 

effect size, conditional on budgetary limitations). 

 

O. You find out that you only have enough funds for a sample size of 2400 in total. Using the more recent 

paper’s estimate of a roughly 5% increase in test scores and a standard deviation of test scores of 16.5, 

what is the power of your experiment? (An approximate answer is okay; it’s hard to get exact power on 

the calculator this way.) Is it worth carrying out the study on just 2400 students? How would you 

determine this? 
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Answer: Power is roughly 70% (with an effect size of 1.65 and standard deviation of 16.5).  

The danger here is that you will not be powered to detect a 5% increase and could thus 

falsely fail to reject the null hypothesis, or commit a type II error. Note that if you did not 

think the standard deviation changed as a result of the tutoring program, you would be 

sufficiently powered (with an effect size of 1.65 and standard deviation of 14.3).  

Encourage participants to think through the downsides of either scenario – increasing 

the budget, vs. failing to detect an effect with an additional 10% probability. What is it 

“worth” to get this extra power? 

 

P. If you use the 10% increase in test scores as suggested by the first study, is it worth carrying out the study 

on just 2400 students? What is the power of your experiment? Assume a standard deviation of test scores 

of 16.5. 

 

Answer: Yes, you are very well-powered (near 1, or 100%). Recall above that a sample size 

of 785 total was needed for 80% power, given an effect size of 3.3 and standard deviation 

of 16.5. 

 

Q. Your research team has conducted some focus groups and determined that only 40% of students would 

be interested in the tutoring services—that is, not every student who is offered the tutoring program will 

choose to attend. How does this affect your power calculations? Will the required sample size to detect 

a 10% increase in test scores increase, decrease, or remain the same? Why? Here, you should assume that 

noncompliance is random—otherwise, and as discussed in case study 4, we would have to worry about 

selection bias from noncompliance (for example, weaker students may be more likely to take up the 

tutoring services, which would give you an underestimate of the program’s impact). 

 

Answer: You will need to increase the sample size substantially to detect a 10% increase 

in test scores. The tutoring program will still have the same effect size for compliers, but 

now the treatment group will be a mix of compliers and non-compliers (for whom we 

expect to see no change in test scores). So the treatment group average in score increases 

will only be 3.3 x 0.40 = 1.32.  

 

 

CLUSTERED DESIGNS (20 MINS)  

(Time permitting: for groups that move quickly, you may be able to get through this portion 

in class. Otherwise, participants can finish this section on their own.) 
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Thus far we have considered a simple design where we randomize at the individual level, where students are 

either assigned to the treatment (tutoring) or control (no tutoring) condition. However, spillovers could be 

a major concern with such a design: if treatment and control students are in the same school, let alone the 

same classroom, students receiving tutoring may affect the outcomes for students not receiving tutoring (such 

as through peer learning effects) and vice versa. This would lead us to get a biased estimate of the impact of 

the tutoring program. Here, we would likely underestimate the effect of the tutoring program, because 

students in the control group would benefit from it as well. 

 

To avoid this issue, your research team decides to run a cluster randomized trial, randomizing at the school 

level instead of the individual level. In this case, each school forms a “cluster,” with all of the students in a 

given school assigned to either the treatment group or the comparison group. Under such a design, the only 

spillovers that may show up would be across schools, a far less likely possibility than spillovers within schools. 

 

Generally, individuals within a cluster tend to be more similar to each other than individuals from different 

clusters. For example, students in the same school share the same teachers, the same peers, and may share 

similarities in socioeconomic status and other factors that help determine school performance. This 

correlation in behavior of individuals within a given cluster is called intra-cluster or intra-class 

correlation, and we need to account for it in our power calculations using rho (ρ), the intra-cluster 

correlation coefficient (ICC), for our outcome of interest. Remember, ρ is a measure of the degree of 

similarity between children within a given school (see key vocabulary at the start of this exercise); it tells us 

how strongly the outcomes are correlated for units within the same cluster (specifically, it is the share of the 

variance between clusters relative to the overall variance). If students from the same school all scored exactly 

the same on the test, then ρ would equal 1. If, on the other hand, test scores of students from the same school 

are independent, and there was zero correlation in test scores of students within the same school, then ρ 

would equal 0. Realistically, ρ will fall somewhere between these two extremes. 

 

The ICC (ρ) of a given variable is typically determined by looking at pilot or baseline data for your population 

of interest. Should you not have this data, another way of estimating ρ is to look at other studies examining 

similar outcomes amongst similar populations. Given the inherent uncertainty with extrapolating across 

contexts and populations, it is useful to consider a range of ρs when conducting your power calculations to 

see how sensitive they are to changes in ρ, a process known as sensitivity analysis. We will look at this a little 

further on; assumptions about ρ will have important implications for power calculations. While ρ can vary 

widely depending on what you are looking at, values of less than 0.05 are typically considered low, values 

between 0.05-0.20 are considered to be of moderate size, and values above 0.20 are considered fairly high. 

Again, what counts as a low versus high ρ can vary dramatically by context and outcome of interest, but these 

ranges serve as initial rules of thumb. 

 

First, let’s look at how power changes with the ICC. Start by checking the “Clustered Design?” box in the 

EGAP calculator. With this box checked, the blue line on the graph shows power with individual-level 
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randomization, while the green line shows power for a clustered design, both for a given a set of parameters 

(significance level, treatment effect size, standard deviation of the outcome variable, ICC, number of clusters 

per arm, power target, and sample size). Keep the significance level at α=0.05 and the power target at 0.8, 

and set the treatment effect size based on the 10% increase in test scores you found earlier, with a standard 

deviation of 16.5. Keep the number of clusters per arm at 40, but increase the maximum number of subjects 

to 5000 (which rescales the graph and lets you see more easily what’s going on). 

 

R. The ICC default setting on this calculator is 0.5. What happens to the green line, relative to the blue line, 

as you slowly increase it to 1? What happens as you slowly decrease it down to 0? Intuitively, why is the 

green line moving closer to or further from the blue line as you change the ICC? 

 

Answer: The intra-cluster correlation reflects the level of similarity between individuals 

within a cluster (with respect to our outcome variable). If the ICC is 0, there is zero 

correlation in outcomes for students in the same school (cluster). Here, each individual 

student can be thought of as a unique cluster, and this case is statistically equivalent to 

individual-level randomization (as shown by the overlap in lines on the chart as the ICC 

goes to 0). On the opposite side of the spectrum, if outcomes of students within a school 

were perfectly correlated (i.e., ICC=1), our 80 clusters in total would be equivalent to 80 

sampling units, or would be the same as sampling just 80 students.  

 

Based on the pilot study and earlier tutoring interventions, your research team has estimated a ρ of 0.11. You 

need to calculate the total sample size to measure a 10% increase in test scores (assuming that the mean test 

score at baseline is 33, with a standard deviation of 16.5). You can do this by checking the clustered design 

box in the EGAP calculator and adjusting the intra-cluster correlation bar to 0.11. 

 

S. Change the number of clusters per arm to 55. Given 55 clusters per arm (so 110 clusters in total), a 10% 

increase in test scores, a standard deviation of 16.5, and an ICC of 0.11, how many subjects in total do 

you need for 80% power? How many in each cluster? How does this compare to the sample size you 

found in part N, using individual-level randomization? Why? 

 

Answer: You need a sample size of at least 3,548. With 110 clusters, this means an average 

of at least 32 participants per cluster (since you can’t have a fraction of a person in a 

cluster). This is much more than the 785 we found in N. See answer above for the 

intuition. 

 

 

With an individual-level randomization, we can only manipulate the number of participants in the study. But 

with a clustered design, we can manipulate the number of clusters and the number of participants in each 

cluster. The two affect power in slightly different ways and have different costs—it is typically going to be 

cheaper to add participants to a cluster than to add clusters, though sometimes there is a limit on the number 
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of participants in a cluster (e.g., a set number of students in a class). We’ll now examine how manipulating 

the number of clusters versus the number of participants per cluster affects power, starting with the number 

of clusters.   

 

T. Using the same effect size, standard deviation, and ICC as in S, how many students do you need in total 

if you have 60 clusters per arm, or 120 clusters in total? How many students per cluster is this? Fill in the 

table below. 

 

Answer: You need a sample size of at least 2,648. With 120 clusters, this means an average 

of at least 22 participants per cluster, which works out to be 120 x 22 =2640.  

 

U. If you have 50 clusters per arm, or 100 clusters in total, how many students do you need per cluster and 

in total? Fill in the table below. 

 

Answer: You need a sample size of at least 5990. With 100 clusters, this means an average 

of at least 60 participants per cluster (since you can’t have a fraction of a person in a 

cluster). 

 

 
50 schools per arm (100 

schools in total) 
55 schools per arm (110 

schools in total) 
60 schools per arm (120 

schools in total) 

Number of students 
per school: 

60 32 22 

Total no. of students: 6,000 (5,990 also ok) 3,520 (3,548 also ok) 2,640 (2,648 also ok) 

Note: The calculator spits out the numbers in parentheses as answers, while mathematically 

the number of students per cluster times the number of clusters (provided by the calculator) 

equals the numbers not in parentheses. These discrepancies are due to rounding, since it is 

impossible to have a fraction of a person.   

 

V. As the number of clusters increases, does the total number of students required for your study increase 

or decrease? Why do you suspect this is the case?  

 

Answer: Sample size decreases as the number of clusters increases, i.e., you need fewer students in total 

as the number of clusters increases. A larger number of clusters will give you a more representative sample. 

 

W. You realize that you had read the pilot data wrong: It turns out that ρ is actually 0.07 and not 0.11. Now 

what would the number of students per cluster and total number of students if you had 50 schools per 

arm (or 100 schools in total)? What about with 55 schools per arm or 60 schools per arm? Fill in the table 

below.  
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50 schools per arm (100 

schools in total) 
55 schools per arm (110 

schools in total) 
60 schools per arm (120 

schools in total) 

Number of students 
per school: 

17 14 12 

Total no. of students: 1,696 (1,700 also ok) 1,514 (1,540 also ok) 1,390 (1,440 also ok) 

Note: The calculator spits out the numbers in parentheses as answers, while mathematically 

the number of students per cluster times the number of clusters (provided by the calculator) 

equals the numbers not in parentheses. These discrepancies are due to rounding, since it is 

impossible to have a fraction of a person.   

 

X. How do your answers here compare to your answers in part U? Why? 

 

Answer: You don’t need as many students because the ICC is smaller. A smaller ICC means 

that the students within a cluster look less similar to one another in terms of test scores, and 

thus each cluster will be more representative of your sample population. This means that we 

can achieve the same level of power while including fewer students in our sample (and fewer 

students per cluster). 

 

Y.  Given a choice between offering the tutors to more children in each school (i.e., adding more individuals 

to the cluster) versus offering tutors in more schools (i.e., adding more clusters), which option is best 

purely from the perspective of improving statistical power? What about from a cost perspective? 

 

Answer: To increase power, adding clusters is clearly the better choice. By adding more 

clusters, you gain more variation as opposed to adding more individuals per cluster 

where you are gaining more observations that are likely to be correlated with the 

observations you already have. From a cost perspective, it depends on whether it works 

out to be more expensive to sample more students in total (as you would have to do if you 

add students, not clusters) versus adding more clusters but sampling fewer students. In 

general, it will be cheaper to add more students than to add clusters, but it may not be. 

As noted above, you may also be unable to increase the number of students per cluster 

beyond a natural limit.  

 

RESOURCES 

3ie, “Power calculation for causal inference in social science: sample size and minimum detectable effect 

determination” (report and calculator tool: http://www.3ieimpact.org/evidence-

hub/publications/working-papers/power-calculation-causal-inference-social-science-sample 

Optimal Design program for power calculations: http://hlmsoft.net/od/ 

http://www.3ieimpact.org/evidence-hub/publications/working-papers/power-calculation-causal-inference-social-science-sample
http://www.3ieimpact.org/evidence-hub/publications/working-papers/power-calculation-causal-inference-social-science-sample
http://hlmsoft.net/od/
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Institute for Fiscal Studies, “Going beyond simple sample size calculations: a practitioner’s guide for power 

calculations” (includes sample Stata code): 

https://www.ifs.org.uk/uploads/publications/wps/WP201517_update_Sep15.pdf 

http://blogs.worldbank.org/impactevaluations/power-calculations-101-dealing-with-incomplete-take-up 

“Remedying Education: Evidence from Two Randomized Experiments in India” (background on the Balsakhi 

tutoring program): https://www.povertyactionlab.org/sites/default/files/publications/6%20Computer-

Assisted%20Learning%20Project%20with%20Pratham%20in%20India%2007.pdf 

 

 

 

 

 

 

 

 

 

https://www.ifs.org.uk/uploads/publications/wps/WP201517_update_Sep15.pdf
http://blogs.worldbank.org/impactevaluations/power-calculations-101-dealing-with-incomplete-take-up
https://www.povertyactionlab.org/sites/default/files/publications/6%20Computer-Assisted%20Learning%20Project%20with%20Pratham%20in%20India%2007.pdf
https://www.povertyactionlab.org/sites/default/files/publications/6%20Computer-Assisted%20Learning%20Project%20with%20Pratham%20in%20India%2007.pdf
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