Programming with Stata

IAP Skills Workshops

Raymond Kluender and Benjamin Marx

January 26, 2016

Thanks and References

Special thanks to Sally Hudson for letting us borrow and build on her slides
from two years ago for this year's IAP workshop

@ Hunt, Andrew and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley: New York (2000).

o Gentzkow, Matthew and Jesse M. Shapiro. “RA Manual: Notes on Writing
Code”. Chicago Booth Manuscript (June 25, 2012).

@ Social Science Computing Cooperative. “Working with Groups.” University
of Wisconsin-Madison. Find more at:
https://www.ssc.wisc.edu/sscc/pubs/sfr-groups.htm

I'd highly recommend reading the Gentzkow and Shapiro RA manual to inform
your own practices, you can find it at the link here:
http://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Many of the habits we'll advocate here are grounded in their philosophy.

https://www.ssc.wisc.edu/sscc/pubs/sfr-groups.htm
http://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Thanks for coming!

It's pretty obvious to us that we do not have a monopoly on Stata knowledge in
this room (and are almost certainly less knowledgeable than a number of you...).

We also know that there are highly varying levels of Stata experience in the room.

A few requests for the talk:
@ If you think our advice is misguided or there's a better way to do something,
speak up!

o If we are confusing, ask questions or let us know!

This workshop is entirely drawn from our own personal (self-taught) experiences
with Stata, and our goal was to collect solutions to the biggest headaches we've
run into in our combined ~10 years of programming with Stata and to share our
favorite tips/tricks.

Features of Good Data Work

Managing a big data project is hard! Here are some principles that can make it
easier.

Practices that are... make it easy to...
flexible adapt as the project evolves.
divisible share work with a team.
transparent correct mistakes when they happen.
well-documented maintain the project over time.

Workshop Outline

Principles for well-documented and replicable coding
Avoiding mistakes

Working with groups

Assorted useful commands

Presentation: Making professional tables and figures

Principles for Clean Coding

Principles for Clean Coding

General Principles

@ Keep clean directories

@ Know your data (there is no shame in using browse!)
o Comment everything you do

Don't hard code

Insert breaks in the code

Version control (Come to Michael's Git Workshop tomorrow!)

Principles for Clean Coding

Directories

When you start a project, you want to create directories according to the following

rules

@ Separate directories by function

@ Separate files into inputs and outputs

@ Make directories reflect the workflow of the project
As an example, here's the directory for a current project I'm working on with the
Health and Retirement Survey:

@ HRS/Build

/input (Includes the raw data extract)

/intermediate (Could include intermediate data files)

/output (Includes the completed clean data file)

/programs (Includes the relevant programs to build the analysis data file)

o HRS/Analyze
o /input (Linked to the output folder of build)

e /output (Includes the tables and figures from your analysis output)
o /programs (Includes the relevant programs to analyze your data)

Commenting and Spacing

Skip lines (makes it easier to comment!)

Indent loops (this is not Python!)

Outline/divide up your do-file like a paper

Use #delimit; for long commands

9/34

Writing efficient code

@ Write loops as much as you can: foreach, forvalues, while, etc.

e Side note: if you don't know it, levelsof will change your life
e.g. levelsof age, local(ages)
foreach a of local ages {
reg y x z if age==‘a’

}

@ Store constants as macros at the top of your dofile

@ Shorten running time using switches (if statements)
loc runthis=1
if ‘runthis'=l {

regq X v 2

o Create tempfiles instead of .dta files
@ ... unless you badly need to troubleshoot

Shell files and ‘include’

Super common situation: Your advisor recommends you change the sample
definition, add a variable, drop a year of data, etc. and you need to re-run all of
your analysis.
Do you:
@ 1. Re-run your data preparation, open every analysis file and run them
individually?
@ 2. Make the change, open your shell file, and press “Do"?

o The command include will call the individual analysis programs

Additional benefit: If your programs take a long time to run, this can automate
them to run in succession.

11/34

Shell files and ‘include’

PRELIMINARIES

clear all

set more off, perm

set matsize 5000

set maxvar 32767

cd "/Users/kluender/Desktop/HRS"

local output "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protection/HRS/Output"

local samples "under65_INS overg5"

local spouses "freq" //prehosp_spouse spouse_zero
local fes “hacohort hhidpn*

local specs "freq bal"

* SAMPLE CHARACTERISTICS

local outcomesl "num_obs num_obs_bal age_hosp white black hispanic spouse race_other female year_hosp rhsptim rehosp rehosp_Nw"
local outcomes2 “medicaid h insured _pv_h medicare_h medicald insured_pv medicare medicaid NW insured_pv_NW medicare Nw"

local outcomes3 “died_nextwave died_next2waves cohort_@ cohort_1 cohort_2 cohort_3 cohort_4 cohort 5 cohort_6"

local outcomes "outcomesl' “outcomes2' ‘outcomes3'

include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protectien/HRS/Programs/HRS_A Sample Characteristics.de”

MAIN OUTCOMES AND SPECIFICATIONS

local outcomesl "ocop_spend working_FT working_PT retired disabled health limited spouse rslfemp”

local outcomes2 “hitot riearn siearn ripena rgovt hgovt hipena hiothr"

local outcomes3 _hitot a_riearn a_siearn a_ripena a_sipena a_rgovt a_sgovt a_hiothr"

local outcomesd rissi a_risdi a_riunem a_ripen a_rigxfr a_i rlsret a_riunwc"

local outcomesS “rissi risdi riunem ripen rigxfr risret riunwc"

local outcomesé "hicap hibusin hirntin riearnsemp siearnsemp risemp sisemp hisemp hicap_une *_c¢"

local outcomes7 "a_hicap a_hibusin a_hirntin a_riearnsemp a_siearnsemp a_risemp a_sisemp a_hisemp a_hicap_une"

local outcomes “outcomesl' ‘outcomes2' “outcomes3' “outcomes4' “outcomes5' “outcomesé' “outcomes7'

SUMMARY STATISTICS

include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protectien/HRS/Programs/HRS_A Summary Statistics.do"
PARAMETERIC REGRESSTIONS

include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protection/HRS/Programs/HRS_A Event Study.do”

* NON-PARAMETRIC REGRESSIONS

include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protection/HRS/Programs/HRS_A PrePost Event Study.do"
ROBUSTMESS REGRESSIONS WITHOUT LIMITING TO PRE-HOSPITALIZATION OBSERVATION

local samples “under65_INS_nopre overGS_nopre"

local fes "hacohort"

local specs "freq"

include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protection/HRS/Programs/HRS_A Event Study.do"

POISSON REGRESSIONS

local samples "under65_INS over65"

local outcomes “eop_spend hitot riearn siearn rgovt hgovt ripena hipena hiothr hicap hibusin hirntin hisemp hicap_une"
include "/Users/kluender/Dropbox (MIT)/Health Insurance and Financial Protectien/HRS/Programs/HRS_A ES Poisson.do”

Avoiding Mistakes

13 /34

Avoiding Mistakes: General Advice

@ Always know the unique identifier in your data

@ isid or isid, missok

e use duplicates tag, gen() to fix unique id issues
@ Assert what should be the truth

o e.g. assert _N==800 or ass varl>0 & vari<.

14 /34

Avoiding Mistakes

Avoiding Mistakes: Handling Missing Values

A large number of mistakes are generated from missing values, some important
things to remember:

o Stata treats missing values ("“.") as co
@ Be really careful using creating and referencing dummies:
e gen medicareeligible=(age>65)
@ This will mistakenly categorize anyone with missing age as medicare eligible
@ Use gen medicareeligible=(age>65) if age!=.
o This is different from gen medicareeligible=(age>65 & age<.) !
o reg y x z if medicareeligible

@ Even if you're smart and you re-code your medicareeligible variable to missing
for those with missing ages, this will still include the missing in the regression!

o Use if medicareeligible==1 instead

15 /34

Avoiding Mistakes: Don't be lazy

@ Never use ,force option (e.g. duplicates drop, force)

e If you don't know why you need to force: that's a problem
o If you think you know why you need to force: prove it to yourself and fix it

Beware of wildcards and empty macros (e.g. ‘controls’)

o foreach var of varlist bilx
o loc controls xy z

@ Don't hard code anything: If you need to input an elasticity of “2", then set
a local at the top (local elasticity = 2) and refer to ‘elasticity’
instead

@ Avoid using capture, unless you're following it up with

o if rc==1 {di ‘‘Variable missing"}

16

34

Avoiding Mistakes: Do be lazy

@ Do be lazy when you can have the data fill your parameters in for you. E.g.

Censoring at the 99th percentile:
e sum income, det
o local topcode = r(99)
e replace income = ‘topcode’ if income>‘topcode’ & ///
'missing(income)

@ Never forget to include a caveat for !'missing when using the >

17 /34

Avoiding Mistakes: Merging errors

o Use merge 1:1 or merge 1:m or merge m:1 syntax (isid comes in handy).

Stay away from m:m merges!

(Side note: m:m issues sneakily arise with other merging commands, e.g.
string match using reclink)
@ Assert results of the merge whenever you can
o ,assert(match master) equivalent to ,assert(1 3) as well as
ass m==1 | m==

@ Beware of overlapping variable names and labels
e By default, variable values in the master dataset are retained over conflicting

values in the using dataset

o Use update (update only missing values) and replace (replace conflicting
values) options as needed. match update (.m==4) and match_conflict
(-m==5) provide merge results for overlapping variables

Working with Groups and Panel Data

Working with Groups and Panel Data

19/34

Working with Groups and Panel Data

Often you'll have multiple observations with the same identifier (e.g. multiple
individuals in a household, multiple years for an individual in panel data). There
are a few commands that are really useful for working within an identifier:
@ First, make sure the data is at the level we think it is: isid hhidpn wave
@ Next, sort hhidpn wave if hhidpn is our individual identifier and we have
a number of survey waves for the individual.

@ by hhidpn: egen firstwave = min(wave)
@ by hhidpn: gen initialearnings = earnings[1]
@ by hhidpn: gen hospnextwave = hospitalized[n+1]
@ Check that all observations are the same within an individual
o sort hhidpn cohort
e by hhidpn: assert cohort[1]==cohort[N]
@ Generate the total number of hospitalizations:

e egen totalhosps = total(numhosps), by(hhidpn)

Working with Groups and Panel Data, Examples

Here | am coding up the timing for an event study based around a hospitalization:

* Figure out which survey wave an individual is first observed in
by hhidpn: egen first_wave = min(wave)
tab first_wave, mi

* Code up first wave which references a prior hospitalization
gen wave_hosp = wave if rhosp==

by hhidpn: egen first_hosp = min(wave_hosp)

tab first_wave first_hosp, row mi

* Want to set event time to @ at the time of the individual's FIRST hospitalization
gen evi_time = @ if wave==first_hosp
replace evi_time = wave - first_hosp

¥ Code up age of hospitalization so we can use that to select sample
gen temp = ragey_b - 1 if rhosp==1

by hhidpn: egen age_hosp = min(temp)

drop temp

Define re=hospitalization rates:

gen rehosp = rhsptim=1 & !missing{rhsptim) if evt_time==0
by hhidpn: gen rehosp_NW = rhosp[_n+1]

21/34

Working with Groups and Panel Data, Examples

Here | am examining household capital income at each survey wave of the Health

and Retirement Survey:

. table wave, c(mean hicap sd hicap max hicap p99

hicap)

wave | mean({hicap) sd{hicap) max(hicap) p99{hicap)
1 5560.100308 21278.18 515500 87170
2 11597.36638 59722.31 3215064.296 lape00
3 16639.11386 60213.27 2944234.157 242728.5944
4 13748.93966 91362.7 7797767 181315.3303
5 14376.11886 56455.38 3365000 203635.4858
6 12854.58494 74401.05 7334785 195000
7 13805.16951 65099.76 3536642 205400
8 18116.09098 294345 25360250 208012.9248
9 15851.88176 65736.25 3000480 249313.6396
10 12228.16818 57416.18 3pelzse 193000
11 13015.03242 67510.7 3663000 200200

Presentation

Creating TeX tables with esttab

@ There are many ways to export nice-looking tables to TeX or Excel

o Today: esttab
o Simple & (reasonably) intuitive

e Can fully automate formatting

@ How esttab works
o Create a shell TeX file that will host all your tables

o Create TeX files for each regression table using eststo/esttab

o Customize tables and regression output inside Stata

24 /34

How esttab tables look

Table 3a: Randomization Checks, Administrative Data

Data Missing # Registered Voters # Phones % Phones # Streams
1 (2) 3) 4 (5) (6) 7) 8) © (10)
Encouragement 0,008 16018 14109 0.002 0.015
[0.006] [22.701] [15.888] [0.009] [0.026]
Positions Info ~ -0.003 10374 4376 0.009 0.010
[0.006] [19.348] [13.930] [0.007] [0.023]
IEBC Info 0.011* 8326 9412 0.004 0.003
[0.006] [19.365] [13.544] [0.009] [0.023]
T1, All 0.014 10.823 8616 -0.008 0.006
[0.009] [31.812] [22.363] [0.009] [0.036]
T1, Half 0.003 21164 19.614 0.005 0.024
[0.008] [29.341] [20313] [0.013] [0.034]
T2, All -0.005 10.966 1935 -0.011 0.020
[0.008] [24.880] [17.182] [0.008] [0.031]
T2, Half -0.002 9781 10.680 -0.007 0.000
[0.008] [26.203] [19.579] [0.008] [0.031]
T3, All 0.007 -5.385 2023 -0.001 0.003
[0.008] [26.246] [18.919] [0.013] [0.032]
T3, Half 0.015% 11285 16779 -0.007 0.002
[0.009] [24.851] [16.698] [0.010] [0.028]
F-testp-value 016 037 077 097 0.63 083 061 083 094 099
Control Mean 0074 0.074 689.059 689.059 403699 403.699 0561 0561 1400 1400
R-squared 14 14 43 4 42 42 06 06) 4

Observations 12160 12160 11257 11257 12160 12160 12160 12160 11191 11191

Note: * p<0.1, ** p<0.05, " p<0.01. Robust Standard errors reported in brackets. All regressions include strata fixed effects.
In each column we report the p-value of a F-test of joint significance of all the treatment dummies in each regression.
Registered denotes the number of registered voters per polling station.

25

Presentation

How esttab tables look

(1) (2) (3) (4)
Completed Completed Duration Duration
Staff Ethnic Match 0.066""* 0.006™"~ 0.813""" 0.763™"~
[0.023] [0.029] [0.212] [0.262]
Random Visit Order -0.005""" -0.036™""
[0.002] [0.010]
IEBC Treatment -0.048* 0.040
[0.018] [0.170]
Clustering by Team-Week X X X X
Controls X X
Dep Var Mean 0.413 0.413 1.788 1.788
Observations 30936 30886 29377 20327

26 /34

How esttab works

General structure:

estimates clear
foreach var of wvarlist * {

eststo: areg ‘var' X v z, absorb(stratum) clus(pollcode)

*Esttab

ds

esttab using "Analys=is\Output)\example.tex",
keep(x y) order(x y) booktabs replace br se label

star(* 0.1 ** 0.05 *** 0.01) obslast compress b(%9.3f) se(%9.3f) nonotes
addnotes ("\footnotesize{Note: * p£<§0.1, ** p$<£0.05, =** p&<$0.01.}

$#decr

27 /34

How esttab works

Customizing regression output:

eststo: reg ‘y' tl t2 if subsample==]l1, clus(region)
estadd local subszample "Yez"

sum “y' if e (sample)==1

estadd local ymean = string(r(mean), "%9.3f")
estadd local clusters = e(N_clust)|

test tl t2

estadd local fpval = string(' r(p)', "%9.2f")

Then:

*Esttab

d;

esttab using "Analysis\Output\appendix_ table2.tex",

keep(tl t2 t3) order(tl t2 t3) booktabs replace br se

label star(* 0.1 *= 0.05 =*+ [0,01) compress b(%$9.3f) se(%9.3f)
scalars ("ymean Mean" "fpval F-test p-value" "clusters Clusters"):
#derx

28 /34

Presentation

Making tables pretty

@ What to include: keep, order
@ Column headings: mtitles, mgroups

esttab using "Analysls\Cutput\appendlx_tablel.tex",

mgroups ("Administrative Data" "Survey Data", pattern(l 0 0 0 1 00 0 0 0 0)
prefix (\multicolumn{@span}{c}{) suffix(}) span erepeat (\cmidrule(lr){@span})

)

@ Locals: add as string(‘r(p)’, "%9.2f")
@ Footnotes: addnotes

addnotes (
"\footnotesize{Note: * p$<$0.1,
"\footnotesize{\phantom{Note:

):

#% p§<£0.05, *** p$<$0.01.}"

}\# Streams denotes the number of polling booths per polli]

@ booktabs

29 /34

Other Useful Commands

Other Useful Commands

@ saveold and usel3

@ egen (group, cut, rowx) and egenmore

@ expand

o GIS stuff: geodist, shp2dta, maptile

@ String functions: regexm, subinstr, etc.
o For example, gen eligible=(regexm(status,"Retired")==1)
o Use trim, itrim, lower/proper/upper to standardize strings
e strip, parse(....) can also come in handy

@ String matching: reclink

e reclink parish village using "$Uganda files\list.dta",
idmaster(idl) idusing(id2) gen(score)

o keep if score<. & score>0.9

o drop _m

31/34

Maptile

You want to create a map, but you don’'t want to use GIS (who does?). Try
maptile

maptile changeinsured, geo(county)

-1-3
[No data

Binscatter

Want to communicate your results like Raj Chetty? Try binscatter!

scatter wage tenure vs. binscatter wage tenure

)
<

hourly wage
20 30
Coa

hourly wage
20 30

10
10

o
o]
8
o
R

=

o

10 15 10 15
job tenure (years) jobtenure (years)

Additional Slides

34 /34

Use delimiters for long commands

generate hici = km + invttail (kn-1,0.05)* (k=sd / =grc(kn))
generate lowci = km - invttail (kn-1,0.05) % (ksd / =qgrt(kn))
#delimit;
twoway (bar km treatment if treatment==0, color(black))
(par km treatment if treatment==1, color(green))
(bar km treatment if treatment==2, color(red))
(bar km treatment if treatment==3, color(green))
(rcap hici lowci treatment, color{gray)), legend{ocff) scale(l.5)
xlabel (0 "Control™ 1 "T1" 2 "T2" 3 "T3", noticks)
xtitle ("Treatment Status") ytitle ("Vote Share, Kenyatta™)
sattal.png"”, replace;

graph export "Analysis‘\Output\ken
#delimit cr

34 /34

Additional Slides

m:m merges in the Stata manual

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

34 /34

	Thanks
	Introduction
	Principles for Clean Coding
	Avoiding Mistakes
	Working with Groups and Panel Data
	Presentation
	Other Useful Commands
	Additional Slides

