
Programming with Stata

IAP Skills Workshops

Raymond Kluender and Benjamin Marx

January 26, 2016

1 / 34

Thanks

Thanks and References

Special thanks to Sally Hudson for letting us borrow and build on her slides
from two years ago for this year’s IAP workshop

Hunt, Andrew and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley: New York (2000).

Gentzkow, Matthew and Jesse M. Shapiro. “RA Manual: Notes on Writing
Code”. Chicago Booth Manuscript (June 25, 2012).

Social Science Computing Cooperative. “Working with Groups.” University
of Wisconsin-Madison. Find more at:
https://www.ssc.wisc.edu/sscc/pubs/sfr-groups.htm

I’d highly recommend reading the Gentzkow and Shapiro RA manual to inform
your own practices, you can find it at the link here:
http://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Many of the habits we’ll advocate here are grounded in their philosophy.

2 / 34

https://www.ssc.wisc.edu/sscc/pubs/sfr-groups.htm
http://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Thanks

Thanks for coming!

It’s pretty obvious to us that we do not have a monopoly on Stata knowledge in
this room (and are almost certainly less knowledgeable than a number of you...).
We also know that there are highly varying levels of Stata experience in the room.

A few requests for the talk:

If you think our advice is misguided or there’s a better way to do something,
speak up!

If we are confusing, ask questions or let us know!

This workshop is entirely drawn from our own personal (self-taught) experiences
with Stata, and our goal was to collect solutions to the biggest headaches we’ve
run into in our combined ∼10 years of programming with Stata and to share our
favorite tips/tricks.

3 / 34

Introduction

Features of Good Data Work

Managing a big data project is hard! Here are some principles that can make it
easier.

Practices that are... make it easy to...

flexible adapt as the project evolves.

divisible share work with a team.

transparent correct mistakes when they happen.

well-documented maintain the project over time.

4 / 34

Introduction

Workshop Outline

Principles for well-documented and replicable coding

Avoiding mistakes

Working with groups

Assorted useful commands

Presentation: Making professional tables and figures

5 / 34

Principles for Clean Coding

Principles for Clean Coding

6 / 34

Principles for Clean Coding

General Principles

Keep clean directories

Know your data (there is no shame in using browse!)

Comment everything you do

Don’t hard code

Insert breaks in the code

Version control (Come to Michael’s Git Workshop tomorrow!)

7 / 34

Principles for Clean Coding

Directories

When you start a project, you want to create directories according to the following
rules

Separate directories by function

Separate files into inputs and outputs

Make directories reflect the workflow of the project

As an example, here’s the directory for a current project I’m working on with the
Health and Retirement Survey:

HRS/Build

/input (Includes the raw data extract)
/intermediate (Could include intermediate data files)
/output (Includes the completed clean data file)
/programs (Includes the relevant programs to build the analysis data file)

HRS/Analyze

/input (Linked to the output folder of build)
/output (Includes the tables and figures from your analysis output)
/programs (Includes the relevant programs to analyze your data)

8 / 34

Principles for Clean Coding

Commenting and Spacing

Skip lines (makes it easier to comment!)

Indent loops (this is not Python!)

Outline/divide up your do-file like a paper

Use #delimit; for long commands example

9 / 34

Principles for Clean Coding

Writing efficient code

Write loops as much as you can: foreach, forvalues, while, etc.

Side note: if you don’t know it, levelsof will change your life
e.g. levelsof age, local(ages)

foreach a of local ages {
reg y x z if age==‘a’

}

Store constants as macros at the top of your dofile

Shorten running time using switches (if statements)

Create tempfiles instead of .dta files

... unless you badly need to troubleshoot

10 / 34

Principles for Clean Coding

Shell files and ‘include’

Super common situation: Your advisor recommends you change the sample
definition, add a variable, drop a year of data, etc. and you need to re-run all of
your analysis.

Do you:

1. Re-run your data preparation, open every analysis file and run them
individually?

2. Make the change, open your shell file, and press “Do”?

The command include will call the individual analysis programs

Additional benefit: If your programs take a long time to run, this can automate
them to run in succession.

11 / 34

Principles for Clean Coding

Shell files and ‘include’

12 / 34

Avoiding Mistakes

Avoiding Mistakes

13 / 34

Avoiding Mistakes

Avoiding Mistakes: General Advice

Always know the unique identifier in your data

isid or isid, missok

use duplicates tag, gen() to fix unique id issues

Assert what should be the truth

e.g. assert N==800 or ass var1>0 & var1<.

14 / 34

Avoiding Mistakes

Avoiding Mistakes: Handling Missing Values

A large number of mistakes are generated from missing values, some important
things to remember:

Stata treats missing values (“.”) as ∞
Be really careful using creating and referencing dummies:

gen medicareeligible=(age>65)

This will mistakenly categorize anyone with missing age as medicare eligible

Use gen medicareeligible=(age>65) if age!=.

This is different from gen medicareeligible=(age>65 & age<.) !

reg y x z if medicareeligible

Even if you’re smart and you re-code your medicareeligible variable to missing
for those with missing ages, this will still include the missing in the regression!

Use if medicareeligible==1 instead

15 / 34

Avoiding Mistakes

Avoiding Mistakes: Don’t be lazy

Never use ,force option (e.g. duplicates drop, force)

If you don’t know why you need to force: that’s a problem
If you think you know why you need to force: prove it to yourself and fix it

Beware of wildcards and empty macros (e.g. ‘controls’)

foreach var of varlist b1*

loc controls x y z

Don’t hard code anything: If you need to input an elasticity of “2”, then set
a local at the top (local elasticity = 2) and refer to ‘elasticity’

instead

Avoid using capture, unless you’re following it up with

if rc==1 {di ‘‘Variable missing"}

16 / 34

Avoiding Mistakes

Avoiding Mistakes: Do be lazy

Do be lazy when you can have the data fill your parameters in for you. E.g.
Censoring at the 99th percentile:

sum income, det

local topcode = r(99)

replace income = ‘topcode’ if income>‘topcode’ & ///

!missing(income)

Never forget to include a caveat for !missing when using the >

17 / 34

Avoiding Mistakes

Avoiding Mistakes: Merging errors

Use merge 1:1 or merge 1:m or merge m:1 syntax (isid comes in handy).

Stay away from m:m merges! Why?

(Side note: m:m issues sneakily arise with other merging commands, e.g.
string match using reclink)

Assert results of the merge whenever you can

,assert(match master) equivalent to ,assert(1 3) as well as
ass m==1 | m==3

Beware of overlapping variable names and labels

By default, variable values in the master dataset are retained over conflicting
values in the using dataset

Use update (update only missing values) and replace (replace conflicting
values) options as needed. match update (m==4) and match conflict

(m==5) provide merge results for overlapping variables

18 / 34

Working with Groups and Panel Data

Working with Groups and Panel Data

19 / 34

Working with Groups and Panel Data

Working with Groups and Panel Data

Often you’ll have multiple observations with the same identifier (e.g. multiple
individuals in a household, multiple years for an individual in panel data). There
are a few commands that are really useful for working within an identifier:

First, make sure the data is at the level we think it is: isid hhidpn wave

Next, sort hhidpn wave if hhidpn is our individual identifier and we have
a number of survey waves for the individual.

by hhidpn: egen firstwave = min(wave)

by hhidpn: gen initialearnings = earnings[1]

by hhidpn: gen hospnextwave = hospitalized[n+1]

Check that all observations are the same within an individual

sort hhidpn cohort

by hhidpn: assert cohort[1]==cohort[N]

Generate the total number of hospitalizations:

egen totalhosps = total(numhosps), by(hhidpn)

20 / 34

Working with Groups and Panel Data

Working with Groups and Panel Data, Examples

Here I am coding up the timing for an event study based around a hospitalization:

21 / 34

Working with Groups and Panel Data

Working with Groups and Panel Data, Examples

Here I am examining household capital income at each survey wave of the Health
and Retirement Survey:

22 / 34

Presentation

Presentation

23 / 34

Presentation

Creating TeX tables with esttab

There are many ways to export nice-looking tables to TeX or Excel

Today: esttab

Simple & (reasonably) intuitive

Can fully automate formatting

How esttab works

Create a shell TeX file that will host all your tables

Create TeX files for each regression table using eststo/esttab

Customize tables and regression output inside Stata

24 / 34

Presentation

How esttab tables look

25 / 34

Presentation

How esttab tables look

26 / 34

Presentation

How esttab works

General structure:

27 / 34

Presentation

How esttab works

Customizing regression output:

Then:

28 / 34

Presentation

Making tables pretty

What to include: keep, order

Column headings: mtitles, mgroups

Locals: add as string(‘r(p)’, "%9.2f")

Footnotes: addnotes

booktabs

29 / 34

Other Useful Commands

Other Useful Commands

30 / 34

Other Useful Commands

Other Useful Commands

saveold and use13

egen (group, cut, row*) and egenmore

expand

GIS stuff: geodist, shp2dta, maptile

String functions: regexm, subinstr, etc.

For example, gen eligible=(regexm(status,"Retired")==1)

Use trim, itrim, lower/proper/upper to standardize strings

strip, parse(....) can also come in handy

String matching: reclink

reclink parish village using "$Uganda files\list.dta",
idmaster(id1) idusing(id2) gen(score)

keep if score<. & score>0.9

drop m

31 / 34

Other Useful Commands

Maptile

You want to create a map, but you don’t want to use GIS (who does?). Try
maptile!

maptile changeinsured, geo(county)

9 − 20
7 − 9
6 − 7
5 − 6
3 − 5
-1 − 3
No data

32 / 34

Other Useful Commands

Binscatter

Want to communicate your results like Raj Chetty? Try binscatter!

scatter wage tenure vs. binscatter wage tenure

33 / 34

Additional Slides

Additional Slides

34 / 34

Additional Slides

Use delimiters for long commands

back

34 / 34

Additional Slides

m:m merges in the Stata manual

back

34 / 34

	Thanks
	Introduction
	Principles for Clean Coding
	Avoiding Mistakes
	Working with Groups and Panel Data
	Presentation
	Other Useful Commands
	Additional Slides

