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One hypothesis, many kinds of errors

We have a null hypothesis H0 which seems reasonable a priori. After
observing some data, we decide to accept or reject H0.

I Type 1 (false positive) H0 is actually true but we rejected it.
I Type 2 (false negative) H0 is actually false but we accepted it.
I Type 3? Asking the wrong question, making the right decision

for the wrong reason, etc.

Classical statistical decision theory has two goals

I Guarantee that the probability of a Type 1 error is below a
pre-specified level α (usually 5%)

I Maximize the power, i.e. minimize the probability of Type 2
error, subject to the previous constraint



Many hypotheses, even more kinds of errors

I Type 1 (or 2) errors for each individual hypothesis
I The number of Type 1 errors
I Proportions or rates of Type 1 errors

The family-wise error rate (FWER) is the probability of making
any Type 1 errors at all.

The false discovery rate (FDR) is the expected proportion of false
rejections out of all rejections.



A simulation example

Consider n normal random variables. Test H0,i : µi = 0 vs. µi > 0.
Truth: first k of them have mean µ > 0, the rest have mean 0.

bunch_of_tests <- function(n, k, mu) {
stats <- rnorm(n, mean = 0)
stats[1:k] <- stats[1:k] + mu
rejections <- which(stats > qnorm(.95))
# family-wise error
FWE <- any(rejections > k)
# false discovery proportion
FDP <- sum(rejections > k)/max(1,length(rejections))
# true discovery proportion
TPP <- sum(rejections <= k)/max(1,k)
return(c(FWE, FDP, TPP))

}



Simulation results n = 100, k = 10, µ = 1

Perform the testing procedure 1000 times to estimate FDR, etc.

results <- replicate(1000, bunch_of_tests(100, 10, 1))
row.names(results) <- c("FWER", "FDR", "TPR")
rowMeans(results)

## FWER FDR TPR
## 0.9930000 0.6443149 0.2551000

This example shows that using many individual tests at level 5%
does not control FWER or FDR at level 5%.



Simulation results n = 20, k = 10, µ = 2

results <- replicate(1000, bunch_of_tests(20, 10, 2))
row.names(results) <- c("FWER", "FDR", "TPR")
rowMeans(results)

## FWER FDR TPR
## 0.39000000 0.06503925 0.63710000

If the truth is more favorable, we make fewer errors.

But can we control these error rates, making them lower than 5%
regardless of whether the truth is favorable?



Bonferroni controls FWER

The Bonferroni correction (credit: Olive Jean Dunn in 1959,
Carlo Emilio Bonferroni) guarantees FWER ≤ α by decreasing the
level for all the individual tests to α/n.

P(any Type 1 error) ≤
n∑

i=1
P(Type 1 error for test i) ≤

n∑
i=1

α

n = α

I Works even if the test statistics are not independent
I Very conservative if n is large
I Can find one very big needle-in-a-haystack, but not many small

effects
I The Holm-Bonferroni method has better power



Interlude on p-values

A p-value is. . .

I a random variable on the interval [0,1]
I distributed like U[0, 1] if the null hypothesis is true
I usually smaller if the null hypothesis is false
I i.e. reject if p < α
I often transformed from T ∼ F (·) to get p = F (T )

Many multiple testing procedures begin by sorting all the p-values,
since the smallest ones provide the strongest evidence for rejecting
their corresponding null hypothesis. Usually we reject the
hypotheses with the smallest p-values up to some point, and we just
need to decide that stopping point (e.g. Holm-Bonferroni).



Benjamini-Hochberg controls FDR. . .

The Benjamini-Hochberg procedure (1995, initially rejected. . . )

I Sort the p-values p1, . . . , pn to get p(1) ≤ · · · ≤ p(n).
I Find the largest k such that p(k) ≤ k · α/n
I Reject the hypotheses corresponding to p(1), . . . , p(k)

If the p-values are independent then FDR ≤ α.

If they are not independent, then FDR / log(n)α, so we still
improve from Bonferroni by using α/log(n) instead of α/n.



Special topic: selective inference

I Motivated by performing inference after model selection,
e.g. with the Lasso

I Fithian, Sun, Taylor: http://arxiv.org/abs/1410.2597
I Suppose we look at the data first and then choose which

hypotheses to test
I The selective Type 1 error rate is P(H0 rejected |H0 chosen)

Conditional probability

Do we need this?

http://arxiv.org/abs/1410.2597


Selection breaks traditional methods

Suppose we begin with n potential tests, e.g. we have normal
random variables X1, . . . ,Xn and for each one we could ask if its
mean is positive.

Before we perform any tests, we first select only the ones that look
interesting. For example, suppose that m < n of the Xi have Xi > 1.
These are the cases that look promising. Call them Z1, . . .Zm.

Now do Bonferroni with level α/m instead of α/n. Bonferroni is
usually conservative, but will this control anything?



Breaking Bonferroni

selected_tests <- function(n) {
X <- rnorm(n)
Z <- X[X > 1]
m <- length(Z)
rejections <- sum(Z > qnorm(1-.05/m))
FWE <- as.integer(rejections > 0)
FDP <- rejections/max(1, m)
return(c(FWE, FDP))

}
results <- replicate(1000, selected_tests(100))
row.names(results) <- c("FWER", "FDR")
rowMeans(results)

## FWER FDR
## 0.27100000 0.02117014



How we fix it

To adjust our tests for selection we use the conditional probability
distribution to determine the significance threshold. I.e. instead of
qnorm we need quantiles of the truncated normal distribution:
Z |Z > 1.

In general, the kind of truncated distribution depends on the kind of
selection method being used. My advisor and his students (including
me) have done a lot of work solving various cases, e.g. forward
stepwise.



Consultation considerations

I Discuss goals/constraints (e.g. journal standards)
I Caution about multiple testing
I Researchers need positive results, be empathic and learn how

to be persuasive or they may ignore you
I Remember some convincing examples and explanations
I If they are fooled by randomness it could be embarassing in the

long run even if they get published in the short run


