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1 Introduction

Randomized experiments have a long tradition in agricultural and biomedical settings. In eco-

nomics they have a much shorter history. Although there have been notable experiments over

the years, such as the RAND health care experiment (Manning, Newhouse, Duan, Keeler and

Leibowitz, 1987, see the general discussion in Rothstein and von Wachter, 2016) and the Neg-

ative Income Tax experiments (e.g., Robins, 1985), it is only recently that there has been a

large number of randomized experiments in economics, and development economics in particu-

lar. See Duflo, Glennerster, and Kremer (2006) for a survey. As digitization lowers the cost of

conducting experiments, we may expect that their use may increase further in the near future.

In this chapter we discuss some of the statistical methods that are important for the analysis

and design of randomized experiments.

Although randomized experiments avoid many of the challenges of observational studies

for causal inference, there remain a number of statistical issues to address in the design and

analysis of experiments. Even in the simplest case with observably homogenous, independent

subjects, where the experiment is evaluated by comparing sample means for the treatment and

control group, there are questions of how to conduct inference about the treatment effect. When

there are observable differences in characteristics among units, questions arise about how best

to design the experiment and how to account for imbalances in characteristics between the

treatment and control group in analysis. In addition, it may be desirable to understand how

the results of an experiment would generalize to different settings. One approach to this is to

estimate heterogeneity in treatment effects; another is to reweight units according to a target

distribution of characteristics. Finally, statistical issues arise when units are not independent,

as when they are connected in a network. In this chapter, we discuss a variety of methods for

addressing these and other issues.

A major theme of the chapter is that we recommend using statistical methods that are di-

rectly justified by randomization, in contrast to the more traditional sampling-based approach

that is commonly used in econometrics. In essence, the sampling based approach considers the

treatment assignments to be fixed, while the outomes are random. Inference is based on the

idea that the subjects are a random sample from a much larger population. In contrast, the

randomization-based approach takes the subject’s potential outcomes (that is, the outcomes
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they would have had in each possible treatment regime) as fixed, and considers the assignment

of subjects to treatments as random. Our focus on randomization follows the spirit of Freedman

(2006, p. 691), who wrote: “Experiments should be analyzed as experiments, not as observa-

tional studies. A simple comparison of rates might be just the right tool, with little value added

by ‘sophisticated’ models.” Young (2016) has recently applied randomization-based methods in

development economics.

As an example of how the randomization-based approach matters in practice, we show that

methods that might seem natural to economists in the conventional sampling paradigm (such as

controlling for observable heterogeneity using a regression model) require additional assumptions

in order to be justified. Using the randomization-based approach suggests alternative methods,

such as placing the data into strata according to covariates, analyzing the within-group exper-

iments, and averaging the results. This is directly justified by randomization of the treatment

assignment, and does not require any additional assumptions.

Our overall goal in this chapter is to collect in one place some of the most important statis-

tical methods for analyzing and designing randomized experiments. We will start by discussing

some general aspects of randomized experiments, and why they are widely viewed as providing

the most credible evidence on causal effects. We will then present a brief introduction to causal

inference based on the potential outcome perspective. Next we discuss the analysis of the most

basic of randomized experiments, what we call completely randomized experiments where, out of

a population of size N , a set of Nt units are selected randomly to receive one treatment and the

remaining Nc = N−Nt are assigned to the control group. We discuss estimation of, and inference

for, average as well as quantile treatment effects. Throughout we stress randomization-based

rather than model-based inference as the basis of understanding inference in randomized experi-

ments. We discuss how randomization-based methods relate to more commonly used regression

analyses, and why we think the emphasis on randomization-based inference is important. We

then discuss the design of experiments, first considering power analyses and then turning to

the benefits and costs of stratification and pairwise randomization, as well as the complications

from re-randomization. We recommend using experimental design rather than analysis to ad-

just for covariates differences in experiments. Specifically, we recommend researchers to stratify

the population into small strata and then randomize within the strata and adjust the standard

errors to capture the gains from the stratification. We argue that this approach is preferred
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to model-based analyses applied after the randomization to adjust for differences in covariates.

However, there are limits on how small the strata should be: we do not recommend to go as far

as pairing the units, because it complicates the analysis due to the fact that variances cannot

be estimated within pairs, whereas they can within strata with at least two treated and two

control units.

This chapter draws from a variety of literatures, including the statistical literature on the

analysis and design of experiments, e.g., Wu and Hamada (2009), Cox and Reid (2000), Altman

(1991), Cook and DeMets (2008), Kempthorne (1952, 1955), Cochran and Cox (1957), Davies

(1954), and Hinkelman and Kempthorne (2005, 2008). We also draw on the literature on

causal inference, both in experimental and observational settings, Rosenbaum (1995, 2002, 2009),

Rubin (2006), Cox (1992), Morgan and Winship (2007), Morton Williams (2010) and Lee (2005),

and Imbens and Rubin (2015). In the economics literature we build on recent guides to practice

in randomized experiments in development economics, e.g., Duflo, Glennerster, and Kremer

(2006), Glennerster (2016), and Glennerster and Takavarasha (2013) as well as the general

empirical micro literature (Angrist and Pischke, 2008).

There have been a variety of excellent surveys of methodology for experiments in recent years.

Compared to Duflo, Glennerster and Kremer (2006), Glennerster and Takavarasha (2013) and

Glennerster (2016), this chapter focuses more on formal statistical methods and less on issues

of implementation in the field. Compared to the statistics literature, we restrict our discussion

largely to the case with a single binary treatment. We also pay more attention to the compli-

cations arising from non-compliance, clustered randomization, and the presence of interactions

and spillovers. Relative to the general causal literature, e.g., Rosenbaum (1995, 2009) and

Imbens and Rubin (2015), we do not discuss observational studies with unconfoundedness or

selection-on-observables in depth, and focus more on complications in experimental settings.

This chapter is organized as follows. In Section 8 we discuss the complications arising from

cluster-level randomization. We discuss how the use of clustering required the researcher to make

choices regarding the estimands. We also focus on the choice concerning the unit of analysis,

clusters or lower-level units. We recommend in general to focus on cluster-level analyses as the

primary analyses. Section 9 contains a discussion of non-compliance to treatment assignment and

its relation to instrumental variables methods. In Section 10 we present some recent results for

analyzing heterogeneity in treatment effects. Finally, Section 11 we discuss violations of the no-
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interaction assumption, allowing outcomes for one unit to be affected by treatment assignments

for other units. These interactions can take many forms, some through clusters, and some

through general networks. We show that it is possible to calculate exact p-values for tests of

null hypotheses of no interactions while allowing for direct effects of the treatments. Section 12

concludes.

2 Randomized Experiments and Validity

In this section we discuss some general issues related to the interpretation of analyses of ran-

domized experiments and their validity. Following Cochran (1972, 2015) we define randomized

experiments as settings where the the assignment mechanism does not depend on characteristics

of the units, either observed or unobserved, and the researcher has control over the assignments.

In contrast, in observational studies (Rosenbaum, 1995; Imbens and Rubin, 2015), the researcher

does not have control over the assignment mechanism, and the assignment mechanism may de-

pend on observed and or unobserved characteristics of the units in the study. In this section we

discuss four specific issues. First, we elaborate on the distinction between randomized experi-

ments and observational studies. Second, we discuss internal validity, and third, external valid-

ity. Finally, we discuss the issues related to finite population versus infinite super-population

inference.

2.1 Randomized Experiments versus Observational Studies

There is a long tradition viewing randomized experiments as the most credible of designs to

obtain causal inferences. Freedman (2006) writes succintly “Experiments offer more reliable

evidence on causation than observational studies.” On the other hand, some researchers continue

to be skeptical about the relative merits of randomized experiments. For example, Deaton

(2010) argues, that “I argue that evidence from randomized experiments has no special priority.

... Randomized experiments cannot automatically trump other evidence, they do not occupy

any special place in some hierarchy of evidence” (Deaton, p. 426). Our view aligns with

that of Freedman and others who view randomized experiments as playing a special role in

causal inference. A randomized experiment is unique in the control the researcher has over the

assignment mechanism, and by virtue of that control, selection bias in comparisons between
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treated and control units can be eliminated. That does not mean that randomized experiments

can answer all causal questions. There are a number of reasons why randomized experiments

may not be suitable to answer particular questions.

First, consider a case where we are interested in the causal effect of a particular intervention

on a single unit: what would the outcome have been for a particular firm in the absence of

a merger compared to the outcome given the merger. In that case, and similarly for many

questions in macroeconomics, no randomized experiment will provide us with the answer to

the causal question. Once the interest is in an intervention that can be applied repeatedly,

however, it may be possible to conduct experiments, or find data from quasi experiments, even

in macroeconomics. Angrist and Kuersteiner (2011), building on work by Romer and Romer

(2004), use the potential outcome framework to discuss causal analyses in a macro-economic

time series context. Second, it may not be ethical to conduct an experiment. In educational

settings it is often impossible to withhold particular educational services to individuals in order

to evaluate their benefits. In such cases one may need to do observational studies of some kind,

possibly randomizing inducements to participate in the programs.

2.2 Internal Validity

In a classic text, Shadish, Cook, and Campbell (2002) discuss various aspects of the validity of

studies of causal effects. Here we focus on two of the most important ones, internal validity and

external validity. Shadish, Cook, and Campbell (2002) define a study to have internal validity if

the observed covariance between a treatment and an outcome reflects “a causal relationship ... in

which the variables were manipulated,” (p. 53). Internal validity refers to the ability of a study

to estimate causal effects within the study population. Shadish, Cook, and Campbell (2002) then

continue to observe that “the [internal validity] problem is easily solved in experiments because

they force the manipulation of A to come before the the measurement of B.” Essentially they

argue that well-executed randomized experiments by definition have internal validity, and that

the problem of internal validity is one that plagues only observational studies or compromised

random experiments. This is not necessarily true in experimental settings where interference

between units is a concern.
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2.3 External Validity

The second aspect of validity that Shadish, Cook, and Campbell (2002) consider is that of

external validity. They write that “external validity concerns inferences about the extent to

which a causal relationship holds over variation in persons, settings, treatments, and outcomes.”

(p 83). Thus, external validity is concerned with generalizing causal inferences, drawn for

a particular population and setting, to others, where these alternative settings could involve

different populations, different outcomes, or different contexts.

Shadish, Cook and Campbell argue for the primacy of internal validity, and claim that

without internal validity causal studies have little value. This echos Neyman’s comment that

without actual randomization a study would have little value, as well as Fisher’s observation

that randomization was what he called “the reasoned basis” for inference. It stands in sharp

contrast with a few researchers who have recently claimed that there is no particular priority

for internal validity over external validity (e.g., Manski, 2013).

The first important point is that external validity cannot be guaranteed, neither in ran-

domized experiments, nor in observational studies. Formally one major reason for that in

experiments involving human subjects is that one typically needs informed consent: individuals

typically need to agree to participate in the experiment. There is nothing that will guarantee

that subjects who agree to do so will be similar to those that do not do so, and thus there is noth-

ing that can guarantee that inferences for populations that give informed consent will generalize

to populations that do not. See also the discussion in Glennerster (2016). This argument has

been used to question the value of randomized experiments. However, as Deaton (2010) notes,

the same concern holds for nonexperimental studies: “RCTs, like nonexperimental results, can-

not automatically be extrapolated outside the context in which they were obtained” (Deaton,

2010, p. 449). There is nothing in non-experimental methods that makes them superior to

randomized experiments with the same population and sample size in this regard.

Fundamentally, most concerns with external validity are related to treatment effect hetero-

geneity. Suppose one carries out a randomized experiment in setting A, where the setting may

be defined in terms of geographic location, or time, or subpopulation. What value have infer-

ences about the causal effect in this location regarding the causal effect in a second location,

say setting B. Units in the two settings may differ in observed or unobserved characteristics, or
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treatments may differ in some aspect. To assess these issues it is helpful to have causal studies,

preferably randomized experiments, in multiple settings. These settings should vary in terms

of the distribution of characteristics of the units, and possibly in terms of the specific nature of

the treatments or the treatment rate, in order to assess the credibility of generalizing to other

settings. An interesting case study is the effect of micro finance programs. Meager (2015) ana-

lyzes data from seven randomized experiments, including six published in a special issue of the

American Economic Journal (Applied) in 2015, and finds remarkable consistency across these

studies.

Another approach is to specifically account for differences in the distributions of character-

istics across settings. Hotz, Imbens, Mortimer (2005) and Imbens (2010) set up a theoretical

framework where the differences in treatment effects between locations arise from differences

in the distributions of characteristics of the units in the locations. Adjusting for these dif-

ferences in unit-level characteristics (by reweighting the units) enables the researcher to com-

pare the treatment effects in different locations. Allcott (2015) assess the ability of similar

unconfoundedness/selection-on-observable conditions to eliminate differences in treatment ef-

fects between 111 energy conservation programs. Recently developed methods for assessing

treatment effect heterogeneity with respect to observables, reviewed below in Section 10, can in

principle be used to flexibly estimate and conduct inference about treatment effects conditional

on observables.

Finally, Bareinboim, Lee, Honavar and Pearl (2013) develop graphical methods to deal with

external validity issues.

2.4 Finite Population versus Random Sample from Super-population

It is common in empirical analyses to view the sample analyzed as a random sample drawn

randomly from a large, essentially infinite super-population. Uncertainty is viewed as arising

from this sampling, with knowledge of the full population leading to full knowledge of the

estimands. In some cases, however, this is an awkward perspective. In some of these cases the

researcher observes all units in the entire population, and sampling uncertainty is absent. In

other cases it is not clear what population the sample can be viewed as being drawn from.

A key insight is that viewing the statistical problem as one of causal inference allows one

to interpret the uncertainty as meaningful without any sampling uncertainty. Instead the un-
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certainty is viewed as arising from the unobserved (mising) potential outcomes: we view some

units in the population exposed to one level of the treatment, but do not observe what would

have happened to those units had they been exposed to another treatment level, leaving some

of the components of the estimands unobserved. Abadie, Athey, Imbens and Wooldridge (2014)

discuss these issues in detail.

In part of the discussion in this chapter, therefore, we view the sample at hand as the full

population of interest, following the approaches taken by Fisher (1925, 1935), Neyman (1935),

and subsequently by Rubin (1974, 1978, 2007). The estimands are defined in terms of this finite

population. However, these estimands depend on all the potential outcomes, some observed

and others not observed, and as a result we cannot infer the exact values of the estimands even

if all units in the population are observed. Consider an experiment with ten individuals, five

randomly selected to receive a new treatment, and the remaining five assigned to the control

group. Even if this group of ten individuals is the entire population of interest, observing

realized outcomes for these ten individuals will not allow us to derive the estimand, say the

difference in the average outcome if all individuals were treated and the average outcome if all

ten individual were to receive the control treatment, without uncertainty. The uncertainty is

coming from the fact that for each individual we can only see one of the two relevant outcomes.

In many cases the variances associated with estimators based on random assignment of the

treatment will be similar to those calculated conventionally based on sampling uncertainty. In

other cases the conventional sampling-based standard errors will be unnecessarily conservative.

When covariates are close to uncorrelated with the treatment assignment (as in a randomized

experiment), the differences are likely to be modest. See Abadie, Athey, Imbens and Wooldridge

(2014) for details.

3 The Potential Outcome / Rubin Causal Model Frame-

work for Causal Inference

The perspective on causality we take in this chapter is associated with the potential outcome

framework (for a textbook discussion see Imbens and Rubin, 2015). This approach goes back to

Fisher (1925) and Neyman (1928). The work by Rubin (1973, 1975, 1978) led Holland (1986)

to label it the Rubin Causal Model (RCM).
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3.1 Potential Outcomes

This RCM or potential outcome setup has three key features. The first is that it associates causal

effects with potential outcomes. For example, in a setting with a single unit (say an individual),

and a single binary treatment, say taking a drug or not, we associate two potential outcomes with

this individual, one given the drug and one without the drug. The causal effect is the comparison

between these two potential outcomes. The problem, and in fact what Holland (1985) in a widely

quoted phrase called the “fundamental problem of causal inference” (Holland, 1986, p. 947) is

that we can observe at most one of these potential outcomes, the one corresponding to the

treatment received. In order for these potential outcomes to be well defined, we need to be able

to think of a manipulation that would have made it possible to observe the potential outcome

that corresponds to the treatment that was not received, which led Rubin to claim “no causation

without manipulation” (Rubin, 1975, p. 238). Because for any single unit we can observe at

most one of the potential outcomes, we need to observe outcomes for multiple units. This is the

second feature of the potential outcomes framework, the necessity of the presence of multiple

units. By itself the presence of multiple units does not solve the problem because with multiple

units the number of distinct treatments increases: with N units and two treatment levels for each

unit there are 2N different values for the full vector of treatments, with any comparison between

two of them a valid causal effect. However, in many cases we are willing to make assumptions

that interactions between units is limited so that we can draw causal inferences from comparisons

between units. An extreme version of this is the assumption that the treatment for one unit does

not affect outcomes for any other unit, so that there is no interference whatsoever. The third key

feature of the RCM is the central role of the assignment mechanism. Why did a unit receive the

treatment it did receive? Here randomized experiments occupy a special place in the spectrum

of causal studies: in a randomized experiment the assignment mechanism is a known function of

observed characteristics of the units in the study. The alternative, where parts of the assignment

mechanism are unknown, and may possibly depend on unobserved characteristics (including the

potential outcomes) of the units, are referred to as observational studies (Cochran, 1972).

There are alternative approaches to causality. Most notably there has been much work

recently on causal graphs, summarized in the book by Pearl (2000, 2009). In this approach causal

link are represented by arrows and conditional independencies are captured by the absence of
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arrows. These methods have been found useful in studies of identification questions as well as

for using data to discover causal relationships among different variables. However, the claims in

this literature (e.g., Pearl, 2000, 2009) that the concept of a causal effect does not require the

ability to at least conceptually manipulate treatments remains controversial.

Let us now add some specifics to this discussion. Suppose we start with a single unit, say “I”.

Suppose we have a binary treatment, denoted by W ∈ {0, 1} for this unit, which may correspond

to taking a drug or not. The two potential outcomes are Y (0), the outcome for me if I do not

take the drug, and Y (1), the outcome if I do take the drug. The causal effect is a comparison

of the two potential outcomes, say the difference, Y (1) − Y (0), or the ratio, Y (1)/Y (0). Once

we assign the treatment, one of the potential outcomes will be realized and possibly observed:

Y obs = Y (W ) =

{
Y (0) if W = 0,
Y (1) if W = 1

We can only observe one of the potential outcomes, so drawing credible and precise inferences

about the causal effect, say the difference Y (1)−Y (0) is impossible without additional assump-

tions or information. Now let us generalize to the setting with N units, indexed by i = 1, . . . , N .

Each of the units can be exposed to the two treatments, no drug or drug, with Wi denoting the

treatment received for unit i. Let W be the N−vector of assignments with typical element Wi.

The problem is that in principle the potential outcomes can depend on the treatments for all

units, so that for each unit we have 2N different potential outcomes Yi(W ). In many cases it

is reasonable to assume that the potential outcomes for unit i depend solely on the treatment

received by unit i. This is an important restriction on the potential outcomes, and one that is

unrealistic in many settings, with a classic example being that of vaccinations for infectious dis-

eases. For example, exposing some students to educational interventions may affect outcomes

for their class mates, or training some unemployed individuals may affect the labor market

prospects for other individuals in the labor market. We will discuss the complications arising

from interactions in Section 11. Note that the interactions can be a nuisance for estimating the

effects of interest, but they can also be the main focus.

If we are willing to make the no-interference assumption, or sutva (stable unit treatment

value assumption, Rubin, 1978), we can index the potential outcomes by the own treatment

only, and write without ambiguity Yi(w), for w = 0, 1. For each of the N units the realized

outcome is now Y obs
i = Yi(Wi). Now with some units exposed to the active treatment and some
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exposed to the control treatment, there is some hope for drawing causal inferences. In order to

do so we need to make assumptions about the assignment mechanism. To be formal, let Y be

the range of values for the potential outcomes, and let X be the range of values for the covariates

or pretreatment variables. In general we write this as a function

p : {0, 1}N × Y2N × XN 7→ [0, 1],

so that p(W |Y (0),Y (1),X) is the probability of the assignment vector W , as a function of all

the potential outcomes and covariates.

We limit the general class of assignment mechanism we consider. The most important limita-

tion is that for randomized experiments we disallow dependence on the potential outcomes, and

we assume that the functional form of the assignment mechanism is known. Analyzing observa-

tional studies where the assignment mechanism depends in potentially complicated ways on the

potential outcomes is often a challenging task, typically relying on controversial assumptions.

3.2 A Classification of Assignment Mechanisms

Let us consider four assignment mechanisms that we will discuss in subsequent sections in this

chapter.

3.2.1 Completely Randomized Experiments

In completely randomized experiment a fixed number of units, say Nt, is drawn at random from

the population of N units to receive the active treatment, with the remaining Nc = N − Nt

assigned to the control group. It satisfies

p(W |Y (0),Y (1),X) =

(
N
Nt

)−1
for all W such that

N∑
i=1

Wi = Nt.

3.2.2 Stratified Randomized Experiments

The next two experimental designs, stratification and pairing, are intended to improve the

efficiency of the design by disallowing assignments that are likely to be uninformative about

the treatment effects of interest. In a stratified randomized experiment we first partition the

population on the basis of covariate values into G strata. Formally, if the covariate space is X,
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we partition X into X1, . . . ,XG, so that ∪gXg = X, and Xj ∩ Xg′ = ∅ if g 6= g′. Let Gig be an

indicator for unit i belonging to stratum g, so that Gig = 1Xi∈Xg . Let Ng be the number of units

in stratum g. Then we fix the number of treated units in each stratum as Nt,g, so that the total

number of treated units is Nt =
∑G

g=1Nt,g. The assignment probability is then

p(W |Y (0),Y (1),X) =
G∏
g=1

(
Nj

Nt,g

)−1
, for all W such that ∀g

N∑
i=1

Gij ·Wi = Nt,g.

This design rules out some assignments that are allowed in a completely randomized design, with

the hope that the assignment vectors that are disallowed are relatively uninformative compared

to assignment vectors that are allowed, for example where all men are in the treatment group

and all women in the control group.

3.2.3 Paired Randomized Experiments

In a paired randomized experiment we pair units together and randomize within the pairs. We

can think of this as an extreme case of stratification where each stratum contains exactly one

treated unit and exactly one control unit. In that case there are G = N/2 strata, and Ng = 2

and Nt,g = 1 for all g. Then

p(W |Y (0),Y (1),X) =

(
1

2

)N/2
for all W such that ∀g,

N∑
i=1

Gig ·Wi = 1.

3.2.4 Clustered Randomized Experiments

The last design we discuss is not intended to be more informative than a completely randomized

experiment with the same sample size. Rather it is a design that attemps to avoid complications

with local interactions at the unit level, as well as disallow assignments that are may be relatively

expensive in terms of data collection, and thus indirectly may attempt to increase the sample

size to improve precision. In a clustered randomized experiment, as in a stratified randomized

experiments, we start with a partitioning of the covariate space. Now, however, instead of

assigning treatments randomly to units within a cluster (the same as the stratum in the stratified

randomized experiment), treatments are assigned randomly to entire clusters, with all units

within a cluster receiving the same level of the treatment.
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This design may be motivated by concerns that there are interactions between units. For

example, for educational programs it may be that exposing some children in a classroom to an

intervention has spillover effects on children in the same classroom who were not exposed to the

intervention. For that reason is may make sense to expose all children in a classroom or school

to the same treatment. Alternatively, it may be expensive to randomize at the individual level

compared to randomizing at the classroom or geographic unit level.

Again, let Gig denote the indicator for unit i belonging to cluster g, with G the total number

of clusters. Although we may vary the probability of a cluster being assigned to the treatment

group, here we focus on the simplest case where Gt out of the G clusters are selected randomly to

be assigned to the treatment group. Thus, at the cluster level we have a completely randomized

experiment. Let W g =
∑

i:Gig=1Wi/Ng be the average value of Wi for units in cluster g, so that

the clustering implies that W g ∈ {0, 1}. More generally, one may vary the probability of being

assigned to the treatment by cluster, without requiring that all units in the same cluster having

the same treatment, although we do not consider that case here. Then:

p(W |Y (0),Y (1),X) =

(
G
Gt

)−1
,

for all W such that if Gig = Gi′g = 1, then Wi = Wi′ , and
∑G

g=1W g = Gt.

4 The Analysis of Completely Randomized Experiments

In this section we discuss the analysis of the simplest form of randomized experiments, com-

pletely randomized experiments. In this setting we have a sample of N units, Nt of whom are

selected at random to receive the active treatment, and the remaining Nc = N − Nt of whom

receive the control treatment. We consider four sets of analyses. First, we study the calculation

of exact p-values for sharp hypotheses, based on the work by Fisher (1925, 1935). Second, we

consider estimation of and inference for average treatment effects, following the original work by

Neyman (1928, 1935, 1990). Third, we study the relation between the Neyman approach and

linear regression, showing how randomization justifies conventional regression analyses. Fourth,

we look at quantile treatment effects. Central to our discussion is the view of the potential out-

comes as fixed, leading to a focus on inference based on the randomization distribution, keeping

fixed the total number of units assigned to treatment and control. We will sometimes view the
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sample as identical to the population of interest, and sometimes as a random sample from an

infinitely sized population of interest.

Initially we focus on the case without pretreatment variables. In Section 4.4 we allow for

the presence of covariates but maintain the focus on global targets such as the average effect

of the treatment. In Section 10 we explore the benefits of observing covariates that are not

affected by the treatment, also known as pre-treatment variables. We will illustrate some of

the discussions with analyses of an experimental evaluation of a labor market program, first

analyzed by Lalonde (1986). The data set contains information on 445 individuals, 185 in the

treatment group, and 260 in the control group. The outcome is post training earnings, and

pre-treatment variables include lagged earnings and individual characteristics.

4.1 Exact P-values for Sharp Null Hypotheses

The first analysis is based on Fisher’s (1925, 1935) work on exact p-values for sharp null hy-

potheses. See for recent discussions Rosenbaum (1992), Gail, Tian and Piantadosi (1988), and

Imbens and Rubin (2015), and in economics Young (2016). Fisher was interested in testing

sharp null hypotheses, that is, null hypotheses under which we can infer all the missing po-

tential outcomes from the observed ones. The leading null hypothesis in this class is the null

hypothesis that the treatment has no effect whatsoever:

H0 : Yi(0) = Yi(1) ∀ i = 1, . . . , N. (4.1)

The implicit alternative hypothesis is that there is at least one unit i such that Yi(0) 6= Yi(1).

Other sharp null hypothesis correspond to known constant treatment effects, but in many cases

these are less interesting and natural. However, in some cases one can use the exact p-values

in settings without sharp null hypotheses by redefining the experiment, as shown by Athey,

Eckles and Imbens (2015) in the context of network experiments (see Section 11.3 for further

discussion).

Given the sharp null hypothesis, we can infer all the missing potential outcomes. As a result

we can infer, for any statistic that is a function of Y obs, W , and X, the exact distribution of

that statistic under the null hypothesis. So, suppose we choose as our statistic the difference in
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means by treatment status:

T ave(W ,Y obs,X) = Y
obs

t − Y
obs

c =
1

Nt

∑
i:Wi=1

Y obs
i − 1

Nc

∑
i:Wi=0

Y obs
i . (4.2)

We can calculate the probability, over the randomization distribution, of the statistic taking on

a value as large, in absolute value, as the actual value given the actual treatment assigned. This

calculation gives us the p-value for this particular null hypothesis:

p = pr
(
|T ave(W ,Y obs,X)| ≥ |T ave(W obs,Y obs,X)|

)
. (4.3)

Let us illustrate this using data from National Supported Work program, previously analyzed

by Lalonde (1986), Dehejia and Wahba (1999) and many others. The simple difference in average

post treatment earnings between treated and control is 1.79 (in thousands of dollars). To

calculate the p-value associated with this difference of 1.79, we re-assign the treatment, keeping

the number of treated and control units fixed at 185 and 240 respectively. Given the reassigned

treatment we calculate what the value of the statistic would have been. Although the observed

outcomes do not change for any unit under the null hypothesis, the value of the statistic changes

because who is in the treatment group and who is in the control group changes. Repeating this

many times we calculate the fraction of reassignment vectors that leads to a statistic that is

at least as large as 1.79 in absolute value. The p-value associated with this statistic is 0.0044,

suggesting we should clearly reject the null hypothesis that the program had no effect on earnings

whatsoever.

The main choice to be made in this procedure is the choice of statistic. A natural statistic

is the one we choose in the illustration, the difference in means by treatment status. Another

attractive choice is the difference in means of the ranks by treatment status. Here the outcomes

are first converted to ranks, normalized to have zero mean:

Ri = R(i;Y obs
1 , . . . , Y obs

N ) =
N∑
j=1

1Y obs
j <Y obs

i
+

1

2

(
1 +

N∑
j=1

1Y obs
j =Y obs

i

)
− N + 1

2
.

The term in the middle deals with the presence of ties in the data. For the Lalonde data this

statistic leads to a p-value of 0.01. In this application the robustness to outliers does not actually

buy very much, and the presence of many zeros has a bigger impact on the difference between

the mean and rank statistics.

[15]
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This transformation improves the power of the tests in settings with outliers and thick-

tailed distributions. It is less arbitrary than, for example, simply transforming the outcome

by taking logarithms, especially in settings where such transformations are not feasible, e.g., in

settings with thicktailed distribution and a mass point at zero. There are some settings where

the transformation to ranks does not work well. An example would be a case with a large

proportion of zeros, and a very thick-tailed distribution for the outcomes for units with non-zero

outcomes.

In some cases the researcher has multiple outcomes. One can calculate exact p-values for each

of the outcomes, but obviously the probability that at least one of the p-values is less than 0.05

even if the treatment has no effect on any of the outcomes is generally larger than 0.05. There

are two modifications one can implement to address this. The simplest is to modify the test

statistic to take account of all the outcomes. For example, one could use an F-statistic, that is, a

quadratic form in the difference in average outcomes by treatment status, with the inverse of the

covariance matrix in the middle. For that statistic one can calculate the exact p-value under the

null hypothesis that there is no effect of the treatment whatsoever using the Fisher randomization

distribution. See for example Young (2016). Alternatively one can use adjustments to the p-

values to take account of the multiple testing. Traditionally such adjustments are based on

Bonferroni bounds. However, there are tighter bounds available, although they tend to be more

conservative than the exact Fisher p-values. See Romano, Shaikh and Wolf (2010) for a review

of this literature.

Rosenbaum (1992) discusses estimators for treatment effects based on rank statistics, as

opposed to simply doing tests, following Hodges and Lehmann (1970) and Doksum (1974).

Specifically he looks for values for the common treatment effect that set the rank correlation

between the residuals and the treatment equal to zero, leading to confidence intervals based on

inverting test statistics.

4.2 Randomization Inference for Average Treatment Effects

In this section we continue the analysis of completely randomized experiments, taking as fixed

the potential outcomes in the population. Here we follow the line of research that originates

in the work by Neyman (1929, 1935, 1990). Neyman was interested in estimating the average
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effect of the treatment for the sample at hand,

τ =
1

N

N∑
i=1

(
Yi(1)− Yi(0)

)
= Y (1)− Y (0). (4.4)

In addition Neyman was interested in constructing confidence intervals for such average effects.

Initially we focus purely on the finite sample, with no assumptions on any sampling that may

have led to the particular sample at hand.

As an estimator Neyman proposed the difference in average outcomes by treatment status:

τ̂ = Y
obs

t − Y
obs

c , where Y
obs

t =
1

Nt

∑
i:Wi=1

Y obs
i , and Y

obs

c =
1

Nc

∑
i:Wi=0

Y obs
i . (4.5)

Defining

Di = Wi −
Nt

N
=

{
Nc

N
if Wi = 1

−Nt

N
if Wi = 0,

so that E[Di] = 0, we can write this estimator as:

τ̂ = τ +
1

N

N∑
i=1

Di ·
(
N

Nt

· Yi(1) +
N

Nc

· Yi(0)

)
. (4.6)

Because all potential outcomes are fixed, the only stochastic components are the Di, and with

E[Di] = 0, the second term has expectation zero, which immediately implies that this estimator

is unbiased for the average treatment effect, τ . A more tedious calculation (e.g., Imbens and

Rubin, 2015), shows that the sampling variance of τ̂ , over the randomization distribution, is:

V (τ̂) =
S2
c

Nc

+
S2
t

Nt

− S2
tc

N
, (4.7)

where S2
c and S2

t are the variances of Yi(0) and Yi(1) in the sample, defined as:

S2
c =

1

N − 1

N∑
i=1

(
Yi(0)− Y (0)

)2
, and S2

t =
1

N − 1

N∑
i=1

(
Yi(1)− Y (1)

)2
,

and S2
tc is the sample variance of the unit-level treatment effects, defined as:

S2
tc =

1

N − 1

N∑
i=1

(
Yi(1)− Yi(0)− (Y (1)− Y (0))

)2
.
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We can estimate the first two terms as

s2c =
1

Nc − 1

∑
i:Wi=0

(
Yi(0)− Y obs

c

)2
=

1

Nc − 1

∑
i:Wi=0

(
Y obs
i − Y obs

c

)2
,

and

s2t =
1

Nt − 1

∑
i:Wi=1

(
Yi(1)− Y obs

t

)2
=

1

Nt − 1

∑
i:Wi=1

(
Y obs
i − Y obs

t

)2
.

These estimators are unbiased for the corresponding terms in the variance of τ̂ . The third

term, S2
tc (the population variance of the unit-level treatment effects Yi(1)− Yi(0)) is generally

impossible to estimate consistently because we never observe both Yi(1) and Yi(0) for the same

unit. We therefore have no direct observations on the variation in the treatment effects across

the population and cannot directly estimate S2
tc.

In practice researchers therefore use the estimator for V (τ̂) based on estimating the first two

terms by s2c and s2t , and ignoring the third term,

V̂neyman =
s2c
Nc

+
s2t
Nt

. (4.8)

This leads in general to an upwardly biased estimator for V (τ̂), and thus to conservative confi-

dence intervals. There are two important cases where the bias vanishes. First, if the treatment

effect is constant the third term is zero, and so ignoring it is immaterial. Second, if we view the

sample at hand as a random sample from an infinite population, then V (τ̂) is unbiased for the

variance of τ̂ viewed as an estimator of the population average treatment effect E[Yi(1)−Yi(0)],

rather than as an estimator of the sample average treatment effect
∑N

i=1(Yi(1)− Yi(0))/N (See

Imbens and Rubin, 2015).

To construct confidence intervals we do need to make large sample approximations. One

way to do this is to assume that the sample can be viewed as a random sample from a large

population and use a standard central limit theorem for independent and identically distributed

random variables. An alternative is to make assumptions on the properties of the sequence of

(Yi(0), Yi(1)) so that one can use a Lindenberg-type central limit theorem for independent, but

not identically distributed, random variables for the second term in (4.6). The main condition is

that the sequence of averages of the squares of Yi(0) + Yi(1) does not diverge. The large sample

approximations do play a very different role though than in standard discussions with random
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sampling. Most importantly the estimand is defined in terms of the finite sample, not in terms

of the infinite superpopulation.

For the Lalonde data the estimate and Neyman standard error, which are up to a degrees-

of-freedom adjustment equal to the White robust standard errors (White, 1980), are

τ̂ = 1.794 (ŝe 0.671).

The p-value based on the normal approximation to the distribution of the t-statistic is 0.0076,

compared to an exact p-value of 0.0044 based on the Fisher approach.

4.3 Quantile Treatment Effects

Much of the theoretical as well as the empirical literature on treatment effects has focused on

average causal effects. However, there are other causal effects that might be of interest. Of

particular interest are quantile treatment effects. These can be used as a systematic way to

uncover treatment effects that may be concentrated in tails of the distribution of outcomes, or

to estimate more robustly constant treatment effects in settings with thick-tailed distributions.

For this case there are no finite sample results in the spirit of Neyman’s results for the average

treatment effect, so we focus on the case where the sample can be viewed as a random sample

from an infinite population.

In general, let qY (s) denote the s-th quantile of the distribution of the random variable Y .

Formally,

qY (s) = inf
y

1FY (y)≥s.

Now define the s-th quantile treatment effect as the difference in quantiles between the Yi(1)

and Yi(0) distributions:

τs = qY (1)(s)− qY (0)(s). (4.9)

Such quantile treatment effects have been studied in Doksum (1974) and Lehman (1974), and

more recently in Abadie, Angrist and Imbens (2002), Chernozhukov and Hansen (2005), Firpo

(2007), Bitler, Gelbach and Hoynes (2002).

Note that τs is a difference in quantiles, and in general it is different from the quantile of the

differences, that is, the corresponding quantile of the unit-level treatment effects, qY (1)−Y (0)(s).

[19]



Specifically, although the mean of the difference of Yi(0) and Yi(0) is equal to the difference in

the means of Yi(1) and Yi(0), in general the median of the difference Yi(1)− Yi(0) is not equal

to the difference in the medians of Yi(1) and Yi(0). There are three important issues concerning

the quantile of the treatment effects in relation to the differences in quantiles. First, the two

estimands, qY (1)(s) − qY (0)(s) and qY (1)−Y (0)(s), are equal if there is perfect rank correlation

between the two potential outcomes. In that case,

Yi(1) = F−1Y (1)(FY (0)(Yi(0))).

A special case of this is that where the treatment effect is additive and constant. This assumption

is implausible in many settings. However, in general it has no testable implications.

The second, related, issue is that in general the quantile of the unit-level treatment effects,

qY (1)−Y (0)(s), is not identified. Even with large scale experiments we can only infer the two

marginal distributions of Yi(0) and Yi(1). Nothing about the joint distribution that cannot be

expressed in terms of these two marginal distributions can be inferred from the data.

A third issue is the question which of the two quantile treatment effects, the difference

in quantiles, qY (1)(s) − qY (0)(s), or the quantile of the difference, qY (1)−Y (0)(s), is the more

interesting object for policy makers. To discuss that question it is useful to think about the

possible decisions faced by a policy maker. If a policy maker is commited to making one of the

two treatments universal and is deciding between exposing all units to the control treatment or

to the active treatment, the answer should depend only on the two marginal distributions, and

not on aspects of the joint distribution that cannot be expressed in terms of the two marginal

distributions. This suggests that the difference in quantiles may be a more natural object to

consider, although there are some cases, such as legal settings, where unit-level treatment effects

are of primary interest.

For these reasons we focus on the difference in quantiles, τs. Inspecting this estimand for

different values of s may reveal that a particular treatment affects the lower or upper tail

more than the center of the distribution. In addition, in cases where the average effects of the

treatment may be imprecisely estimated because of thick-tailed distributions, quantile treatment

effect estimates may be very informative.

Here we estimate quantile effects for the Lalonde data for the quantiles 0.10, 0.25, 0.50, and

0.75. For each quantile we estimate the average effect and calculate standard errors using the
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bootstrap. We also use the difference in quantiles as a statistic in an exact p-value calculation.

The results for the exact tests are quite different from those based on estimating the effects and

Table 1: Estimates of Quantile Treatment Effects for Lalonde Data.

quantile est bootstrap s.e. exact p-value

0.10 0.00 (0.00) 1.000
0.25 0.49 (0.35) 0.003
0.50 1.04 (0.90) 0.189
0.75 2.34 (0.91) 0.029
0.90 2.78 (1.97) 0.071

calculating standard errors. The reason is that the quantile estimates are far from normally

distributed. Mainly because of the 30% zeros in the outcome distribution the distribution of the

difference in the lower quantiles has a substantial point mass at zero. Because of the substantial

proportion of individuals with zero earnings, the bootstrap standard error for the 0.10 quantile

is essentially zero.

4.4 Covariates in Completely Randomized Experiments

In this section we discuss some additional analyses that a researcher may wish to carry out if

covariates are recorded for each unit. Later we discuss regression methods, but here we discuss

some general principles. We focus here on the case where the randomization took place without

taking into account the covariates. In fact, as we discuss in Section 3.2.2, if one has covariates

observed prior to the randomization, one should modify the design of the experiment and carry

out a stratified randomized experiment rather than as a completely randomized experiment. If

one has a well-conducted randomized experiment where the randomization did not take into

account the covariates, one does not need regressors in order to estimate average treatment

effects. The simple difference in means by treatment status, τ̂ = Y
obs

t − Y
obs

c is unbiased for the

average effect. So, the question is what the role is of covariates. There are two principal roles.

First, incorporating covariates may make analyses more informative. For example, one can

construct test statistics in the Fisher exact p-value approach that may have more power than
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statistics that do not depend on the covariates. Similary, by estimating average treatment effects

within subpopulations, and then averaging up the estimates appropriately, the results will be

more precise if the covariates are sufficiently strongly correlated with the potential outcomes.

There is potentially a small-sample cost to ex post adjustment. For example, if the covariates

are independent of the potential outcomes, this ex post adjustment will lower precision slightly.

In practice the gains in precision tend to be modest.

Second, if the randomization was compromised, adjusting for covariate differences may re-

move biases. Even if the original randomization was done appropriately, this may be relevant if

there are missing data and the analysis uses only complete cases where there is no guarantee of

ex ante comparability between treated and control units.

To illustrate this, let us consider the Lalonde data, and focus on the indicator that the lagged

earnings are positive as a covariate. The overall estimate of the average treatment effect is

τ̂ = 1.79 (ŝe = 0.67).

For the individuals with positive prior earnings the effect is

τ̂p = 1.69 (ŝep = 1.31).

For the individuals with zero prior earnings the effect is

τ̂z = 1.71 (ŝez = 0.74).

Combining the two estimates leads to

τ̂ = p̂ · τ̂p + (1− p̂) · τ̂z = 1.70 (ŝe = 0.66),

with a standard error that is barely smaller than that without adjusting for positive prior

earnings, 0.67.

The two arguments regarding the role of covariates in the analysis of randomized experiments

also raise the question whether there is any reason to compare the covariate distributions by

treatment status as part of the analysis. There are a couple of reasons why such a comparison

may be useful. If there is some distance between the agencies carrying out the original ran-

domization and the researcher analyzing the data it may be useful as check on the validity of

the randomization to assess whether there are any differences in covariates. Second, even the
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randomization was carried out appropriately, it may be informative to see whether any of the

key covariates were by chance relatively imbalanced between treatment and control group, so

that prior to seeing the outcome data an analysis can be designed that addresses these presum-

ably modest imbalances. Third, if there is reason to believe that the sample to be analyzed

is not identical to the population that was randomized, possibly because of attrition, or item

non-response with incomplete observations dropped from the analysis, it is useful to assess how

big the imbalances are that resulted from the sample selection. Tabel 2 presents the differences

in covariates for the experimental Lalonde data.

Table 2: Covariates in Lalonde Data

Average
Covariate Treated Controls Difference s.e. exact p-value

African-American 0.84 0.83 0.02 (0.04) 0.700
Hispanic 0.06 0.11 -0.05 (0.03) 0.089
age 25.8 25.0 0.8 (0.7) 0.268
education 10.3 10.1 0.3 (0.2) 0.139
married 0.19 0.15 0.045 (0.04) 0.368
no-degree 0.71 0.84 -0.13 (0.04) 0.002
earnings 1974 2.10 2.11 -0.01 (0.50) 0.983
unemployed 1974 0.71 0.75 -0.04 (0.04) 0.329
earnings 1974 1.53 1.27 0.27 (0.31) 0.387
unemployed 1975 0.60 0.69 -0.09 (0.05) 0.069

We see that despite the randomization there is substantial evidence that the proportion of

individuals with a degree in the treatment group is lower than in in the control group. This

conclusion survives adjusting for the multiplicity of testing.

5 Randomization Inference and Regression Estimators

In this section we discuss regression and more generally modelling approaches to estimation and

inference in the context of completely randomized experiments. Although these methods re-

main the most popular way of analyzing data from randomized experiments, we suggest caution
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in using them. Some of these comments echo the concerns raised by others. For example, in

the abstract of Freedman (2008), he writes “Regression adjustments are often made to exper-

imental data. Since randomization does not justify the models, almost anything can happen”

(Freedman, 2008, abstract) and similar comments are made by Deaton (2010) Young (2016),

and Imbens and Rubin (2015). Regression methods were not originally developed for analyzing

data from randomized experiments, and the attempts to fit the appropriate analyses into the

regression framework requires some subtleties. In particular there is a disconnect between the

way the conventional assumptions in regression analyses are formulated and the implications

of randomization. As a result it is easy for the researcher using regression methods to go be-

yond analyses that are justified by randomization, and end up with analyses that rely on a

difficult-to-assess mix of randomization assumptions, modelling assumptions, and large sample

approximations. This is particularly true once one uses nonlinear methods. See for additional

discussions Lesaffre and Senn (2003), Samii and Aronow (2012), Rosenbaum (2002), Lin (2013),

Schochet (2010), Young (2016), Senn (1994).

Ultimately we recommend that researchers wishing to use regression or other model-based

methods rather than the randomization-based methods we prefer, do so with care. For example,

using only indicator variables based on partitioning the covariate space, rather than using multi-

valued variables as covariates in the regression function preserves many of the finite sample

properties that simple comparisons of means have, and leads to regression estimates with clear

interpretations. In addition, in many cases the potential gains from regression adjustment can

also be captured by careful ex ante design, that is, through stratified randomized experiments to

be discussed in the next section, without the potential costs associated with ex post regression

adjustment.

5.1 Regression Estimators for Average Treatment Effects

In ordinary least squares, one regresses the observed outcome Y obs
i on the indicator for the

treatment, Wi, and a constant:

Y obs
i = α + τ ·Wi + εi, (5.1)
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where εi is an unobserved error term. The least squares estimator for τ is based on minimizing

the sum of squared residuals over α and τ ,

(τ̂ols, α̂ols) = arg min
τ,α

N∑
i=1

(Y obs
i − α− τ ·Wi)

2,

with solution

τ̂ols =

∑N
i=1(Wi −W ) · (Y obs

i − Y obs
)∑N

i=1(Wi −W )2
= Y

obs

t − Y
obs

c , and α̂ols = Y
obs − τ̂ols ·W.

The least squares estimate of τ is identical to the simple difference in means, so by the Neyman

results discussed in Section 4.2, the least squares estimator is unbiased for the average causal

effect. However, the assumptions that are typically used to justify linear regression are sub-

stantially different from the randomization that justifies Neyman’s analysis. In addition, the

unbiasedness claim in the Neyman analysis is conceptually different from the one in conven-

tional regression analysis: in the first case the repeated sampling paradigm keeps the potential

outcomes fixed and varies the assignments, whereas in the latter the realized outcomes and as-

signments are fixed but different units with different residuals, but the same treatment status,

are sampled. The assumptions typically used in regression analyses are that, in the infinite popu-

lation the sample was drawn from, the error terms εi are independent of, or at least uncorrelated

with, the treatment indicator Wi. This assumption is difficult to evaluate, as the interpretation

of these residuals is rarely made explicit beyond a vague notion of capturing unobserved factors

affecting the outcomes of interest. Textbooks therefore often stress that regression estimates

measure only association between the two variables, and that causal interpretations are not in

general warranted.

It is instructive to see the formal implications of the randomization for the properties of

the least squares estimator, and to see how the randomization relates to the standard versions

of the regression assumptions. To build this connection between the two repeated sampling

paradigms it is very convenient to view the sample at hand as a random sample from an infinite

population. This allows us to think of all the variables as random variables, with moments

defined as population averages and with a distribution induced by random sampling from this

infinite population. Define

τ = E [Yi(1)− Yi(0)] , and α = E [Yi(0)] .
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Then define the residual as

εi = Yi(0)− α +Wi ·
{
Yi(1)− Yi(0)− τ

}
= (1−Wi) ·

{
Yi(0)− E[Yi(0)]

}
+Wi ·

{
Yi(1)− E[Yi(1)]

}
.

This implies we can write the regression as in (5.1). Now the error term has a clear meaning

as the difference between potential outcomes and their population expectation, rather than as

the difference between the realized outcome and its conditional expectation given the treatment.

Moroever, the independence of Wi and (Yi(0), Yi(1)), directly implied by the randomization, now

has implications for the properties of the error term. Specifically, the randomization implies that

the average residuals for treated and control units are zero:

E[εi|Wi = 0] = 0, and E[εi|Wi = 1] = 0.

Note that random assignment of the treatment does not imply that the error term is independent

of Wi. In fact, in general there will be heteroskedasticity, and we need to use the Eicker-Huber-

White robust standard errors to get valid confidence intervals.

It may appear that this is largely semantics, and that using regression methods here makes no

difference in practice. This is certainly true for estimation in this simple case without covariates,

but not necessarily for inference. The conventional least squares approach suggests using the

robust (Eicker-Huber-White) standard errors. Because the general robust variance estimator

has no natural degrees-of-freedom adjustment, these standard robust variance estimators differs

slightly from the Neyman unbiased variance estimator V̂neyman :

V̂robust =
s2c
Nc

· Nc − 1

Nc

+
s2t
Nt

· Nt − 1

Nt

. (5.2)

The Eicker-Huber-White variance estimator is not unbiased, and in settings where one of the

treatment arms is rare, the difference may matter. For the Duflo-Hanna-Ryan data on the effect

of teacher presence on educational achievement (Duflo, Hanna, and Ryan, 2012), this leads to

Ŷ obs
i = 0.5805 + 0.2154×Wi,

(0.0256) (0.0308)

[0.0311]
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with the Eicker-Huber-White standard errors in parentheses and the Neyman standard error

in brackets. Because both subsample sizes are large enough (Nc = 54 and Nt = 53), there is

essentially no difference in the standard errors. However, if we modify the sample so that there

are Nc = 54 control units but only Nt = 4 treated units, the standard errors are quite different,

0.1215 for the Eicker-Huber-White standard errors, and 0.1400 for the Neyman standard errors.

Although there are refinements of the general Eicker-Huber-White variance estimator, there

are none that are unbiased in general. The difference with the Neyman variance estimator relies

on the fact that the only regressor in the Neyman variance estimator is a binary indicator. More-

over, the Neyman variance estimator, fitting into the classic Behrens-Fisher problem, suggests

using a t-distribution rather than a normal distribution with the degrees of freedom dependent

on the size of the two treatment groups. See Imbens and Kolesar (2015) and Young (2016)

for recent discussions with illustrations how the distribution of the covariates matters for the

standard errors.

5.2 Regression Estimators with Additional Covariates

Now let us turn to the case with additional covariates beyond the treatment indicator Wi, with

these additional covariates denoted by Xi. These additional covariates are not affected by the

treatment by definition, that is, they are pre-treatment variables. Moreover, we assume here

that these covariates did not affect the assignment, which we continue to assume is completely

random. It is the presence of these covariates that often motivates using regression methods

rather than simple differences by treatment status. There are generally three motivations for

including these covariates into the analysis. First, they may improve the precision of the esti-

mates. Second, they allow for estimation of average effects for subpopulations and in general

for assessments of heterogeneity in treatment effects. Third, they may serve to remove biases in

simple comparisons of means if the randomization was not adequate. These are somewhat dis-

tinct, although related, goals, however, and regression methods are not necessarily the optimal

choice for any of them. In general, again, we wish to caution against the routine way in which

regression methods are often applied here.

There are two ways covariates are typically incorporated into the estimation strategy. First,
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they can be included additively through the regression model

Y obs
i = α + τ ·Wi + β′Ẋi + εi. (5.3)

Here Ẋi = Xi − X is the covariate measured in deviations from its mean. Using deviations

from means does not affect the point estimates of τ or β, only that of the intercept α, but this

transformation of the covariates is convenient once we allow for interactions. Estimating this

regression function for the Duflo-Hanna-Ryan data changes the point estimate of the average

effect to 0.1921 and leaves the standard error unchanged at 0.0298. The R-squared in the original

regression was 0.3362, and the two additional covariates increase this to 0.3596, which is not

enough to make a difference in the standard error.

Second, we can allow for a model with a full set of interactions:

Y obs
i = α + τ ·Wi + β′Ẋi + γ′Ẋi ·Wi + εi. (5.4)

In general the least squares estimates based on these regression functions are not unbiased for

the average treatment effects over the randomization distribution given the finite population.

There is one exception. If the covariates are all indicators and they partition the population,

and we estimate the model with a full set of interactions, Equation (5.4), then the least squares

estimate of τ is unbiased for the average treatment effect. To see this, consider the simplest

case with a single binary covariate. In that case we can think of average treatment effects τx for

each value of x. We can also think of τ̂x estimated separately on the corresponding part of the

subpopulation. If X is the average value of Xi in the sample, then

τ̂ = τ̂1 ·X + τ̂0 · (1−X), and γ̂ = τ̂1 − τ̂0.

Below in Section 10.3.1, we discuss machine learning methods for partitioning the covariate

space according to treatment effect heterogeneity; if we construct indicators for the element

of the partition derived according to an “honest causal tree” (Athey and Imbens, 2016) and

incorporate them into (5.4), then the resulting average treatment effect (estimated on what

Athey and Imbens (2016) refer to as the estimation sample) is unbiased over the randomization

distribution. This result extends conceptually to the case where all regressors are indicators. In

that case all least squares estimates are weighted averages of the within-cell estimated average

effects.

[28]

skopper
Highlight

skopper
Highlight

skopper
Highlight



If we are willing to make large sample approximations, we can also say something about the

case with multivalued covariates. In that case, τ̂ is (asymptotically) unbiased for the average

treatment effect. Moreoever, and this goes back to the first motivation for including covariates,

the asymptotic variance for τ̂ is less than that of the simple difference estimator by a factor equal

to 1−R2 from including the covariates relative to not including the covariates. It is important

that these two results do not rely on the regression model being true in the sense that the

conditional expectation of Y obs
i is actually linear in the covariates and the treatment indicator

in the population. Because of the randomization there is zero correlation in the population

between Wi and the covariates Xi, which is sufficient for the lack of bias from including or

excluding the covariates. However, the large sample approximation needs to be taken seriously

here. If in fact the covariates have very skewed distributions, the finite sample bias in the linear

regression estimates may be substantial, as Freedman (2008) points out. At the same time, the

gain in precision is often modest as the covariates often only have limited explanatory power.

The presence of non-zero values for γ imply treatment effect heterogeneity. However, the

interpretation of the γ depends on the actual function form of the conditional expectations. Only

if the covariates partition the population do these γ have a clear interpretation as differences

in average treatment effects. For that reason it may be easier to convert the covariates into

indicator variables. It is unlikely that the goodness of fit of the regression model is much affected

by such transformations, and both the interpretation and the finite sample unbiasedness would

be improved by following that approach.

For the Duflo-Hanna-Ryan (2012) data,

Ŷ obs
i =0.59+ 0.192×Wi+ 0.001×X1i− 0.004×X2i− 0.006×X1i ×Wi

(0.02) (0.03) (0.002) (0.01) (0.003)

+0.017 ×X2i ×Wi

(0.01)

The inclusion of the two covariates with the full set of interactions does not affect the point

estimate of the average treatment effect, nor its standard error.

Alternatively, if we run the regression with an indicator for X1i > 37 (teacher score greater
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than the median), we get

Ŷ obs
i =0.60+ 0.188×Wi+ 0.10× 1{X1i>37} −0.06× 1{X1i>37} ×Wi

(0.02) (0.03) (0.05) (0.06)

Now the coefficient on the interaction is directly interpretable as an estimate of the difference in

the average effect for teachers with a score higher than 37 versus teachers with a score less than

or equal to 37. Ultimately there is very little gain in precision in the estimator for the average

treatment effect.

6 The Analysis of Stratified and Paired Randomized Ex-

periments

In this section we discuss the analyses for two generalizations of completely randomized exper-

iments. First, consider stratified randomized experiments. In that case the covariate space is

partitioned into a finite set. Within each of these subsets a completely randomized experiment

is carried out. In the extreme case where the partition is such that within each subset there

are exactly two units, and the designs corresponds to randomly assigning exactly one of these

two units to the treatment and the other to the control group we have a paired randomized

experiment. Both these designs can be thought of as attempting to capture the gains from

adjusting from observable differences between units by design, rather than by analysis as in the

previous section. As such they capture the gains from ex post regression adjustment without

the potential costs of linear regression, and therefore stratification is generally preferable over

regression adjustment. In the current section we discuss the analyses of such experiments, and

in Section 7.2 the design aspects.

6.1 Stratified Randomized Experiments: Analysis

In a stratified randomized experiment the covariate space is partitioned into a finite set of

subsets. Within each of these subsets a completely randomized experiment is carried out, after

which the results are combined. If we analyze the experiment using Neyman’s repeated sampling

approach the analysis of stratified randomized experiments is straightforward. Suppose there
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are G strata within which we carry out a completely randomized experiment, possibly with

varying treatment probabilities. Let τg be the average causal effect of the treatment for all units

within stratum g. Within this stratum we can estimate the average effect as the difference in

average outcomes for treated and control units:

τ̂g = Y
obs

t,g − Y
obs

c,g ,

and we can estimate the within-stratum variance, using the Neyman results, as

V̂(τ̂g) =
s2t,g
Nt,g

+
s2c,j
Nc,g

,

where the j-subscript indexes the stratum. We can then estimate the overall average effect of

the treatment by simply averaging the within-stratum estimates weighted by the stratum share

Ng/N :

τ̂ =
G∑
g=1

τ̂g ·
Ng

N
, with estimated variance V̂strat(τ̂) =

G∑
g=1

V̂(τ̂g) ·
(
Ng

N

)2

.

There is a special case that is of particular interest. Suppose the proportion of treated units

is the same in all strata. In that case the estimator for the average treatment effect is equal to

the difference in means by treatment status,

τ̂ =
G∑
g=1

τ̂g ·
Ng

N
= Y

obs

t − Y
obs

c ,

which is the estimator we used for the completely randomized experiment. In general, however,

the variance based on the completely randomized experiment set up,

V̂neyman =
s2t
Nt

+
s2c
Nc

,

will be conservative compared to the variance that takes into account the stratification, V̂strat(τ̂):

the latter takes into account the precision gain from stratification.

6.2 Paired Randomized Experiments: Analysis

Now let us consider a paired randomized experiment. Starting with N units in our sample,

N/2 pairs are constructed based on covariate values so that within the pairs the units are more
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similar in terms of covariate values. Then, within each pair a single unit is chosen at random

to receive the active treatment and the other unit is assigned to the control group. The average

treament effect within the pair is estimated as the difference in outcome for the treated unit

and the control unit:

τ̂g =
∑

i:Gig=1,Wi=1

Y obs
i −

∑
i:Gig=1,Wi=0

Y obs
i .

The overall average effect is estimated as the average over the within-pair estimates:

τ̂ =
1

N/2

N/2∑
g=1

τ̂g = Y
obs

t − Y
obs

c .

So far this is similar to the analysis of a general stratified experiment, and conceptually the two

designs are closely related.

The complications arise when estimating the variance of this estimator, as an estimator of

the average effect over the strata, τ =
∑N/2

g=1 τg · 2/N . In the stratified randomized experiment

case we estimated the variance in two steps, first estimating the within-stratum variance for

stratum g as

V̂(τ̂g) =
s2t,g
Nt,g

+
s2c,g
Nc,g

,

followed by averaging this over the strata. However, this variance estimator requires at least

two treated and at least two control units in each stratum, and thus is not feasible in the paired

randomized experiment case with only one treated and one control unit in each stratum or pair.

Instead typically the following variance estimator is used:

V̂(τ̂) =
1

N/2 · (N/2− 1)

N/2∑
g=1

(τ̂g − τ̂)2 , (6.1)

the variance of the τ̂g over the pairs. This variance estimator is conservative if viewed as an

estimator of τ =
∑N/2

g=1 τg · 2/N . However, suppose we view the pairs as being randomly drawn

from a large super-population, with population average treatment effect equal to τ ∗ = E[τg].

Then the variance of τ̂ , viewed as an estimator of τ ∗, can be estimated using V̂(τ̂).

Because in this case the proportion of treated units is the same in each pair, namely 1/2,

we can also use the variance based on analysing this as a completely randomized experiment,
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leading to:

V̂neyman =
s2t
Nt

+
s2c
Nc

. (6.2)

In general this will be conservative, and more so than necessary.

Let us illustrate this with data from the Children’s Television Workshop experiment. See

Imbens and Rubin (2015) for details. There are eight pairs of classrooms in this experiment,

with one classroom in each pair shown the Electric Company, a children’s television program.

The outcome is a post-test score, leading to

τ̂ = 13.4, (ŝepair = 4.6),

where the standard error is calculated as in Equation (6.1), taking into account the paired design.

The variance estimate based on the interpretation as a completely randomized experiment as in

Equation (6.2), rather than a paired experiment, is ŝeneyman = 7.8, almost twice the size. There

is a substantial gain from doing the paired randomized experiment in this case.

7 The Design of Randomized Experiments and the Ben-

efits of Stratification

In this section we discuss some issue related to the design of randomized experiments. First we

discuss the basic power calculations for completely randomized experiments. Second we discuss

the benefits of stratification, and its limit, pairwise randomization, in terms of the expected

precision of the resulting experiments. Finally we discuss issues related to re-randomization if

one feels the randomization did not produce the desired balance in covariates between treatment

and control groups. Ultimately our recommendation is that one should always stratify as much

as possible, up to the point that each stratum contains at least two treated and two control

units. Although there are in principle some benefits in terms of expected precision to using

paired designs rather than stratified designs with two treated and two control units, these tend

to be small and because there are some real costs in terms of analyses we recommend the

stratified rather than paired designs. If the stratification is done appropriately, there should be

no need for re-randomization.
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7.1 Power Calculations

In this section we look at some simple power calculations for randomized experiments. These

are intended to be carried out prior to any experiment, in order to assess whether the proposed

experiment has a reasonable chance of finding results of the size that one might reasonably

expect. These analyses depend on a number of inputs, and can focus on various outputs. Here

we largely focus on the formulation where the output is the minimum sample size required to

find treatment effects of a pre-specified size with a pre-specified probability. Alternatively, one

can also focus on the treatment size one would be likely to find given a particular sample size.

For details on these and similar calculations a standard reference is Cohen (1988). See also

Murphy, Myors, and Wollach, (2014).

Let us consider a simple case where for a sample of size N , we would observe values for

an outcome for the N units, Y obs
1 , . . . , Y obs

N , and a treatment indicator W1, . . . ,WN . We are

interested in testing the hypothesis that the average treatment effect is zero:

H0 : E[Yi(1)− Yi(0)] = 0,

against the alternative that the average treatment effect differs from zero:

Ha : E[Yi(1)− Yi(0)] 6= 0.

We restrict the size of the test, the probability of rejecting the null hypothesis when it is in

fact true, to be less than or equal to α. Often, following Fisher (1925), we choose α = 0.05

as the statistical significance level. In addition, we want the power of the test, the probability

of rejecting the null when it is in fact false, to be at least equal to β, in the case where the

true average treatment effect is τ = E[Yi(1) − Yi(0)] for some prespecified value of τ . Let

γ =
∑

iWi/N be the proportion of treated units. For simplicity we assume that the conditional

outcome variance in each treatment arm is the same, σ2 = V(Yi(0)) = V(Yi(1)). We look for

the minimum sample size N = Nc +Nt, as a function of α, β, τ , σ2, and γ.

To test the null hypothesis of no average treatment effect we look at the T-statistic

T =
Y

obs

t − Y
obs

c√
S2
Y /Nt + S2

Y /Nc

≈ Y
obs

t − Y
obs

c√
σ2/Nt + σ2/Nc

.

We reject the null hypothesis of no difference if the absolute value of this t-statistic, |T |, exceeds

Φ−1 (1− α/2). Thus, if α = 0.05, the threshold would be Φ−1 (1− α/2) = 1.96. We want
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the rejection probability to be at least β, given that the alternative hypothesis is true with

the treatment effect equal to τ . In general the difference in means minus the true treatment

effect τ , scaled by the standard error of that difference, has approximately a standard normal

distribution:

Y
obs

t − Y
obs

c − τ√
σ2/Nt + σ2/Nc

≈ N (0, 1).

This implies that the t-statistic has an approximately normal distribution:

T ≈ N

(
τ√

σ2/Nt + σ2/Nc

, 1

)
.

Now, a simple calculation implies that the null hypothesis will be rejected with probability

pr
(
|T | > Φ−1 (1− α/2)

)
≈ Φ

(
−Φ−1 (1− α/2) +

τ√
σ2/Nt + σ2/Nc

)

+Φ

(
−Φ−1 (1− α/2)− τ√

σ2/Nt + σ2/Nc

)
.

The second term is small, so we ignore it. Thus we want the probability of the first term to be

equal to β, which requires

β = Φ

(
−Φ−1 (1− α/2) +

τ√
σ2/Nt + σ2/Nc

)
,

leading to

Φ−1 (β) = −Φ−1 (1− α/2) +
τ
√
N
√

(γ(1− γ)

σ
.

This leads to a required sample size

N =
(Φ−1 (β) + Φ−1 (1− α/2))

2

(τ 2/σ2) · γ · (1− γ)
. (7.1)

For example, let us consider a setting close to the Lalonde data. The standard deviation

of the outcome is approximately 6, although that may have been difficult to assess before the

experiment. Suppose we choose γ = 0.5 (equal sample sizes for treated and controls, which

is optimal in the case with homoskedasticity, and typically close to optimal in other cases),
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α = 0.05 (test at 0.05 level). Suppose also that we are looking to be able to find an effect of

1 (thousand dollars), which is a substantial amount given the average pre-program earnings of

these individuals, and that we choose β = 0.8 (power of 0.8). Then

N =
(Φ−1 (β) + Φ−1 (1− α/2))

2

(τ 2/σ2
Y ) · γ · (1− γ)

=
(Φ−1 (0.8) + Φ−1 (0.975))

2

0.1672 · 0.52
= 1, 302,

so that the minimum sample size is 1,302, with 651 treated and 651 controls. If the effect we

wish to have power of 0.8 for is 2, then the required sample size would be substantially smaller,

namely 282, split equally between 142 treated and 142 controls.

7.2 Stratified Randomized Experiments: Benefits

In this section we discuss the benefits of stratification in randomized experiments. Mostly this

discussion is based on the special case where the ratio of the number of treated units to the

total number of units is the same in each stratum. In this case the intended benefit of the

stratification is to achieve balance in the covariates underlying the stratification. Suppose there

are only two strata, containing, respectively, women and men. If the total sample size is 100,

with 50 women and 50 men, and there are 60 individuals to be assigned to the treatment group

and 40 to the control group, stratification would ensure that in the treatment group there are 30

women and 30 men, and the 20 of each sex in the control group. This would avoid a situation

where, by chance, there were 25 women and 35 men in the treatment group, and 25 women and

15 men in the control group. If the outcomes were substantially correlated with the sex of the

individual, such a random imbalance in the sex ratio in the two treatment groups would reduce

the precision from the experiment. Note that without stratification the experiment would still

be valid, and, for example, still lead to exact p-values. Stratifying does not remove any bias, it

simply leads more precise inferences than complete randomization.

Although it is well known that stratification on covariates is beneficial if based on covariates

that are strongly correlated with the outcomes, there appears to be confusion in the literature

concerning the benefits of stratification in small samples if this correlation is weak. Bruhn and

McKenzie (2007) document this in a survey of researchers in development economics, but the

confusion is also apparent in the statistics literature. For example, Snedecor and Cochran (1989,

page 101) write:
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“If the criterion has no correlation with the response variable, a small loss in accuracy

results from the pairing due to the adjustment for degrees of freedom. A substantial

loss may even occur if the criterion is badly chosen so that member of a pair are

negatively correlated.”

Box, Hunter and Hunter (2005, page 93) also suggest that there is a tradeoff in terms of accuracy

or variance in the decision to stratify, writing:

“Thus you would gain from the paired design only if the reduction in variance from

pairing outweighed the effect of the decrease in the number of degrees of freedom of

the t distribution.”

This is somewhat counterintuitive: if one stratifies on a covariate that is independent of all

other variables, then stratification is obviously equivalent to complete randomization. In the

current section we argue that this intuition is correct and that in fact there is no tradeoff. We

present formal results that show that in terms of expected-squared-error, stratification (with the

same treatment probabilities in each stratum) cannot be worse than complete randomization,

even in small samples, and even with little, or even no, correlation between covariates and

outcomes. Ex ante, committing to stratification can only improve precision, not lower it. There

is two important qualifications to this result. First, ex post, given the joint distribution of the

covariates in the sample, a particular stratification may be inferior to complete randomization.

Second, the result requires that the sample can be viewed as a (stratified) random sample from

an infinitely large population, with the expectation in the expected-squared-error taken over

this population. This requirement guarantees that outcomes within strata cannot be negatively

correlated.

The lack of any finite sample cost to (ex ante) stratification in terms of expected-squared-

error contrasts with the potential cost of ex post stratification, or regression adjustment. Ex

post adjustment for covariates through regression may increase the finite sample variance, and in

fact it will strictly increase the variance for any sample size, if the covariates have no predictive

power at all.

However, there is a cost to stratifying on a variable that has no association with the potential

outcomes. Although there is no cost to stratification in terms of the variance, there is a cost

in terms of estimation of the variance. Because there are unbiased estimators for the variance,
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it follows that if the variance given stratification is less than or equal to the variance without

stratification, it must be that the expectation of the estimated variance given stratification is

less than or equal to the expectation of the estimated variance without stratification. However,

the estimator for the variance given stratification typically has itself a larger variance, related to

the degrees of freedom adjustment. In our view this should not be interpreted, however, as an

argument against stratification. One can always use the variance that ignores the stratification:

this is conservative if the stratification did in fact reduce the variance. See Lynn and McCulloch

(1992) for a similar argument in the context of paired randomized experiments.

We state the formal argument for a simplified case where we have a single binary covariate,

Xi ∈ {f,m} (females and males). we start with a large (infinitely large) superpopulation that

expectations and variances refer to. We will draw a sample of size N from this population

and then assign treatments to each unit. For simplicity we assume that N/4 is an integer.

Each unit is characterized by a triple (Yi(0), Yi(1), Xi), where Xi is a binary indicator. In the

superpopulation Xi has a binomial distribution with support {f,m} (females and males) with

pr(Xi = f) = 1/2. Let µft = E[Yi(1)|Xi = f], µfc = E[Yi(0)|Xi = f], µmt = E[Yi(1)|Xi = m], and

µmc = E[Yi(0)|Xi = m], and similarly for the variances.

We consider the following sampling scheme. We randomly sample N/2 units from each of

the two strata. Given a sample of X1, . . . , XN we consider two randomization schemes. In the

first we randomly select N/2 units out of the sample of N units to be assigned to the treatment

group. We refer to this as the completely randomized assignment, C. Second, we consider the

following stratified randomization scheme, denoted by S. For the stratified design randomly

select N/4 from each stratum to be assigned to the treatment, and assign the remainder to the

control group. In both cases we estimate the average treatment effect as

τ̂ = Y
obs

t − Y
obs

c .

We consider the properties of this estimator over repeated randomizations, and repeated

random samples from the population. It follows trivially that under both designs, the estimator

is unbiased for the population average treatment effect under the randomization distribution.

The differences in performance between the estimators and the designs are solely the result of

differences in the variances. The exact variance for a completely randomized experiment can be
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written as

VC =
1

4 ·N
·
(
(µfc − µmc)

2 + (µft − µmt)
2
)

+
1

N
·
(
σ2
ft + σ2

fc

)
+

1

N
·
(
σ2
mt + σ2

mc

)
.

The variance for the corresponding stratified randomized experiment is

VS =
1

N
·
(
σ2
ft + σ2

fc

)
+

1

N
·
(
σ2
mt + σ2

mc

)
.

Thus, the difference in the two variances is

VC − VS =
1

4 ·N
·
(
(µfc − µmc)

2 + (µft − µmt)
2
)
≥ 0.

Therefore, stratification leads to variances that cannot be higher than those under a completely

randomized experiment. There can only be equality if neither of the potential outcomes is

correlated with the covariate, and µfc = µmc and µft = µmt. This is the main argument for our

recommendation that one should always stratify.

The inability to rank the conditional variance is useful in understanding the Snedecor and

Cochran quote in the introduction. If the strata are defined in terms of a continuous covariate,

than in a particular sample, it is possible that stratification leads to larger variances conditional

on the covariate values (and in the special case of paired experiments, to negative correlations

within pairs). That is not possible on average, that is, over repeated samples randomly drawn

from large strata, rather than conditional on the covariate values in a single sample. As men-

tioned before, the large strata qualification here is important: if the strata we draw from are

small, say litters of puppies, it may well be that the within-stratum correlation is negative, but

that is not possible if all the strata are large: in that case the correlation has to be non-negative.

Now let us consider two estimators for the variance. First define, for w = c, t, and x = f,m,

s2xw =
1

Nxw − 1

∑
i:Wi=1{w=t},Xi=x

(
Y obs
i − Y obs

xw

)2
and s2w =

1

Nw − 1

∑
i:Wi=1{w=t}

(
Y obs
i − Y obs

w

)2
.

The natural estimator for the variance under the completely randomized experiment is:

V̂C =
s2c
Nc

+
s2t
Nt

, with E[V̂C] = VC.

For a stratified randomized experiment the natural variance estimator, taking into account the

stratification, is:

V̂S =
Nf

Nf +Nm

·
(
s2fc
Nfc

+
s2ft
Nft

)
+

Nm

Nf +Nm

·
(
s2mc

Nmc

+
s2mt

Nmt

)
with E[V̂S] = VS.
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Hence, E[V̂S] ≤ E[V̂C]. Nevertheless, in a particular sample, with values (Y ,W ,X), it may well

be the case that the realized value of the completely randomized variance estimator V̂C(Y ,W ,X)

is less than that of the stratified variance V̂S(Y ,W ,X). To be more specific, consider the case

where the stratification is not related to the potential outcomes at all. In that case the two

variances are identical in expectation, E[V̂S] = E[V̂C], but the variance of V̂S is larger than the

variance of V̂C, V(V̂S) < V(V̂C). As a result the power of a t-test based on V̂S will be slightly

lower than the power of a t-test based on V̂C. Nevertheless, in practice we recommend to always

stratify whenever possible.

7.3 Re-randomization

Suppose one is conducting a randomized experiment. For the study population the researcher

has collected some background characteristics and has decided to assign the units to the treat-

ment or control group completely at random. Although this would in general not be optimal,

it may be that the researcher decided it was not worth the effort investigating a better design,

and just went ahead with the complete randomization. Now, however, suppose that after the

random assigmnent has been decided, but prior to the actual implementation of the assignment,

the researcher compares average pretreatment values by treatment status. In expectation these

should be identical for all covariates, but obviously in reality these will differ somewhat. Now

suppose that one of the most important covariates does actually show a substantial difference

between the assigned treatment and control group. It need not be, although it may be statis-

tically significant at conventional levels even if the randomization was done properly, simply

because there is a substantial number of covariates, or simply by chance. What should one

do in that case? More specifically, should one go back to the drawing board and re-randomize

the treatment assignment so that the important covariate is better balanced? This question

of re-randomization has received some attention in the empirical development literature. One

paper that raised the question forcefully in this literature is Bruhn and McKenzie (2007). Theo-

retical paper discussing some of the formal aspects are Morgan and Rubin (2012) and Banerjee,

Snowberg, and Chassang (2016).

Here we offer some comments. First of all, implicitly many designs for randomized experi-

ments can be thought of as based on re-randomization. Consider the case where the population

of N = 100 individuals consists of 50 women and 50 men. Suppose we do a completely random-
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ized experiment, with 60 individuals to be assigned to the treatment group and the remaining

40 assigned to the control group. Now suppose we reject and re-randomize any randomization

vector that does not correspond to 30 men and 30 women being assigned to the treatment

group. Then, in an indirect manner, we end up with a stratified randomized experiment that we

know how to analyze, and that in general offers better sampling properties in terms of variance.

The point is that in this case the re-randomization does not create any complications, although

the appropriate analysis given the re-randomization is different from the one based on ignor-

ing the re-randomization. Specifically, p-values need to be adjusted for the re-randomization,

although ignoring the adjustment simply leads to conservative p-values. Both statements hold

more generally.

In order for the subsequent analysis to be able to take account of the re-randomization, how-

ever, the details of the re-randomization need to be spelled out. This is most easily seen if we con-

sider a Fisher exact p-value analysis. In order to calculate the exact p-value we need to know the

exact distribution of the assignment vector. In the case of possible re-randomization we would

therefore need to know exactly which assignment vectors would be subject to re-randomization,

and which would be viewed as acceptable. The actual criterion may be complicated, and involve

calculation of t-statistics for differences in average covariates between treatment groups, but it

needs to be completely spelled out in order for the exact p-value calculation to be feasible.

Doing this is ultimately equivalent to designing an experiment that guarantees more balance,

and it would most likely take a form close to that of a stratified randomized experiment. We

recommend simply taking care in the original design so that assignments that correspond to

unacceptable balance are ruled out from the outset, rather than ruled out ex post which com-

plicates inference.

8 The Analysis of Clustered Randomized Experiments

In this section we discuss clustered randomized experiments. Instead of assigning treatments

at the unit level, in this setting the population is first partitioned into a number of clusters.

Then all units in a cluster are then assigned to the same treatment level. Clusters may take

the form of schools, where within a school district a number of schools are randomly assigned

to an educational intervention rather than individual students, or villages, or states, or other
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geographical entities. For general discussions, see Donner (1987), Gail, Mark, Carroll, Green,

and Pee (1996), and Murray (2012).

Given a fixed sample size, this design is in general not as efficient as a completely randomized

design or a stratified randomized design. The motivation for such clustered designs is different.

One motivation is that in some cases there may be interference between units at the unit-level.

If there is no interference between units in different clusters, then the cluster-level randomization

may allow for simple, no-interference type analyses, whereas a unit-level analysis would require

accounting for the within-cluster interactions. A second motivation is that in many cases it

is easier to sample units at the cluster level. For the same cost, or level of effort, it may be

therefore be possible to collect data on a larger number of units.

In practice there are quite different settings where clustered randomization may take place.

In some cases the number of units per cluster is similar, for example in educational settings

where the clusters are classrooms. In other settings where clusters are geographical units, e.g.,

states, or towns, there may be a substantive amount of variation in cluster size. Although

theoretically this does not make much of a difference, in practice it can affect what effective

strategies are available for dealing with the clustering. In the first case our main recommendation

is to include analyses that are based on the cluster as the unit of analysis. Although more

sophisticated analyses may be more informative than simple analyses using the clusters as units,

it is rare that these differences in precision are substantial, and a cluster-based analysis has the

virtue of great transparency. Analyzing the data at the unit-level has the benefit that one

can directly take into account unit-level characteristics. In practice, however, including unit-

level characteristics generally improves precision by a relatively modest amount compared to

including cluster-averages as covariates in a cluster-level analysis, so our recommendation is

to focus primarily on cluster-level analyses. For the second case where there is substantial

variation in cluster sizes, a key component of our recommended strategy is to focus on analyses

with cluster-averages as the target in addition to analysis with unit-averages that may be the

main target of interest. The former may be much easier to estimate in settings with a substantial

amount of heterogeneity in cluster sizes.
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8.1 The Choice of Estimand in Clustered Randomized Experiments

As before, let G be the number of clusters, and let Gig ∈ {0, 1}, i = 1, . . . , N , g = 1, . . . , G

denote the binary indicator that unit i belongs to cluster g. Ng =
∑N

i=1Gig is the number of

units in cluster g, so that Ng/N is the share of cluster g in the sample. Wi continues to denote

the treatment assignment for unit i, but now W g denotes the average value of the treatment

assignment for all units in cluster g, so that by the definition of clustered randomized assignment,

W g ∈ {0, 1}. Let Gt be the number of treated clusters, and Gc = G−Gt the number of control

clusters.

The first issue in clustered randomized experiments is that there may be different estimands

to consider. One natural estimand is the overall population average treatment effect,

τpop =
1

N

N∑
i=1

(
Yi(1)− Yi(0)

)
,

where we average over all units in the population. A second estimand is the unweighted average

of the within-cluster average effects:

τC =
1

G

G∑
g=1

τg, where τg =
1

Ng

∑
i:Cig=1

(
Yi(1)− Yi(0)

)
.

We can think of τC as a weighted average of the unit-level treatment effects, with the weight

for units in cluster g proportional to the inverse of the cluster sample size, 1/Ng. Similarly, the

population average treatment effect can be thought of as a weighted average of the cluster-level

average treatment effects with weights proportional to the cluster sample size Ng.

There are two issues regarding the choice of estimand. One is which of the estimands is

of most substantive interest. In many cases this will be the unweighted, population average

treatment effect τpop. A second issue is the ease and informativeness of any analysis. Because

the randomization is at the cluster level, simply aggregating unit-level outcomes to cluster-level

averages simplifies the analyis substantially: all the methods developed for completely random-

ized experiments apply directly to a cluster-level analysis for clustered randomized experiments.

In addition, inferences for τC are often much more precise than inferences for τpop in cases where

there are a few large clusters and many small clusters. Consider an extreme case where there

is one extremely large cluster, that in terms of size is larger then the other clusters combined.
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Inference for τpop in that case is difficult because all the units in this mega-cluster will always

be in the same treatment group. Inference for τC, on the other hand, may well be precise.

Moreoever, if the substantive question is one of testing for the presence of any treatment effect,

answering this question by focusing on a statistic that averages over clusters without weighting

is just as valid as comparing weighted averages over clusters.

In practice a researcher may therefore want to report analyses for τpop in combination with

analyses for τC. In cases where τpop is the estimand that is of most substantive interest, the

more precise inferences for τC may complement the noisy analyses for the substantively more

interesting τpop.

8.2 Point Estimation in Clustered Randomized Experiments

Now let us consider the analysis of cluster randomized experiments. We focus on the case where

unit-level outcomes and possibly covariates are available. The first choice facing the researcher

concerns the choice of the unit of analysis. One can analyze the data at the unit level or at the

cluster level. We first do the latter, and then return to the former.

If we are interested in the average effect τC, we can directly use the methods for completely

randomized experiments discussed in Section 4. Let Y
obs

g be the average of the observed outcomes

in cluster g. We can simply average the averages for the treated and control clusters:

τ̂C =
1

Gt

∑
g:W g=1

Y
obs

g −
1

Gc

∑
g:W g=0

Y
obs

g .

The variance of this estimator can be estimated as

V̂(τ̂C) =
s2C,c
Gc

+
s2C,t
Gt

,

where the variance for the averages of

s2C,c =
1

Gc − 1

∑
g:W g=0

Y obs

g −
1

Gt

∑
g′:W g′=1

Y
obs

g′

2

,

and similarly for s2C,c. We can also get the same estimates using regression methods for the

regression function

Y
obs

g = α + τC ·W g + ηg. (8.1)
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We can generalize the specification of this regression function to include cluster-level covariates,

including cluster characteristics or averages of unit-level characteristics.

Using a unit-level analysis obtaining an estimate for τC is more complicated. Consider the

regression

Y obs
i = α + τ ·Wi + εi. (8.2)

We can estimate this regression function using weighted least squares with the weight for unit i,

belonging to cluster g(i), equal to 1/Ng(i) as in the Cox (1956) analysis of weighted randomized

experiments. This weighted least squares estimator is identical to τ̂C.

Now consider the case where we are interested in τpop. In that case we can estimate the

regression function in (8.2) without any weights. Alternatively, we can get the same numeri-

cal answer by estimating the regression (8.1) at the cluster level with weights proportional to

the cluster sample sizes Ng. To get the variance for the estimator for the population average

treatment effect we can use the unit-level regression, but we need to take into account the

clustering. We can do so using the robust clustering standard errors proposed by Liang and

Zeger (1986). Let α̂ and τ̂ be the least squares estimators for α and τ based on (8.2), and let

ε̂i = Y obs
i − α̂ − τ̂ ·Wi be the residual. Then the covariance matrix for (α̂, τ̂) can be estimated

as (
N∑
i=1

(
1 Wi

Wi Wi

))−1 G∑
g=1

∑
i:Cig=1

(
ε̂i

Wi · ε̂i

) ∑
i:Cig=1

(
ε̂i

Wi · ε̂i

)′( N∑
i=1

(
1 Wi

Wi Wi

))−1
.

The key difference with the Eicker-Huber-White robust standard errors is that before taking

the outer product of the product of the residuals and the covariates they are summed up within

clusters. This cluster-robust variance estimator is implemented in many regression software

packages, sometimes with ad hoc degrees of freedom adjustments.

If we compare unit-level and cluster-level analyses in the form described so far, our pref-

erence is for cluster-level analysis, as it is more transparent and more directly linked to the

randomization framework. However, unit-level analysis allows the analyst to impose additional

modeling assumptions; for example, a unit-level regression can incorporate covariates and im-

pose additional assumptions, such as restricting the effect of covariates to be common across

clusters. If justified, imposing such restrictions can increase efficiency. One could accomplish
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the same goal by first doing a unit-level regression and constructing residuals for each unit, and

then performing cluster-level analysis on the residuals, but at that point the inference would

become more complex and depart from the pure randomization-based analysis, reducing the

benefits of a cluster-based approach.

8.3 Clustered Sampling and Completely Randomized Experiments

A second issue related to clustering is that the original sample may have been obtained through

clustered sampling. This issue is discussed in more detail in Abadie, Athey, Imbens and

Wooldridge (2016). Suppose we have a large population. The population is divided into G

clusters, as in the previous discussion. Instead of a random sample from this population, we

first sample a number of clusters from the population of clusters. Within each of the sampled

clusters we sample a fixed fraction of the units within that cluster. Given our sample we conduct

a completely randomized experiment, without regard to the cluster these units belong to.

There is a subtle issue involved in defining what the estimand is. The first alternative is to

focus on the sample average treatment effect, that is, the average difference for the two potential

outcomes over all the units in the sample. A second alternative is to analyze the population

average treatment effect for all the units in the population, including those in non-sampled

clusters. For both alternatives, the simple difference in average outcomes by treatment status

is unbiased for the estimand.

Abadie, Athey, Imbens and Wooldridge (2016) show that we are interested in the sample

average treatment effect, we can ignore the clustering and use the conventional Neyman variance

estimator discussed in Section 4. In contrast, if we are interested in the population average

treatment effect, we need to take into account the implications of the clustering sampling design.

We can adjust the standard errors for the clustered sampling by using the Liang-Zeger (1986)

clustered standard errors.

9 Noncompliance in Randomized Experiments

Even if a randomized experiment is well designed, there may be complications in the implemen-

tation. One of the most common of these complications is non-compliance. Some units assigned

to the treatment group may end up not taking the treatment, and some units assigned to the
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treatment group may manage to acquire the active treatment. If there are only violations of the

treatment assignment of the first type, we refer to it as one-sided non-compliance. This may

arise when individuals assigned to the control groups can be effectively be embargoed from the

active treatment. If some units assigned to the control group do manage to receive the active

treatment we have two-sided non-compliance.

The concern is that noncompliance is not random or accidental, but the result of systematic

differences in behavior or characteristics between units. Units who are assigned to the treatment

but who choose not receive it may do so because they are different from the units assigned to

the treatment who do receive it. These differences may be associated with the outcomes of

interest, thereby invalidating simple comparisons of outcomes by treatment received. In other

words, the randomization that validates comparisons by treatment status does not validate

comparisons by post-treatment variables such as the treatment received. These issues come up

both in randomized experiments as well as in observational studies. The general term for these

complications in the econometric literature is endogeneity of the receipt of treatment. Random

assignment ensures that the assignment to treatment is exogenous, but it does not bear on the

exogeneity of the receipt of treatment if the receipt of treatment is different from the assignment

to treatment.

In this chapter, we discuss three distinct approaches to dealing with non-compliance, all of

which are valid under fairly weak assumptions. First, one can ignore the actual receipt of the

treatment and focus on the causal effects of assignment to the treatment, in an intention-to-

treat analysis. Second, we can use instrumental variables methods to estimate the local average

treatment effect, the causal effect of the receipt of treatment for the subpopulation of compliers.

Third, we can use a partial identification or bounds analysis to obtain the range of values for the

average causal effect of the receipt of treatment for the full population. Another approach, not

further discussed here, is the randomization-based approach to instrumental variables developed

in Imbens and Rosenbaum (2005). There are also two types of analyses that require much

stronger assumptions in order to be valid. The first of these is an as-treated analysis, where

units are compared by the treatment received; this relies on an unconfoundedness or selection-

on-observables assumption. A second type of analysis is a per protocol analysis, where units are

dropped who do not receive the treatment they were assigned to.

We need some additional notation in this section. Let Zi ∈ {0, 1} denote the randomly

[47]



assigned treatment. We generalize the notation for the treatment received, to reflect its status

as an (intermediate) outcome. Let Wi(z) ∈ {0, 1} denote the potential treatment outcome given

assignment z, with W obs
i = Wi(Zi) the realized value for the treatment received. For the outcome

of primary interest, there are different set ups possible. One approach, e.g., Angrist, Imbens

and Rubin (1996), is to let Yi(z, w) denote the potential outcome corresponding to assignment

z and treatment received w. Alternatively, we could index the potential outcomes solely by the

assignment, with Ỹi(z) denoting the outcome corresponding to the treatment assigned to unit

i. The two notations are closely related, with Ỹi(z) = Yi(z,Wi(z)). Here we mainly use the first

set up. The realized outcome is Y obs
i = Yi(Zi,Wi(Zi)) = Ỹi(Zi). To simplify notation, we index

sample sizes, averages, and variances by 0, 1 when they are indexed by values of the assignment

Zi, and by c, t when they are indexed by values of the treatment received Wi. For example, Y
obs

0,t

is the average of the observed outcome for units assigned to the control group (Zi = 0) but who

received the active treatment (W obs
i = 1).

9.1 Intention-To-Treat Analyses

In an intention-to-treat analysis the receipt of treatment is ignored, and outcomes are compared

by the assignment to treatment (Imbens and Rubin, 2015; Fisher et al, 2000). The intention-

to-treat effect is the average effect of the assignment to treatment. In terms of the notation

introduced above, the estimand is

τ itt =
1

N

N∑
i=1

(
Yi(1,Wi(1))− Yi(0,Wi(0))

)
.

We can estimate this using the difference in averages of realized outcomes by treatment assign-

ment:

τ̂ itt = Y
obs

1 − Y
obs

0 , where Y
obs

z =
1

Nz

∑
i:Zi=z

Y obs
i for z = 0, 1.

To construct valid confidence intervals for τ itt we can use the standard methods discussed in

Section refsection:neyman. The exact variance for τ̂ itt is

V
(
τ̂ itt
)

=
S2
0

N0

+
S2
1

N1

− S2
01

N
,

[48]



where S2
0 and S2

1 are the variances of Yi(0,Wi(0)) and Yi(1,Wi(1)) in the sample, defined as:

S2
0 =

1

N − 1

N∑
i=1

(
Yi(0,Wi(0))− Y (0)

)2
, and S2

1 =
1

N − 1

N∑
i=1

(
Yi(1,Wi(1))− Y (1)

)2
,

and S2
01 is the sample variance of the unit-level treatment effects, defined as:

S2
01 =

1

N − 1

N∑
i=1

(
Yi(1,Wi(1))− Yi(0,Wi(0))− (Y (1)− Y (0))

)2
.

We can estimate the first two terms as

s20 =
1

N0 − 1

∑
i:Zi=0

(
Yi(0,Wi(0))− Y obs

0

)2
,

and

s21 =
1

N1 − 1

∑
i:Zi=1

(
Y obs
i − Y 1

)2
.

As discussed in Section 4.2, the third term, S2
01 is generally impossible to estimate consistently

because we never observe both Yi(1,Wi(1)) and Yi(0,Wi(0)) for the same unit. In practice we

therefore use the estimator for V
(
τ̂ itt
)

based on estimating the first two terms by s20 and s21, and

ignoring the third term,

V̂(τ̂ itt) =
s20
N0

+
s21
N1

.

This leads to valid confidence intervals in large samples, justified by the randomization and

sutva without additional assumptions.

The main drawback associated with the intention-to-treat approach is that the corresponding

estimand is typically not the object of primary interest. The researcher may be interested in

settings where the assignment mechanism may be different, and the incentives for individuals

to take the treatment might change. For example, in medical drug trials the compliance rate is

often very different from what would happen if a drug is released to the general population. In

the trial phase individuals, knowing that the efficacy of the drug has not been established, may

be more likely to stop adhering to the protocol. As a result the intention-to-treat effect would

not provide much guidance to the effects in the new setting. In other words, intention-to-treat

effects may have poor external validity. The presumption is that causal effects of the receipt of

treatment are more generalizable to other settings, though of course there is no formal result

that proves that this is so.
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9.2 Local Average Treatment Effects

An alternative approach that deals directly with the non-compliance is to use instrumental

variables methods and related methods based on principal stratification (Frangakis and Rubin,

2002; Barnard, Du, Hill, and Rubin, 1998). Bloom (1984), Zelen (1979, 1990), Cuzick, Edwards,

and Segnan (1997), and Baker (2000) discuss the instrumental variables approach in the special

case of one-sided non-compliance, and Imbens and Angrist (1994), Angrist, Imbens and Rubin

(1996) develop the general set up. See also Imbens and Rubin (2015) and Lui (2011) for textbook

discussions. The first step is to consider the possible patterns of compliance behavior. Let

Ci ∈ {c, d, a, n} denote the compliance behavior, where

Ci =


c if Wi(0) = 0,Wi(1) = 1,
d if Wi(0) = 1,Wi(1) = 0,
a if Wi(0) = 1,Wi(1) = 1,
n if Wi(0) = 0,Wi(1) = 0,

where c stands for complier, d for defier, n for never-taker, and a for always-taker. These labels

are just definitional, not requiring any assumptions.

Now we consider two key assumptions. The first is monotonicity (Imbens and Angrist,

1994), or no-defiance, which requires

Wi(1) ≥ Wi(0).

This rules out the presence of defiers, units who always (that is, whether assignmed to control

or treatment), do the opposite of their assignment. In the setting we consider in this chapter,

where the instrument is the random assignment to treatment, this appears a very plausible

assumption: assigning someone to the active treatment increases the incentive to take the active

treatment, and it would appear unusal for there to be many units who would respond to this

increase in incentives by declining to take the treatment where they would otherwise have done

so. In other settings monotonicity may be a more controversial assumption. For example, in

studies in criminal justice researchers have used random assignment of cases to judges to identify

the causal effect of prison terms on recidivism (reference). In that case even if one judge is more

strict than another in the sense that the first judge has a higher rate of sentencing individuals

to prison terms, it is not necessarily the case that any individual who would be sentenced to

time in prison by the on-average more lenient judge would also be sentenced to prison by the

stricter judge.
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The second key assumption is generally referred to as the exclusion restriction. It requires

that there is no direct effect of the assignment on the outcome without passing through the

receipt of treatment. Formally, using the form used in Angrist, Imbens and Rubin (1996),

Yi(z, w) = Yi(z
′, w), for all z, z′, w.

The key components on the assumption is that for never-takers,

Yi(0, 0) = Yi(1, 0), and for always− takers Yi(0, 1) = Yi(1, 1).

For compliers and defiers the assumption is essentially about the interpretation of the causal

effect of the assignment to treatment to the causal effect of the receipt of treatment. The

exclusion restriction is a strong one, and its plausibility needs to be argued on a case-by-case

basis. It is not justified by, and in fact not related to, the random assignment. Given the

exclusion restriction we can drop the dependence of the potential outcomes on z, and simply

write Yi(w), for w = 0, 1.

Given the monotonicity assumption and the exclusion restriction we can identify the average

causal effect of the receipt of treatment on the outcome, what is known as the local average

treatment effect (Imbens and Angrist, 1994):

τ late = E[Yi(1)− Yi(0)|Ci = c] =
E[Y obs

i |Zi = 1]− E[Y obs
i |Zi = 0]

E[W obs
i |Zi = 1]− E[W obs

i |Zi = 0]
.

Given the setting it is clear that we cannot identify the average effect for always-takers or neve-

takers without additional assumptions: we do not observe outcomes for always-takers without

the receipt of treatment, and we do not observe outcomes for never-takers given receipt of

treatment. As a result we need assumptions to extrapolate the treatment effects for compliers

to other compliance groups in order to identify the overall average treatment effect.

9.3 Generalizing the Local Average Treatment Effect

One major concern with the local average treatment effect is that it reflects only on a sub-

population, the compliers. In many cases the researcher may be more interested in the overall

average effect of the treatment. Here we discuss some supplementary analyses that can be done

to assess the generalizability of the local average treatment effect. This section builds on the
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discussions in Angrist (2004), Hirano, Imbens, Rubin, and Zhou (2000), Imbens and Rubin

(1997ab) and Bertanha and Imbens (2014). The Bertanha and Imbens (2015) discussion is pri-

marily in the context of fuzzy regression discontinuity designs, but their results apply directly

to other instrumental variables settings.

We use the same set up as in the previous section, but explicitly allow for the presence of

exogenous covariates Xi. Instead of using instrumental variables methods to estimate the local

average treatment effect an alternative approach is to adjust for differences in the covariate to

estimate the average effect of the treatment, assuming unconfoundedness:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi.

If this assumption is valid, we can estimate the average effect of the treatment, as well as average

effects for any subpopulation using an as-treated analysis. One natural analysis is to compare

the local average treatment effect to the covariate-adjusted difference by treatment status. A

formal comparison of the two estimates, in a linear model setting, would be a Hausman test

(Hausman, 1983). In the absence of covariates the Hausman test would be testing the equality

πa
πa + πc · pz

·
(
E[Yi(1)|Gi = a]− E[Yi(1)|Gi = c]

)
=

πn
πn + πc · (1− pz)

·
(
E[Yi(0)|Gi = n]− E[Yi(0)|Gi = c]

)
,

where πa, πc, and πn are the population shares of always-takers, compliers, and never-takers

respectively. This equality is difficult to interpret. A particular weighted average of the difference

between the expected outcomes given treatment for always-takers and compliers is equal to

a weighted average of the difference between the expected outcomes without treatment for

compliers and never-takers.

Compared to the Hausman test a more natural and interpretable approach is to test the

equality of the unweighted differences, between always-takers and treated compliers and never-

takers and not-treated compliers,

E[Yi(1)|Gi = a]− E[Yi(1)|Gi = c] = E[Yi(0)|Gi = n]− E[Yi(0)|Gi = c],

as suggested in Angrist (2004).

Bertanha and Imbens suggest testing the pair of equalities, rather than just the difference,

E[Yi(1)|Gi = a]− E[Yi(1)|Gi = c] = 0, and E[Yi(0)|Gi = n]− E[Yi(0)|Gi = c] = 0.
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If this pair of equalities hold, possibly after adjusting for differences in the covariates, it means

that always-takers are comparable to compliers given the treatment, and never-takers are com-

parable to compliers without the treatment. That would suggest that always-takers without the

treatment might also be comparable to compliers without the treatment, and that never-takers

with the treatment might be comparable to compliers with the treatment, although neither claim

can be tested. If those equalities were to hold, however, then the average effect for compliers,

adjusted for covariates, can be generalized to the entire population.

9.4 Bounds

To get estimates of, or do inference for, the average causal effect of the receipt of treatment in

settings with non-compliance an alternative to making additional assumptions, is to focus on

getting ranges of values for the estimand that are consistent with the data in a bounds or partial

identification approach in a line of research associated with Manski (1990, 1996, 2003, 2013).

The simplest approach without any additional assumptions recognizes that because of the

non-compliance the receipt of treatment is no longer exogenous. We can therefore analyze this

as an observational study without any assumptions on the assignment process. Consider the

average difference in potential outcomes if all units are assigned to the treatment versus no-one

is assigned to the treatment,

τ =
1

N

N∑
i=1

(
Yi(1)− Yi(0)

)
= Y (1)− Y (0).

To estimate this object it is useful to look at both terms separately. The first term is

Y (t) =
Nt

N
· Y obs

t +
Nc

N
· 1

Nt

∑
i:Wi=0

Yi(1).

The last term is what is causing the problems. The data are not directly informative about this

term. Let us look at the special case where the outcome is binary. In that case

Y (t) ∈
[Nt

N
· Y obs

t ,
Nt

N
· Y obs

t +
Nt

N

]
.

We can do the same thing for the second term in the estimand, leading to

τ ∈
[Nt

N
· Y obs

t −
Nc

N
· Y obs

c −
Nc

N
,
Nt

N
· Y obs

t +
Nt

N
− Nc

N
· Y obs

c

]
.
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This is not a very informative range. By construction it always includes zero, so we can never

be sure that the treatment has any effect on the outcome of interest.

Next, let us consider how the bounds change when we add information in the form of ad-

ditional assumptions. Under the full set of instrumental variables assumptions, that is, the

monotonicity assumption and the exclusion restriction, we can tighten the bounds substantially.

To derive the bounds, and at the same time develop intuition for their value, it is useful to

think of the average treatment effect as the sum of the averages over the three compliance

groups, compliers, never-takers and always-takers, with shares equal to πc, πn, and πa, respec-

tively. Under monotonicity and the exclusion restriction the average effect for compliers is

identified. For always-takers we can identify E[Yi(1)|Ci = a], but the data are uninformative

about E[Yi(0)|Ci = a], so that the average effect for always-takers is bounded by

τa ∈
[
E[Y obs

i |Zi = 0,Wi = 1]− 1, ,E[Y obs
i |Zi = 0,Wi = 1]

]
.

Similarly,

τn ∈
[
−E[Y obs

i |Zi = 1,Wi = 0], , 1− E[Y obs
i |Zi = 1,Wi = 0]

]
.

Combining these leads to

τ ∈
[
πa ·

(
E[Y obs

i |Zi = 0,Wi = 1]− 1
)
− τn · E[Y obs

i |Zi = 1,Wi = 0]

+
(
E[Y obs

i |Zi = 1]− E[Y obs
i |Zi = 1]

)
,

πa · E[Y obs
i |Zi = 0,Wi = 1] + πn ·

(
1− E[Y obs

i |Zi = 1,Wi = 0]
)

+
(
E[Y obs

i |Zi = 1]− E[Y obs
i |Zi = 1]

)]
.

Under these assumptions these bounds are sharp (Balke and Pearl, 1997).

9.5 As-Treated and Per Protocol Analises

There are two older methods that have sometimes been used to analyze experiments with non-

compliance that rely on strong assumptions, as-treated and per-protocol analyses. See, for

example, McNamee (2009) and Imbens and Rubin (2015). In an as-treated analysis units are

compared by the treatment received, rather than the treatment assigned, essentially invoking

an unconfoundedness assumption. Because it was the assignment that was randomized, rather
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than the receipt of treatment, this is not justified by the randomization. It is useful to consider

in a setting where the instrumental variables assumptions, that is, the monotonicity assumption

and the exclusion restriction, hold, and assess what the as-treated analysis leads to.

The estimand in an as-treated analysis is

τ at = E[Y obs
i |Wi = 1]− E[Y obs

i |Wi = 0].

If the monotonicity assumption holds the first term is an average of outcomes given treatment

for always-takers and compliers. If the fraction of units with Zi = 1 is equal to pZ , then we can

write the first term as

E[Y obs
i |Wi = 1] =

πa
πa + πc · PZ

· E[Yi(1)|Ci = a] +
πc · pZ

πa + πc · PZ
· E[Yi(1)|Ci = c].

Similarly,

E[Y obs
i |Wi = 0] =

πn
πn + πc · (1− PZ)

·E[Yi(0)|Ci = n] +
πc · (1− pZ)

πn + πc · (1− PZ)
·E[Yi(0)|Ci = c].

The difference is then

E[Y obs
i |Wi = 1]− E[Y obs

i |Wi = 0]

= E[Yi(1)− Yi(0)|Ci = c]

+
πa

πa + πc · PZ
·
(
E[Yi(1)|Gi = a]− E[Yi(1)|Ci = c]

)
− πn
πn + πc · (1− PZ)

·
(
E[Yi(0)|Gi = n]− E[Yi(0)|Ci = c]

)
.

This last two terms in expression are compared to zero in a Hausman test for the exogeneity of

the treatment. The form is in general difficult to interpret.

The second is a per protocol analysis, where units who do not comply with their assigned

treatment are simply dropped from the analysis. Again it is instructive to see what this method

is estimating under the monotonicity assumption and the exclusion restriction. In general,

τpp = E[Y obs
i |Wi = 1, Zi = 1]− E[Y obs

i |Wi = 0, Zi = 0].

Similar calculations as for the as-treated analysis show that given monotoniticy and the exclusion

restriction this is equal to

τpp = E[Yi(1)− Yi(0)|Ci = c] +
πa

πa + πc
·
(
E[Yi(1)|Gi = a]− E[Yi(1)|Ci = c]

)
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− πn
πn + πc

·
(
E[Yi(0)|Gi = n]− E[Yi(0)|Ci = c]

)
.

This expression is again dificult to interpret in general, and the analysis is not recommended.

10 Heterogenous Treatment Effects and Pretreatment Vari-

ables

Most of the literature has focused on estimating average treatment effects for the entire sample

or population. However, in many cases researchers are also interested in the presence or absence

of heterogeneity in treatment effects. There are different ways to study such heterogeneity. Here

we discuss some approaches. Note that this is different from the way covariates or pretreatment

variables were used in Section 4.4, where the focus remained on the overall average treatment

effect and the presence of pretreatment variables served solely to improve precision of the esti-

mators. In observational studies covariates also serve to make the identifying assumptions more

credible.

As discussed at the outset of this chapter, a key concern with randomized experiments is

external validity. If we apply the treatment in a different setting, will the effect be the same?

Although there are many factors that vary across settings, one common way that settings differ

is that the populations of individual units may be different. If these differences can be captured

with observable pre-treatment variables, then it is in principle possible to address this element of

external validity as in Hotz, Imbens and Mortimer (2005). In particular, if we obtain an estimate

of the treatment effect for each potential value of the covariate vector x, then we can estimate

average treatment effects in any population be accounting for the differences in distributions.

That is, given an estimate for τ(x) = E[Yi(1)− Yi(0)|Xi = x], it is straightforward to estimate

E[τ(Xi)] if the distribution of Xi is known.

10.1 Randomized Experiments with Pretreatment Variables

Traditionally researchers specified particular subpopulations based on substantive interest, and

estimated average treatment effects for those subpopulations, as well as tested equality of treat-

ment effects across these subpopulations. For example, one may be interested separately in the

effect of an educational progam on girls versus boys. In such cases the analyses are straight-

forward. One can simply analyze the data separately by subpopulation using the methods
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developed in Section 6.1. In these cases there is often some concern that the subpopulations

were selected ex post, so that p-values are no longer valid because of multiple testing concerns.

For example, suppose one has a randomized experiment, with a hundred independent binary

pretreatment variables that are in fact unrelated to the treatments or the outcomes. One would

expect that for five of them the t-statistic for testing the null hypothesis that the average treat-

ment effect was different by the value of that covariate was larger than 2 in absolute value, even

though none of the covariates are related to the treatment effect. Pre-analysis plans (Casey,

Glennerster, and Miguel, 2012; Olken, 2015) are one approach to alleviate such concerns; another

is to correct for multiple testing (List, Shaikh, and Xu, 2016). Below we describe some recently

developed alternatives that work not only when the number of covariates is small, but also when

the number is large relative to the sample size or the true underlying model of treatment effect

heterogeneity may be quite complex.

10.2 Testing for Treatment Effect Heterogeneity

A second approach is to simply test for the presence of heterogeneity in the average treatment

effect as a function of the covariates, τ(x) = E[Yi(1)− Yi(0)|Xi = x].

One type of test considers whether there is any evidence for observable heterogeneity. Crump,

Hotz, Imbens and Mitnik (2008) develop nonparametric tests for the null hypothesis

H0 : τ(x) = τ, for all x ∈ X,

against the alternative

H0 : τ(x) 6= τ(x′), for some x, x′ ∈ X.

The Crump et al set up uses a sequence of parametric approximations to the conditional expec-

tation

E[Y obs
i |Wi = w,Xi = x] = β′0h(x) · (1− w) + β′1h(x) · w,

for vector-valued functions h(x) and then tests the null hypothesis the equality β1 = β0. By

increasing the dimension of h(x), with a suitable basis of functions, one can nonparametrically

test the null hypothesis that the average treatment effect τ(x) is constant as a function of
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the covariates under the assumption of unconfoundedness, which is implied by randomized

assignment.

A researcher might also like to understand which, if any, covariates are associated with

treatment effect. A natural approach would be to evaluate heterogeneity with respect to each

covariate, one by one. For example, each covariate could be transformed into a binary indicator

for whether the value of the covariate is above or below the median, and then the researcher

could test the hypothesis that the treatment effect is higher when the covariate is high than when

it is low. Conducting a large number of hypothesis tests raises issues of multiple testing, and

confidence intervals should be be corrected to account for this. However, standard approaches

(e.g. the Bonferroni correction) assume that each test is independent, and thus may be overly

conservative in an environment where many covariates are correlated with one another (which

will imply that the test statistics are also correlated with one another). List, Shaikh, and

Xu (2016) propose a computationally feasible approach to the multiple testing problem in this

context. The approach uses bootstrapping, and it accounts for correlation among test statistics.

One challenge with this approach is that the researcher must pre-specify the set of hypothesis

tests to conduct; thus, it is hard to explore all possible interactions among covariates and all

possible ways to discretize them. In the next section, we consider methods that explore more

complex forms of heterogeneity.

10.3 Estimating Treatment Effect Heterogeneity

There are several possible approaches for exploring treatment effect heterogeneity. The first

is to specify a parametric model of treatment effect heterogeneity (as in (5.4)) and report the

estimates. For example, one simple approach would be to specify a regression of the outcome

on an indicator for treatment status as well as interactions of the indicator with the treatment

indicator. With a small number of covariates relative to the sample size, all linear interactions

with the treatment indicator could be considered, partially alleviating concerns about multiple

testing. Below we discuss generalizations of this idea to regularized regression (e.g. LASSO)

where a systematic method is used to select covariates.

A second approach is to construct a fully nonparametric estimator for τ(x). We will develop

this approach further below; with sufficiently large datasets and a relatively small number of

covariates, this approach can be effective, and recent work building on techniques from machine
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learning (Wager and Athey, 2015) has lead to improvements in how many covariates can be

handled without sacrificing coverage of confidence intervals. For the case where there may be

many covariates relative to the sample size, a third approach proposed by Athey and Imbens

(2015) uses the data to select a set of subgroups (a “partition” of the covariate space) such that

treatment effect heterogeneity across subgroups is maximized in a particular sense.

Whether a fully non-parametric approach or an approach based on subgroups is preferred

may be partially determined by the constraints of the data; valid confidence intervals may not

be available (at least with existing methods) with too many covariates relative to sample size.

But even if both methods are potentially feasible, it may be desirable to learn about subgroups

rather than a fully nonparametric estimate of τ(x) if the results of the experiment will be used in

a context where people with limited processing capability/memory will make decisions based on

the experiment. For example, doctors might use a simple flowchart to determine which patients

should be prescribed a drug. Results about subgroups may also be more easily interpretable by

researchers.

Relative to testing all covariates one by one, an approach that selects a single partition of

the covariate space will not in general discover all heterogeneity that exists, since the algorithm

will focus on the covariates with the biggest impact to the exclusion of others. In addition, in

the process of constructing a partition, once we have divided the data into two groups according

to the value of one covariate, further divisions will be considered on subsamples of the data,

reducing the power available to test heterogeneity in additional covariates. Thus, constructing

a single partition does not answer the question of which covariates are associated with hetero-

geneity; rather, it identifies a particular way to divide the data into meaningful groups. If a

researcher wanted to explore all covariates, while maintaining a data-driven approach to how to

discretize them, an approach would be to construct distinct partitions that restrict attention to

one covariate at the time. For interactions, one could consider small subsets of covariates. If

the results of such an exercise were reported in terms of which covariates are associated with

significant heterogeneity, multiple testing corrections would be warranted. The approach of List,

Shaikh, and Xu (2016) works for an arbitrary set of null hypotheses, so the researcher could

generate a long list of hypotheses using the causal tree approach restricted to different subsets

of covariates, and then test them with a correction for multiple testing. Since in datasets with

many covariates, there are often many ways to describe what are essentially the same sub-
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groups, we expect a lot of correlation in test statistics, reducing the magnitude of the correction

for multiple hypothesis testing.

We begin by describing the third approach, where we construct a partition of the covariate

space, and then return to the second and first approaches.

10.3.1 Data-driven Subgroup Analysis: Recursive Partitioning for Treatment Ef-
fects

Athey and Imbens (2016) develop a method for exploring heterogeneity in treatment effects

without having to prespecify the form of the heterogeneity, and without having to worry about

multiple testing. Their approach builds on “regression tree” or “recursive partitioning” methods,

where the sample is partitioned in a number of subgroups, defined by the region of the covariate

space each unit belongs to. The data is used to determine which partition produces subgroups

that differ the most in terms of treatment effects. The method avoids introducing biases in

the estimated average treatment effects and allows for valid confidence intervals using “sample

splitting,” or “honest” estimation. The idea of sample splitting to control significance levels goes

back a long way in statistics; see, e.g. Cox (1975), or for a more recent discussion, see Fithian,

Sun, and Taylor (2015). In a sample splitting approach, in a first step, one sample is used to

select the partition, while in a second step an independent sample is used to estimate treatment

effects and construct confidence intervals for each subgroup (separately) given the partition from

the first step. The output of the method is a set of subgroups, selected to optimize for treatment

effect heterogeneity (to minimize expected mean-squared error of treatment effects), together

with treatment effect estimates and standard errors for each subgroup.

Let us illustrate some of the issues in a simple case to develop more intuition. Suppose we

consider only a single split of the covariate space, in a setting with a substantial number of

covariates. We specify a criterion that determines whether one split (that is, a combination

of a choice of the covariate and a threshold) is better than another. We return to the choice

of criterion below. Given a criterion, we select the covariate and threshold that maximize the

citerion. If we estimate the average treatment effect on the two subsamples using the same

sample, the fact that this particular split led to a high value of the criterion would often imply

that the average treatment effect estimate is biased. Athey and Imbens (2016) therefore suggest,

in what they call an honest approach, to estimate the treatment effects on a separate sample.
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The implication is that the treatment effect estimates are unbiased on the two subsamples,

and the corresponding confidence intervals are valid, even in settings with a large number of

pretreatment variables or covariates.

A key issue is the choice of criterion. In principle one would like to split in order to obtain

more precise estimates of the average treatment effects. A complicating factor is that the

standard criterion for splitting optimized for prediction rely on observing the outcome whose

expectation one wants to estimate. That is not the case here because the unit-level treatment

effect is not observed. There have been various suggestions in the literature to deal with this.

One simple solution is to transform the outcome from Y obs
i to

Y ∗i = Y obs
i · Wi − p

p · (1− p)
.

This transformed outcome has the property that E[Y ∗i |Xi = x] = τ(x) = E[Yi(1)−Yi(0)|Xi = x]

so that standard methods for recursive partitioning based on prediction apply (see Weisberg

and Pontes (2015), Athey and Imbens (2016)). Su et al (2009) suggest using test statistics for

the null hypothesis that the average treatment effect in the two subsamples are equal to zero.

Zeileis, Hothorn, and Hornick (2008) suggest using model fit, where the model corresponds to

a linear regression model in the partitions with an intercept and a binary treatment indicator.1

Athey and Imbens (2016) show that neither of the two criteria is optimal, and derive a new

criterion that focuses directly on the expected squared error of the treatment effect estimator,

and which turns out to depend both on the t-statistic and on the fit measures. The criterion

is further modified to anticipate honest estimation, that is, to anticipate that the treatment

effects will be re-estimated on an independent sample after the subgroups are selected. This

modification ends up penalizing the expected variance of subgroup estimates; for example, if

subgroups are too small, the variance of treatment effect estimates will be large. It also rewards

splits for covariates that explain outcomes but not treatment effect heterogeneity, to the extent

that controlling for such covariates enables a lower-variance estimate of the treatment effect.

Other related approaches include Wager and Walther (2015), who discuss corrections to

confidence intervals (widening the confidence intervals by a factor) as an alternative to sample

splitting; however, since confidence intervals need to be inflated fairly substantially, it is not clear

1Neither of those two papers consider honest estimation, nor do they establish bias and consistency properties
of the estimators.
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whether there is a wide range of conditions where it improves on sample splitting. Relative to

the approach of List, Shaikh, and Xu (2016) discussed above, the methods in this section focus

on deriving a single partition, rather than considering heterogeneity one covariate at the time

with pre-specified discretizations of the covariates; the approaches in this section will have the

advantage of exploring interaction effects and using the data to determine a meaningful partition

in terms of mean-squared error of treatment effects.

10.3.2 Non-Parametric Estimation of Treatment Effect Heterogeneity

There are (at least) four possible goals for using non-parametric estimation to estimate hetero-

geneous treatment effects. The first is descriptive: the researcher can gain insight about what

types of units have the highest and lowest treatment effects, as well as visualize comparative

statics results, all without imposing a prior restrictions. The second, disucssed earlier, is that

the researcher wishes to estimate the impact of applying the treatment in a setting with a

different distribution of units. A third is that the researcher wishes to derive a personalized

policy recommendation. A fourth is that the researcher wishes to test hypotheses and construct

confidence intervals. If confidence intervals are desired, the set of potential methods is quite

small. For optimal policy evaluation, a Bayesian framework may have some advantages, since

it is natural to incorporate the uncertainty and risk involved in alternative policy assignments.

For description or estimation where confidence intervals are not important, there are a wide

variety of approaches.

Classical non-parametric approaches to treatment effect heterogeneity would include K-

nearest neighbor matching and kernel estimation (Härdle, 2002). In the case of K−nearest

neighbor matching, for any x we can construct an estimate of the treatment effect at that x

by averaging the outcomes of the K nearest neighbors that were treated, and subtracting the

average outcomes of the K nearest neighbors that were control observations. Kernel estimation

does something similar, but uses a smooth weighting function rather than uniformly weighting

nearby neighbors and giving 0 weight to neighbors that are farther away. In both cases, distance

is measured using Euclidean distance for the covariate vector. These methods can work well and

provide satisfactory coverage of confidence intervals with one or two covariates, but performance

deteriorates quickly after that. The output of the nonparametric estimator is a treatment effect

for an arbitrary x. The estimates generally must be further summarized or visualized since the
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model produces a distinct prediction for each x.

A key problem with kernels and nearest neighbor matching is that all covariates are treated

symmetrically; if one unit is close to another in 20 dimensions, the units are probably not par-

ticularly similar in any given dimension. We would ideally like to prioritize dimensions that

are most important for heterogeneous treatment effects, as is done in many machine learning

methods, including the highly successful random forest algorithm. Unfortunately, many popular

machine learning methods that use the data to select covariates may be bias-dominated asymp-

totically (including the standard random forest). Recently, Wager and Athey (2015) propose a

modified version of the random forest algorithm that produces treatment effect estimates that

can be shown to be asymptotically normal and centered on the true value of the treatment

effect, and they propose a consistent estimator for the asymptotic variance. The method aver-

ages over many “trees” of the form developed in Athey and Imbens (2016); the trees differ from

one another because different subsamples are used for each tree, and in addition there is some

randomization in the choice of which covariates to split on. Each tree is “honest,” in that one

subsample is used to determine a partition and an independent subsample is used to estimate

treatment effects within the leaves. Unlike the case of a single tree, no data is “wasted” because

each observation is used to determine the partition in some trees and used to estimate treatment

effects in other trees, and subsampling is already an inherent part of the method. The method

can be understood as a generalization of kernels and nearest neighbor matching methods, in

that the estimated treatment effect at x is the difference between a weighted average of nearby

treated units and nearby control units; but the choice of what dimenions are important for

measuring distance is determined by the data. In simulations, this method can obtain nominal

coverage with more covariates than K-Nearest Neighbour matching or kernel methods, while

simultaneously producing much more accurate estimates of treatment effects. However, this

method also eventually becomes bias-dominated when the number of covariates grows. It is

much more robust to irrelevant covariates than kernels or nearest neighbor matching.

Another approach to the problem is to divide the training data by treatment status, and

apply supervised learning methods to each group separately. For example, Foster, Taylor, and

Ruberg (2011) use random forests to estimate the effect of covariates on outcomes in treated

and control groups. They then take the difference in predictions as data and project treatment

effects onto units’ attributes using regression or classification trees. The approach of Wager
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and Athey (2015) can potentially gain efficiency by directly estimating heterogeneity in causal

effects, and further the off-the-shelf random forest estimator does not have established statistical

properties (so confidence intervals are not available).

Taking the Bayesian perspective, Green and Kern (2012) and Hill (2011) have proposed the

use of forest-based algorithms for estimating heterogeneous treatment effects. These papers

use the Bayesian additive regression tree method of Chipman et al (2010), and report posterior

credible intervals obtained by Markov-chain Monte Carlo sampling based on a convenience prior.

Although Bayesian regression trees are often successful in practice, there are currently no results

guaranteeing posterior concentration around the true conditional mean function, or convergence

of the Markov-Chain-Monte-Carlo sampler in polynomial time. In a related paper, Taddy,

Gardner, Chen and Draper (2014) use Bayesian nonparametric methods with Dirichlet priors to

flexibly estimate the data-generating process, and then project the estimates of heterogeneous

treatment effects down onto the feature space using regularization methods or regression trees

to get low-dimensional summaries of the heterogeneity; but again, asymptotic properties are

unknown.

10.3.3 Treatment Effect Heterogeneity Using Regularized Regression

Imai and Ratkovic (2013), Signorovitch (2007), Tian et al (2014), and Weisberg and Pontes

(2015) develop lasso-like methods for causal inference and treatment effect heterogeneity in a

setting where there are potentially a large number of covariates, so that regularization methods

to discover which covariates are important. When the treatment effect interactions of interest

have low dimension (that is, a small number of covariates have important interactions with

the treatment), valid confidence intervals can be derived (without using sample splitting as

described above); see, e.g., Chernozhukov, Hansen, and Spindler (2015) and references therein.

These methods require that the true underlying model is (at least approximately) “sparse”: the

number of observations must be large relative to the number of covariates (and their interactions)

that have an important effect on the outcome and on treatment effect heterogeneity. Some of the

methods (e.g. Tian et al (2014)) propose modeling heterogeneity in the treatment and control

groups separately, and then taking the difference; this can be inefficient if the covariates that

affect the level of outcomes are distinct from those that affect treatment effect heterogeneity. An

alternative approach is to incorporate interactions of the treatment with covariates as covariates,
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and then allow LASSO to select which covariates are important. Interaction terms can be

prioritized over terms that do not include treatment effect interactions through weighting.

10.3.4 Comparison of Methods

Although the LASSO based methods require more a priori restrictions on sparsity than the

random forest methods, both types of methods will lose nominal coverage rates if the models

become too complex. The LASSO methods have some advantages with datasets where there are

linear or polynomial relationships between covariates and outcomes; random forest methods do

not parsimoniously estimate linear relationships and use them for extrapolation, but are more

localized. The random forest methods are well-designed to capture complex, multi-dimensional

interactions among covariates, or highly nonlinear interactions. LASSO has the advantage that

the final output is a regression, which may be more familiar to researchers in some disciplines;

however, it is important to remember that the conditions the justify the standard errors are

much more stringent when the model selection was carried out on the same data that is used for

estimation. If valid confidence intervals are the first priority in an environment where the model

is not known to be sparse and there are many covariates, the recursive partitioning approach

provides confidence intervals that do not deteriorate (at all) as the number of covariates grow.

What suffers, instead, is the mean-squared error of the predictions of treatment effects.

Another point of comparison between the regression-based methods and tree-based meth-

ods (including random forests) relates to our earlier discussions of randomization-based infer-

ence versus sampling-based inference. Tree-based methods construct estimates by dividing the

sample into subgroups and calculating sample averages within the groups; thus, the estimates

and associated inference can be justified by random assignment of the treatment. In contrast,

regression-based approaches require additional assumptions.

10.3.5 Relationship to Optimal Policy Estimation

The problem of estimating heterogeneous treatment effects is closely related to the problem

of estimating, as a function of the covariates, what the optimal policy is. Heuristically, with

a binary treatment, we would want to assign an individual with covariates x to a treatment

if τ(x) > 0. However, the optimal policy literature addresses additional issues that might

arise when there are multiple potential treatments, as well as when the loss function may be
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nonlinear (so that there is, for example, a mean-variance tradeoff between different policies).

More broadly, the criterion used in estimation may be modified to account for the goal of

policy estimation; when regularization approaches are used to penalize model complexity, the

methods may de-prioritize discovering heterogeneity that is not relevant for selecting an optimal

policy. For example, if a treatment clearly dominates another for some parts of the covariate

space, understanding heterogeneity in the magnitude of the treatment’s advantage may not be

important in those regions.

Much of the policy estimation literature takes a Bayesian perspective; this allows the re-

searcher to evaluate welfare and to incorporate risk aversion in the loss function in an environ-

ment where there is uncertainty about the effects of the policy.

In the machine learning literature, Beygelzimer and Langford (2009) and Dudik, Langford

and Li (2011) discuss procedures for transforming outcomes that enable off-the-shelf loss min-

imization methods to be used for optimal treatment policy estimation. In the econometrics

literature, Graham, Imbens and Ridder (2014), Dehejia (2005), Hirano and Porter (2009), Man-

ski (2004), and Bhattacharya and Dupas (2012) estimate parametric or semi-parametric models

for optimal policies, relying on regularization for covariate selection in the case of Bhattacharya

and Dupas (2012). See also Banerjee, Chassang and Snowberg (2015).

11 Experiments in Settings with Interactions

In this section we discuss the analysis of randomized experiments in settings with interference

between units. Such interference may take different forms. There may be spillovers from the

treatment assigned to one unit to other units. A classic example of that is that of agricultural

experiments where fertilize applied to one plot of land may leach over to other plots and thus

affect outcomes in plots assigned to different treatments. It may also take the form of active and

deliberate interactions between individuals, for example in educational settings, where exposing

one student to a new program may well affect the outcomes for students the first student is

friends with.

There are many different versions of these problems, and many different estimands. An

important theoretical paper in an observational setting is Manski (1993) who introduced ter-

minology to distinguish between contextual effects, exogenous effects, and endogenous effects.
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Contextual effects arise when individuals are exposed to similar environmental stimula as their

peers. Exogenous effects refer to effects from fixed characteristics of an individual’s peers. En-

dogenous effects in Manski’s terminology refer to direct causal effects of the behavior of the

peers of an individual.

The interactions may be a nuisance that affects the ability to do inference, with the interest

in the overall average effect, or the interactions may be of primary interest to the researcher.

This is an active area of research, with many different approaches, where it it not clear what will

ultimately be the most useful results for empirical work. In fact, some of the most interesting

work has been empirical.

11.1 Empirical Work on Interactions

Here we discuss some of the questions raised in empirical work on interactions. These provide

some of the background for the discussions of the theoretical work by suggesting particular

questions and settings where these questions are of interest. There are a number of different

settings. In some cases the peer group composition is randomized, and in other cases treatments

are randomized. An example of the first case is Sacerdote (2001) where individual students are

randomly assigned to dorm rooms and thus matched to a roommate. An example of the second

is Duflo and Saez (2003) where individuals in possibly endogenously formed groups are randomly

assigned to treatments, with the treatments clustered at the group level.

Miguel and Kremer (2004) were interested in the effects of deworming programs on children’s

educational outcomes. There are obviously direct effects of deworming on the outcomes for

individuals who are exposed to these programs, but just as in the case of infectious diseases

in general, there may be externalities for individuals not exposed to the program if individuals

they interact with are exposed. Miguel and Kremer find evidence of substantial externalities.

Crepon et al (2013) were interested in the effects of labor market training programs. They

were concerned about interactions between individuals through the labor market. Part of the

effect of providing training to an unemployed individual may be that this individual becomes

more attractive to an employer relative to an untrained individual. If, however, the total number

of vacancies is not affected by the presence of more trained individuals, the overall effect may be

zero even if the trained individuals are more likely to be employed than the individuals in the

control group. Crépon et al studied this by randomizing individuals to training programs in a
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number of labor markets. They varied the marginal rate at which the individuals were assigned to

the training program between the labor markets. They then compared the difference in average

outcomes by treatment status within the labor markets, across the different labor markets. In

the absence of interactions, here in the form of equilibrium effects, the average treatment effects

should not vary by the marginal treatment rate. Evidence that the average treatment effects

were higher when the marginal treatment rate was lower suggests that part of the treatment

effect was based on redistributing jobs from control individuals to trained individuals.

Sacerdote (2001) studies the effect of roommates on an individual’s behavior in college. He

exploits the random assignment of incoming students to dorm rooms at Dartmouth (after taking

account of some characteristics such as smoking behavior). The treatment can be thought of

here as having a roommate of a particular type, such as a roommate with a relatively high or

low level of high school achievement. If roommates are randomly assigned, then finding that

individuals with high achieving roommates have outcomes that are systematically different from

those of individuals with low achieving roommates is evidence of causal interactions between

the roommates.

Carrell, Sacerdote and West (2013) analyze data from the US Air Force Academy. They

control the assignment of incoming students to squadrons to manipulate the distribution of

characteristics of fellow squadron students that an incoming student is faced with. They find

that the outcomes for students vary systematically with this distribution of fellow student char-

acteristics, which is evidence of causal effects of interactions.

11.2 The Analysis of Randomized Experiments with Interactions in
Subpopulations

One important special case of interference assumes the population can be partitioned into groups

or clusters, with the interactions limited to units within the same cluster. This is a case studied

by, among others, Manski (2013) and Hudgens and Halloran (2008), and Liu and Hudgens (2013).

Ugander, Karrer, Backstrom and Kleinberg (2013) discuss graph cutting methods in general

network settings to generate partitions of the basic network where such an assumption holds,

at least approximately. Hudgens and Halloran define in this setting direct, indirect, total and

overall causal effects, and consider a two-stage randomized design where in the first stage clusters

are selected randomly and in the second stage units within the clusters are randomly assigned.
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The direct causal effect for a particular unit corresponds to the difference between potential

outcomes where only the treatment effect for that unit is changed, and all other treatment are

kept fixed. Indirect effects correspond to causal effects of changes in the assignments for other

units in the same group, keeping fixed the own assignment. The total effect combines the direct

and indirect effects. Finally, the overall effect in the Hudgens and Halloran framework is the

average effect for a cluster or group, compared to the baseline where the entire group receives

the control treatment.

Hudgens and Halloran also stress the widely used assumption that for unit i it matters only

what fraction of the other units in their group are treated, not the identity of the treated units.

Without such an assumption the proliferation of indirect treatment effects makes it difficult

to obtain unbiased estimators for any of them. This assumption is often made, sometimes

implicitly, in empirical work in this area.

They consider designs where the marginal rate of treatment varies across groups. In the first

stage of the assignment the groups are randomly assigned to different treatment rates, followed

by a stage in which the units are randomly assigned to the treatment.

11.3 The Analysis of Randomized Experiments with Interactions in
Networks

Here we look at a general network setting where the population of units is not necessarily

partitioned into mutually exclusive groups. With N individuals in the population of interest

we have a network characterized by an N ×N adjacency matrix G, with Gij ∈ {0, 1} a binary

indicator for the event that units i and j are connected. The matrix G is symmetric with

all diagonal elements equal to zero. The question here is what we can learn about presence

interaction effects by conducting a randomized experiment on this single network, with a binary

treatment. Unlike the Manski (1993) and Hudgens and Halloran (2008) setting, we have only a

single network, but the network is richer in the sense that it need not be the case that friends

of friends are also friends themselves. The type of questions Athey, Eckles and Imbens (2015)

are interested in are, for example, whether there is evidence that changing the treatment for

friends affects an individual’s outcome, or whether manipulating treatments for friends of an

individual’s friends changes there outcome. They do so by focusing on exact tests to avoid

the reliance on large sample approximations, which can be difficult to derive in settings with a

[69]



single network. (There is not even a clear answer to the question of what it means for a network

to grow in size; specifying this would require the researcher to specify what it means for the

network to grow, in terms of new links for new units.)

Let us focus in this discussion on the two main hypotheses Athey, Eckles and Imbens (2015)

consider. First, the null hypothesis of no interactions whatsoever, that is the null hypothesis

that changing the treatment status for friends does not change an individual’s outcome, also

considered in Aronow (2012), and second, the null hypothesis that the treatment of a friend of

a friend does not have a causal effect on an individual’s outcome. Like Liu and Hudgens (2013)

and Athey, Eckles and Imbens (2015), they consider randomization inference.

We focus on the setting where in the population treatments are completely randomly as-

signed. The network itself is analyzed as given. Initially let us focus on the null hypothesis of no

interactions whatsoever. Athey, Eckles and Imbens (2015) introduce the notion of an articifial

experiment. The idea is to select a number of units from the original population, whom they

call the focal units. Given these focal units they define a test statistic in terms of the outcomes

for these focal units, say the correlation between outcomes and the fraction of treated friends.

They look at the distribution of this statistic, induced by randomizing the treatments only for

the non-focal or auxiliary units. Under the null hypothesis of no treatment effects whatsoever,

changing the treatment status for auxiliary units would not change the value of the outcomes

for the focal units.

For the second null hypothesis, that friends of friends have no effect, they again consider a

subset of the units to be focal. A second subset of units are termed “buffer” units: these are

the friends of the focal unit. If we allow that friends can have an impact on focal units, then

their treatments cannot be randomized in the artificial experiment designed to test the impact

of friends of friends. The complement of focal and buffer units, termed the auxiliary units,

are the units whose treatments are randomized in the artificial experiment. The randomization

distribution over the treatment assignments of auxiliary units induces a distribution on the test

statistic, and this approach thus enables the researcher to test the hypothesis that friends of

friends have no effect, without placing any restrictions on direct effects or the effect of friends.

Athey, Eckles and Imbens (2015) also consider richer hypotheses, such as hypotheses about

what types of link definitions correspond to meaningful peer effects; they propose a test of the

hypothesis that a sparser definition of the network is sufficient to capture relationships for which
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treating a friend influences a unit.

Aronow and Samii (2013) study estimation in this general network setting. They assume

that there is a structure on the treatment effects so that only a limited number of unit-level

treatment assignments have a non-zero causal effect on the outcome for unit i. The group

structure that Hudgens and Halloran (2008) use is a special case where it is only the treatments

for units in the same group as unit i can have non-zero effects on the outcome for unit i.

12 Conclusion

In this chapter we discuss statistical methods for analyzing data from randomized experiments.

We focus primarily on randomization-based, rather than model-based methods, starting with

classic methods developed by Fisher and Neyman, up to recent work on non-compliance, cluster-

ing and methods for identifying treatment effect heterogeneity, as well as experiments in settings

with interference.
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