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Abstract

This paper evaluates a Payments for Ecosystem Services (PES) program in western

Uganda that offered forest-owning households cash payments if they conserved their

forest. The program was implemented as a randomized trial in 121 villages, 60 of which

received the program for two years. The PES program reduced deforestation and forest

degradation: Tree cover, measured using high-resolution satellite imagery, declined by

2% to 5% in treatment villages compared to 7% to 10% in control villages during the

study period. We find no evidence of shifting of tree-cutting to nearby land. We also

use the estimated effect size and the “social cost of carbon” to value the delayed CO2

emissions, and compare this benefit to the program’s cost.
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1 Introduction

Deforestation is responsible for 12% to 15% of anthropogenic carbon emissions, making

it the second largest source of carbon emissions after fossil fuel combustion (Canadell et al.,

2007; Van der Werf et al., 2009). Trees absorb carbon dioxide through photosynthesis, and

store the carbon in their biomass. When a tree is cut down, it stops absorbing carbon dioxide,

and, as it decomposes or is burned, its store of carbon is released into the atmosphere.

Reducing carbon emissions is, of course, crucial for mitigating climate change. Curbing

deforestation is believed to be one of the most cost-effective ways to do so (Stern, 2006;

Nabuurs et al., 2007). The reason is simple: Most deforestation today occurs in developing

countries, and the opportunity cost of averted deforestation in such settings—for example,

forgone subsistence farming on the cleared land—is often much lower than the cost of be-

havioral or technological changes to reduce carbon emissions in high-income countries.

Addressing deforestation in developing countries is, thus, a key pillar of international

climate policy. REDD+ (Reducing Emissions from Deforestation and Forest Degradation) is

a United Nations mechanism through which developing countries are rewarded financially for

preservation of forestland; annually, about $500 million dollars flow to developing countries

(Silva-Chávez, Schaap, and Breitfeller, 2015).1 The Paris Agreement negotiated in 2015

bolstered the role of REDD+ in climate policy (United Nations FCCC, 2015).2

To put REDD+ into action, one needs to identify effective on-the-ground interventions

that reduce deforestation. This paper evaluates a promising and popular type of intervention,

namely financial incentives for forest-owning individuals or communities to keep their forest

intact. This type of policy is called Payments for Ecosystem Services (PES); payments are

made conditional on voluntary pro-environment behaviors (Ferraro and Kiss, 2002; Wunder,

2007; Engel, Pagiola, and Wunder, 2008). PES is the environmental version of a well-known

1A commonly used definition of forest is an area at least 0.5 to 1 hectares in size with tree crown cover
exceeding 10% to 30% of the area (United Nations FCCC, 2002). Deforestation is a reduction in the amount
of land that meets the definition of forest, while forest degradation is selective tree-clearing that does not
reduce the amount of land that meets the definition of forest. In this paper, we use the term deforestation
to encompass deforestation and forest degradation.

2Article 5 states that “Parties are encouraged to take action to implement and support, including through
results-based payments... policy approaches and positive incentives for activities relating to reducing emis-
sions from deforestation and forest degradation...in developing countries.”
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policy instrument in developing countries, conditional cash transfers (CCTs), which are more

commonly used to promote child health and education.

Despite the widespread use and growing popularity of PES, its effectiveness and cost-

effectiveness are open questions. Individuals might be unresponsive to the incentives, leading

to small impacts. In addition, even if some people respond to the incentives, cost-effectiveness

could be low if, absent the payments, many participants would have engaged in the incen-

tivized behavior anyway. In the case of PES, this problem of inframarginality is often called

“additionality”: How much additional forest cover does a PES program actually cause? An-

other concern is that individuals will simply shift their tree-cutting from land covered by the

PES contract to other nearby land.

This paper is a randomized evaluation of a PES intervention that was piloted precisely

to measure the causal impacts on forest cover. The PES program offered private owners of

forestland in western Uganda payments if they refrained from clearing trees. The program

was designed and implemented by a local non-governmental organization (NGO). The study

was carried out in 121 villages with private forest owners (PFOs); 60 of the villages were

randomly selected to be in the treatment group. In treatment villages, the PES program

was marketed to PFOs and they were eligible to enroll. Over the two-year pilot program

from 2011 to 2013, for each hectare of forest they owned, enrollees received 70,000 Ugandan

shillings (UGX), or $28 in 2012 US dollars, per year if they complied with the contract.3 The

implementing NGO employed forest monitors who conducted spot checks of enrollees’ land

to check for recent tree-clearing. The program also offered additional payments in exchange

for planting tree seedlings.

We measure the impact of the program on forest cover by analyzing satellite imagery.

Specifically, we tasked a very high resolution commercial satellite, QuickBird, to take images

of the study region at baseline and endline and classified each pixel as tree-covered or not

using object-based image analysis, a remote-sensing technique for cases where pixels are

smaller than the objects of interest. The QuickBird pixel size is 2.4 by 2.4 meters, smaller

than the crown of a typical mature tree. By comparing PFOs’ land in treatment and control

3The average exchange rate during the study period was approximately 2500 UGX = 1 US dollar.
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villages, we can assess how many additional hectares of tree cover the program generated.

We find that the PES program significantly reduced deforestation.4 Tree cover declined

by about 7% to 10% between baseline and endline on PFOs’ land in control villages, but only

by 2% to 5% in treatment villages. The effect size corresponds to 0.27 additional hectares

of tree cover per eligible program participant. (The 95% confidence interval is 0.06 to 0.48

hectares, and the p-value is 0.012.) These results are robust across different specifications.

We also estimate village-wide effects, and do not find evidence that PFOs simply shifted

their tree-clearing to other land in the village. We also show that there is no evidence

of leakage of deforestation to government forest reserves and no evidence of the program

affecting deforestation in control villages.

The above estimates are intent-to-treat effects, i.e., treatment effects per eligible PFO.

Program take-up was 32%; compliance among enrollees, as assessed by the implementing

NGO, was 80%. Surprisingly, we do not find evidence that PFOs who were anyway planning

to keep their forest intact enrolled in the PES program at an especially high rate. In fact,

the intent-to-treat proportional reduction in deforestation is larger than the take-up rate.

What is also surprising is that the take-up rate was only 32% given there was no penalty

for signing up and not complying. Most of the low take-up seems to be explained by in-

sufficient marketing of the program. In our endline survey, many PFOs reported that they

were unaware of the program or did not know how to sign up. In addition, some PFOs were

wary of signing the PES contract, fearful that it was a ploy to steal their land. Only a small

minority said they were uninterested in complying so did not take up, which is consistent

with relatively little selection into the program based on low counterfactual deforestation.

After presenting the program impacts on tree cover, we provide a rough assessment of

cost-effectiveness in terms of averted carbon dioxide (CO2) emissions. We estimate that for

each $0.25 in payments, or $0.57 in total program costs, a metric ton (hereafter, ton) of CO2

emissions due to deforestation was delayed. We then calculate the externality benefit of the

delayed emissions, using a “social cost of carbon” (SCC) of $39 (in 2012 US dollars) per

ton (Interagency Working Group on Social Cost of Carbon, 2013). The SCC is the benefit

4Seedlings planted as part of the program still had small tree crowns at endline, so avoided deforestation
rather than reforestation accounts for the vast majority of the gain in forest cover that we estimate.
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of permanently averting CO2 emissions, while this 2-year program’s benefit was to delay

deforestation and emissions. To quantify the delay, we need to make assumptions about

deforestation after the program ends. Our base case scenario assumes PFOs deforest at a

50% higher rate than usual after the program ends, converging to the control group after

four years. The social benefit of the delayed CO2 emissions is then $1.11 per ton, or roughly

2 times the $0.57 program cost.5

We repeat the calculation for a range of assumptions. At one extreme, if PFOs catch

up on their backlog of avoided deforestation the moment the program ends, the benefit-

cost ratio falls to 0.7. At the other extreme, if PFOs pause their deforestation during

the intervention and then resume deforesting at their typical rate, not an accelerated rate,

after the program ends, then the benefit-cost ratio rises to 12.3. This last scenario, which

represents a permanent delay in deforestation, is the most relevant one for extrapolating to

a permanent or longer-duration program.6

Note that the calculations above quantify the gross reduction in CO2 from delayed

deforestation in our sample, but the net reduction in global CO2 emissions from the program

depends on behavioral responses that are beyond the scope of what our study can measure

(e.g., How much less charcoal did urban consumers use? Which fuel types did they shift

to?). Moreover, the general equilibrium effects of such a program depend on how widely it

is scaled up. Nonetheless, our finding that PES appears to be an effective way to reduce

CO2 emissions stands in contrast to empirical evaluations of many other approaches. For

example, policies such as hybrid and electric vehicle subsidies or ethanol subsidies in the

United States have costs per ton of averted CO2 that far exceed the SCC (Knittel, 2012;

Gayer and Parker, 2013).

We complement the remote sensing analysis by measuring program impacts via a house-

5We assume a uniform rate of deforestation absent the program. Carbon from cleared trees is not emitted
instantaneously; we assume the average time from tree-clearing until CO2 emissions is 10 years. The SCC is
projected to rise over time at 1.9% per year (Greenstone, Kopits, and Wolverton, 2011; Interagency Working
Group on Social Cost of Carbon, 2013). It rises because of growth in income per capita and population, and
because the marginal damage from a ton of emissions is higher when climate change has progressed further,
e.g., when global temperatures are higher (Nordhaus, 2014). We use a 3% discount rate.

6See Section 6 for discussion of the additional assumptions needed to value a permanent delay in defor-
estation, as well to extrapolate to a permanent program.
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hold survey. There are several noteworthy findings from the survey data. First, consistent

with the remote sensing results, self-reported tree-clearing was much lower in treatment vil-

lages. Second, treated PFOs took steps to protect their land from encroachers, decreasing

others’ access to it and patrolling it more vigilantly. Third, the program did not seem to

have appreciable effects on participants’ consumption or other measures of current economic

well-being, which is not too surprising. The large impacts on forest cover imply that PFOs

did reduce deforestation and hence forwent income; the PES payments offset this income loss

but did not, on net, enrich them. At the same time, because participation was voluntary, the

program is unlikely to have impoverished them, although a participant might choose lower

temporary income in exchange for building up assets, i.e., owning more intact forest. Note

that unlike many CCTs, this program, by focusing on landowners, did not target the very

poorest in these communities, and the payment amount in fact scaled up with the size of the

landholding. Thus, the program may have widened within-village wealth inequality. The net

welfare benefits of the program depend on not just the CO2 impacts, but also these possible

unintended negative effects as well as other positive impacts such as increased biodiversity

and income redistribution from international donors to a developing country.

Climate change is one of, if not the most, significant environmental challenge we face,

yet there is limited evidence on what policies can mitigate it cost-effectively. The main

contribution of this paper is to provide evidence on this important question. We assess

a widely-used approach to reduce carbon emissions, providing some of the most rigorous

evidence to date evaluating any type of policy aimed at reducing carbon emissions. Scholars

have noted the need for high-quality evaluations of environmental policies in general and,

given its growing popularity among policy makers, PES in particular (Greenstone and Gayer,

2009; Ferraro and Patanayak, 2006; Ferraro et al., 2015).

The most widely studied PES program is Costa Rica’s Pago por Servicios Ambientales

(PSA). Pattanayak, Wunder, and Ferraro (2010) review the literature on PSA and conclude

that “studies give widely divergent results.” Several case studies report large, positive im-

pacts on forest cover, but likely suffer from omitted variable bias. The rigorous studies of

PSA that use quasi-experimental methods such as covariate or propensity-score matching of
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enrollees and non-enrollees tend to find smaller effects (Arriagada et al., 2012; Robalino and

Pfaff, 2013).7 Mexico’s PES program has also been studied with quasi-experimental methods

(Alix-Garcia et al., 2015; Alix-Garcia, Shapiro, and Sims, 2012; Honey-Rosés, Baylis, and

Ramirez, 2011). For example, Alix-Garcia, Sims, and Yañez-Pagans (2015) find a sizable

proportional reduction in the deforestation rate, but a modest absolute reduction due to the

low counterfactual deforestation rate on enrolled land. This recent literature has improved

dramatically over early descriptive studies, yet identification concerns remain about self-

selection by participants or targeting by program administrators based on unobservables,

which our prospective experimental design helps alleviate (Pattanayak, Wunder, and Fer-

raro, 2010). Our paper also complements the literature in two other ways. First, we use

satellite images with very high resolution, which enables us to detect selective tree-cutting

in addition to clear-cutting. Second, we study a region with a high rate of deforestation

and forest degradation: Alix-Garcia and Wolff (2014), in their review of the literature on

forest-related PES, write that “the places in which avoided deforestation has been measured

tend to have low deforestation rates,” and “analyses from countries where deforestation risk

is high but institutional strength is low [are] essential.”

The paper is also related to recent randomized evaluations of tree-planting programs

(Jack, 2013; Jack et al., 2015) and other studies on forest conservation in developing countries

(Foster and Rosenzweig, 2003; Edmonds, 2002; Somanathan, Prabhakar, and Mehta, 2009;

Burgess et al., 2012; Alix-Garcia et al., 2013; Assunção et al., 2014). More broadly, we

contribute to the literature in economics on environmental issues in developing countries

(Greenstone and Jack, 2015). Finally, this paper has links to the literature on CCTs, differing

from most previous studies through its focus on environmental protection (Fiszbein, Schady,

and Ferreira, 2009).

The rest of the paper is organized as follows. Section 2 describes the study sample,

randomization, and PES program. Section 3 then describes the data sources, and section 4

provides descriptive statistics on the sample and lays out the empirical strategy. Section 5

7The estimated effects vary based on the specific cohorts and regions being studied within Costa Rica.
Differences in context and program design also imply that the effect sizes will vary across different programs.
See footnote 12 for a comparison of the Ugandan PES program to Costa Rica’s and Mexico’s programs.
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presents the results on the impacts of the PES program on deforestation and other outcomes,

and section 6 translates the impacts into delayed carbon emissions and assesses program

cost-effectiveness based on the social cost of carbon. Section 7 presents concluding remarks.

2 Study design and description of PES program

2.1 Study setting

The study was conducted in 121 villages in two districts in western Uganda, Hoima and

Kibaale. Forests cover an eighth of Uganda’s land area, concentrated in the western region.

Uganda’s deforestation rate between 2005 and 2010 was 2.7% a year, the third highest in the

world (FAO, 2010). The pace of deforestation is even faster on privately-owned land, which

represents about 70% of the forest in Uganda (NEMA, 2008). As in much of Africa, the

main drivers of deforestation in the study region are subsistence agriculture and domestic

demand for timber and charcoal (Fisher, 2010).

In addition to reducing atmospheric CO2, forests also increase biodiversity. Many species

are threatened by deforestation in western Uganda, notably chimpanzees, an endangered

species that is important for Uganda’s tourism industry. Other benefits of forest conservation

include watershed protection and reduced siltation and flooding (Nabuurs et al., 2007).

2.2 Sample of villages and forest owners

To determine the study sample, we first conducted a census of all private forest own-

ers (PFOs) in all villages with forest in Hoima (late 2010) and northern Kibaale (early

2011). Villages with forest were identified using satellite imagery overlain with administra-

tive boundaries. Our field team visited these villages, met with the LC1 chairperson (elected

village head), explained the study, and asked him to assemble 3 to 4 knowledgeable PFOs.

This group then drew a rough map of the village and listed all the people who owned forest

in the village. While most PFOs do not have a formal land title, which family de facto owns

each plot of land is generally agreed upon within the village; the most common form of land

dispute is among family members. The field team then followed up with at least 3 spot

checks per village. Through this process, we identified 189 villages in Hoima and 91 villages
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in Kibaale with at least 1 PFO.

We narrowed this set of 280 villages to our sample of 121 villages by first excluding

villages with fewer than 6 or more than 25 PFOs.8 We then excluded parishes (the adminis-

trative unit above a village) with only 1 eligible village because we had not yet determined

whether a lottery to choose treatment villages would be conducted in each parish or each

subcounty (administrative unit above a parish). We excluded two parishes in Kibaale district

with very little intact forest; these were the only parishes with forest in their subcounties,

so excluding them reduced the geographic spread of the study. Finally, one subcounty (19

villages) was set aside for a pilot.9

We then conducted a baseline survey of PFOs in the sample villages in April to May

2011. In these villages, 1449 PFOs had been listed in the census, and we completed baseline

surveys of 1174 (81%) of them. The main reasons for non-response were that we could not

locate the PFO, or he stated that he was not a PFO. Some PFOs also refused to participate.

An additional criterion to be in our final sample is that we collected valid GPS coordinates

for the PFO’s home at baseline. GPS coordinates allow us to identify the PFO’s home in the

satellite imagery and, thus, are necessary for having valid remote sensing data. The main

reasons for missing GPS data were malfunctioning of the GPS units or enumerator error.

The sample for our analysis comprises the 1099 PFOs who completed the baseline survey

and for whom we have GPS coordinates.

2.3 Randomization

After the baseline survey, 60 of the villages were randomly selected to be in the treatment

group. The randomization was conducted via public lotteries held in each of the 7 subcounties

in our sample. In advance of each lottery, we divided the sample villages in the subcounty

8We excluded villages with more than 25 PFOs because the project had a fixed budget for payments,
and, with the village as the unit of randomization, additional PFOs per village add only limited statistical
power. We excluded villages with fewer than 6 PFOs due to the fixed cost of working in a village and desire
to have statistical power to measure village-level effects.

9 Kyabigambire was chosen as the pilot subcounty because the implementing NGO had close ties to the
community and conducted its other activities there. At the NGO’s request, four villages where they had very
close ties were guaranteed the program. In the other 15 villages, we conducted a pilot of the baseline survey,
subcounty lottery, program implementation, and endline survey; five villages were chosen for the treatment
group. The lottery and program launch occurred in June 2011, two months before the main program launch.
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into two sets, balanced on covariates.10 The LC3 chairperson (elected head of the subcounty)

or a stand-in drew one of the two lists out of a bin. This selected list constituted the treated

villages. The lotteries occurred between August and December 2011. Of the 1099 PFOs in

the sample, 564 reside in treatment villages, and the remaining 535 are in control villages.

2.4 PES program

The PES program was funded via a grant from the Global Environment Facility, through

the United Nations Environment Programme, to the Ugandan government’s National En-

vironment Management Authority (NEMA). NEMA subcontracted the design, implemen-

tation, and management of the two-year program to a Ugandan conservation non-profit,

Chimpanzee Sanctuary and Wildlife Conservation Trust (CSWCT). CSWCT’s main activ-

ity is operating a chimpanzee refuge near Entebbe, but a secondary activity is promoting

conservation of the chimpanzees’ natural habitat in western Uganda. Prior to running this

PES program, their work in western Uganda with PFOs included community education

about conservation and promoting alternative livelihoods to agriculture such as beekeeping.

After the lotteries occurred, we gave CSWCT the list of treatment villages, and they

implemented the program. They rolled out the program, subcounty by subcounty, beginning

in August 2011 and reaching the last subcounty in January 2012. Their first step when

entering a community was to hold a parish-level meeting for eligible PFOs to advertise and

explain the program. They then worked with interested PFOs to verify their forest land,

measure its area, and determine their eligibility. They explained and helped PFOs fill out

and sign the PES contract form. For those who signed up, CSWCT monitored their land

via spot checks and made annual payments to those who complied with the contract.11 The

10We first generated permutations that divided the villages into two sets differing in size by no more
than one village. In subcounties with few sample villages, we constructed all possible permutations and
for subcounties with many villages, for computational reasons, we generated a random sample of 1000
permutations. We then tested for balance on four village-level variables: number of PFOs in the sample,
distance to a road, average per capita income, and average size of landholding. We considered the two sets
of villages balanced if the standardized difference in the mean of each variable was less than 0.25. For each
subcounty, among the balanced permutations, we randomly chose one to use in the public lottery. This
procedure of prespecifying the set of balanced randomizations has advantages over re-randomizing until a
threshold level of balance is achieved or choosing the most balanced permutation (Imbens, 2011).

11Some PFOs who signed up for the program are not in our sample, either because we did not identify
them as PFOs in our census or they did not complete our baseline survey.
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monitoring occurred through in-person spot checks once every one or two months, during

which the CSWCT employee checked for fresh tree stumps or other signs of cleared forest.

The terms of the PES contract were set by CSWCT with input from other project

partners, using PES programs in other countries as a guide but also tailoring the program to

the local context. The contract stipulated that enrollees could not cut down any medium-

sized trees (trees with a trunk diameter at breast height (DBH) of 10 to 50 centimeters

(cm)) on their forestland. They were allowed to cut selected mature trees (>50 cm DBH),

determined by the number of mature trees per species in a given forest patch. This provision

was to give PFOs a small amount of leeway in case of emergencies. Participants were allowed

to cut small trees (<10 cm DBH) for home use and to gather firewood from fallen trees. To

participate, a PFO had to enroll all of his primary forest; allowing someone to enroll only a

portion of his forest would have made it easy for him to leave some forest out of the contract

and carry out all of his tree-cutting on that land. For analogous reasons, someone could not

enroll after the initial enrollment period or re-enroll after falling out of compliance.

An important consideration in designing the contract was that it be simple enough to

explain to PFOs and to assess compliance. Hence, the contract is much blunter than what

would be prescribed for “optimal” forest management. Its goal was to incentivize improved

forest management relative to the status quo. This tradeoff between nuanced, multi-faceted

requirements and the feasibility of monitoring compliance is inherent to all PES programs,

and essentially all incentive contracts.

Enrollees who complied, as determined by CSWCT’s monitoring, received a cash pay-

ment of 70,000 UGX ($28) per hectare of forest per year. The average amount of forest area

owned is 2 hectares, yielding a payment of $56 a year for compliance, which is equal to 5%

(16%) of average (median) annual household income, as reported in the baseline survey.12

12Costa Rica’s PAS program, launched in 1997, and Mexico’s Pagos de Servicios Ambientales Hidrológicos
(PSAH) program, launched in 2003, are two of the major deforestation PES programs worldwide, and a
comparison to them is useful (Wunder, Engel, and Pagiola, 2008). Both make annual cash payments like the
CSWCT program. The payment level (in nominal USD) is $65 per hectare (ha) per year for PAS (1.2% of
Costa Rica’s 2006 GDP per capita) and $27 to $36 per ha per year (0.4% to 0.6% of Mexico’s 2003 GDP per
capita) for PSAH. The $28 per ha per year payment in the CSWCT program is 4.7% of Uganda’s 2011 GDP
per capita. PSA requires a minimum forest area to enroll of 2 ha, and PSAH requires 50 ha; the CSWCT
program did not have a minimum size. PAS and PSAH offer five-year contracts; the CSWCT contract
length was two years. Monitoring for PSA and PSAH is done via annual remote sensing and periodic on-
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To gauge how this payment level compares to the opportunity cost of keeping forest intact,

a large tree that can be used to make lumber sells for $20 to $40. At baseline, 29% of PFOs

reported earning revenue from timber products in the past one year, and among these, the

mean (median) revenue was $151 ($40). The second type of forgone income is from cultiva-

tion that would have occurred on cleared land. While most households consume all of the

crops that they grow, among households that sell crops for cash, self-reported income is in

the range of $30 to $100 per hectare of cultivated land; if a PFO clears new land, he usually

clears one or two 40 square meter (0.16 hectare) plots.

PES enrollees also had the option to reforest up to 2 hectares of land. CSWCT pro-

vided the seedlings, and the PFO received 70,000 UGX per hectare per year if the seedlings

survived. About half of enrollees took up the option, though often on a small scale; on aver-

age, there were 0.1 hectares allocated to reforestation and 10 surviving seedlings per eligible

PFO. We focus on the averted deforestation component of the program because it was more

significant in terms of payments, take-up, and contributions to tree cover. However, when

comparing the amount of money paid to the amount of avoided deforestation, we include

the payments for reforestation, as this extra option and payment might have induced some

PFOs to enroll. (PFOs were not allowed to take up just the reforestation component; all

enrollees were required to avoid deforestation on their forest land.)

3 Data

3.1 Satellite data

Our main outcome is forest cover on sample households’ land, or, more precisely, tree

cover. We quantify the hectares of tree loss, inclusive of both parcels of forest becoming

smaller in area (deforestation) and selective cutting of trees within the forest (degradation),

as well as any shifting of tree-cutting from “official” forest to other land. We analyze satellite

images of the study region taken at baseline and endline in order to measure tree cover.

the-ground spot checks, while CSWCT used frequent on-the-ground monitoring. Among other differences,
PSAH deemed forest with tree density less than 80% ineligible, and PSA required fencing the enrolled forest.
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3.1.1 QuickBird satellite images

The data source for measuring tree cover is QuickBird satellite imagery. QuickBird is a

commercial satellite that takes images with a multispectral resolution of 2.4 by 2.4 meters.

We tasked the QuickBird satellite to image our 2461 square kilometer study region at baseline

and endline, at a cost of $23 per square kilometer per wave. (As described below, we also

use pre-intervention Landsat satellite data in the analysis. Landsat is a US-government run

satellite system; its image resolution is 30 meters.)

QuickBird cannot image an area as large as our study region on one flyover. Thus our

baseline and endline image each consist of five to six vertical strips taken during north-to-

south flyovers on different days. It required multiple passes over some strips to obtain an

image that, in aggregate for the study region, had less than 15% cloud cover, which is the

quality standard that the vendor guarantees.

Most of the baseline images were collected in May to June 2011. Due to an extended

rainy season, the last strips of the image were collected in December 2011 and January 2012,

a few months after the program was rolled out. This timing would likely attenuate our

estimated program effects; relative to control villages, treated villages should (and do) look

more forested at baseline if the program has been in place and has been having impacts for a

few months, which attenuates the treatment effect size that is estimated. In the analysis, we

show that the results are robust to restricting the sample to observations where the lottery

occurred after the baseline image was taken (and indeed these results are larger).

We obtained our endline images while the program was still in effect. At scale-up, this

type of PES program would likely be in place indefinitely or at least for a long duration, but

this trial PES program lasted for two years. Once the financial payments end, PFOs have

no incentive not to deforest their land, and thus a zero impact after the program is over does

not mean that the program did not delay carbon emissions. The estimate of interest for a

temporary program is to measure the postponement of deforestation it caused.

To avoid delays in the endline images such as occurred at baseline, we tasked the satellite

to begin taking images in December 2012. The first strip was taken in December 2012, and

most of the area was imaged between January and March 2013. The program was in place
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through at least August 2013 in all treatment villages. We estimate effects when the program

had been in place for on average 1.5 years.

3.1.2 Remote sensing analysis

The remote sensing analysis was carried out by the Stanford Spatial Analysis Center.

The initial step was to pre-process the images, for example to combine the image strips that

comprise the overall baseline or endline image of the study region and to adjust for solar

zenith angle and Earth-Sun distance at acquisition time. This step and subsequent ones

were applied to the image area within the study village administrative boundaries, which

were obtained from the Ugandan Bureau of Statistics.

Then the images were analyzed to classify each pixel as having tree cover or not. This

was done via object-based image analysis (OBIA), using the eCognition software program

(Benz et al., 2004). In OBIA, the image is first segmented into polygons, or objects, with

spectral and spatial homogeneity. The researcher chooses several parameters for the segmen-

tation algorithm. A key parameter is scale, or how homogeneous each polygon should be;

the parameter is called scale because requiring polygons to be more homogeneous will result

in smaller-sized polygons, all else equal. Other parameters govern how much to emphasize

homogeneity in color versus shape (e.g., compact shapes, smooth borders). The researcher

sets the parameters, looks at the results generated by the segmentation algorithm, and then

readjusts the parameters until there is a good match based on visual inspection (and, in our

case, also based on field-collected validation data, as described below). The goal is for the

polygons to correspond to real-life objects or features of the landscape such as a tree crown

or a building.

OBIA is used for analysis of very high resolution images, i.e., <5 meter resolution. More

precisely, OBIA is designed for when the objects of interest are larger than the pixel size. At

very high resolution, pixel-by-pixel analysis can lead to classification errors due to the high

degree of spectral variation within a class (each pixel comprising a tree crown will have a

different spectral response); OBIA reduces this misclassification. More importantly, OBIA

takes advantage of the rich information contained in the relationship between adjacent pixels

(Blaschke, 2010). For example, the shape, size, and context of a cluster of pixels help us
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identify it as a tree.

After segmentation, the polygon or object is the unit of analysis for classification. In our

case, the goal is to classify each object as tree, non-tree, or cloud cover. (Pixels for which the

landscape is obscured by clouds become missing data in our analysis.) The classification step

uses a knowledge-based expert system in which the researcher defines a mutually exclusive

and collectively exhaustive set of classes and a rule set for assigning objects to classes.

The rules use several attributes of the objects such as color, shape, and size. In practice,

classification is not done after the segmentation is finalized; the entire process is iterative, and

the researcher visually inspects the classification results to refine the rules and parameters.13

To define the rules, we applied a classification and regression tree (CART) algorithm which

determined the best rules for using the object attributes to predict forest classification, and

“trained” the CART system with some of the ground-based data and validated it using the

rest of the ground-based data.

The ground-based forest measurements were collected by a Ugandan forestry NGO,

Nature Harness Initiatives (NAHI). After an initial rough classification of the study area by

the Stanford lab, we sampled 440 geographic locations in the study area for the measurement.

The ground measurements took place in spring and summer 2012 (so while the experiment

was underway). NAHI followed the standard protocol for conducting a forestry inventory

of a 20 meter by 25 meter plot. They identified all trees with a diameter at breast height

(DBH) of 10 centimeters or more, recorded the DBH, and estimated crown height and crown

diameter. They also counted the number of trees of each species.

3.1.3 Landsat data

To improve statistical precision and adjust for any pre-trends in deforestation, we also

use Landsat satellite images from the pre-intervention period, specifically from 1990 and

2010. Given the coarser (30 meter) resolution, we use a pixel-by-pixel technique and calculate

the probabilistic fraction of each pixel that is photosynthetic vegetation. The classification

13Specifically, we used a change detection algorithm in which we first segmented and classified the baseline
image, and then segmented the combined multidate images, using the initial classification as an object
attribute in the multidate processing (Desclée, Bogaert, and Defourny, 2006). We classified objects as
persistent tree cover, persistent non-tree, tree gain, tree loss, or cloud-covered. Pixels with cloud cover at
either baseline or endline are treated as missing data.
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does not make a distinction between trees and other photosynthetic vegetation such as grass.

However, the technique we employ, the Carnegie Landsat Analysis System, was designed to

detect deforestation and forest degradation using Landsat images (Asner et al., 2009).

3.1.4 Unit of observation and missing data

The main unit of observation in our regression analysis is the PFO. The remote sensing

analysis produces a classification of each pixel in the study area, and to convert this to PFO-

level data, we overlay polygons that represent each PFO’s land. While we do not have the

actual boundaries of their land, we have the geolocation of their home and their self-reported

landholding. As a proxy for their land, we use a circle, centered on their home, that is twice

as large as the area of land they own. Note that homes are spread apart in the typical village,

as opposed to clustered together; an individual’s land is typically contiguous to their home.

We use a circle larger than the actual land owned so that we are likely to include all or

most of the land they own and nearby land to which they might shift their tree-cutting. If

the land circles excluded much of their land, an estimated reduction in deforestation could

simply reflect shifting of tree-cutting from near their home to the periphery. On average,

PFOs own 10.8 hectares of land (of which 1.9 hectares is forest), so the average size of the

circles we analyze is 21.6 hectares. We also show the results using circles that are 1 and

3 times the size of the landholding, and because PFOs’ estimates of the area of their land

might be inaccurate, we also use circles that are equal-sized for each PFO, based on the

median land size of 5.3 hectares.14

Each circle contains many pixels, and we use the number of pixels classified as tree-

covered to calculate the total area of tree cover for the PFO. There are two sources of missing

data when we calculate this aggregate measure for each PFO. The first is that some of the

landscape is obscured by cloud cover at either baseline or endline. (In the change-detection

remote-sensing algorithm we use, pixels with cloud cover at either baseline or endline are

treated as missing, so the rate of missing data is identical at baseline and endline.) For

14Note that 1 PFO has missing data for the amount of land owned and 5 PFOs reported owning no land;
for these observations, we have data for a circle around their home using the sample-median land size but
not self-reported size. These PFOs reported owning forest in the screening questions at the start of the
survey, and 3 of them reported owning land at endline.
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most of the sample, cloud-free data are available for a subset of the PFO’s land area. For

98 PFOs, or 9% of the sample, the entire land circle is covered by clouds when using land

circles that are twice the self-reported land area. These are missing observations. Appendix

Table A1 breaks down the sample by availability of different outcome data.

Missing data is uncorrelated with treatment status; the location of cloud cover is essen-

tially random for our purposes. Note that, mechanically, smaller PFO circles are more likely

to have completely missing data. Appendix Table A2 shows that attrition due to missing

satellite data is uncorrelated with treatment status or program take-up, but is correlated

with land size (column 4). Conditional on land size, the observations with missing satellite

data are similar to the main sample (column 5).

A second more minor reason for missing data is that for some PFOs, part of their land

circle falls outside the village boundaries and therefore we do not have forest classification

for that segment. This leads to 4% missing data on average and no cases where the entire

observation is missing.

To recap, for the majority of our PFOs, some but not all of their land circle has valid

data, i.e., cloud-free and within the village boundaries. Conditional on having some data, the

average proportion of the land with valid data is 79%. Our outcome measure is, therefore,

an aggregate measure based on a sample rather than the universe of pixels representing the

land. For statistical efficiency, in the estimation of program impacts, we weight observations

by this sampling rate, i.e., the proportion of the PFO’s land for which we have remote-sensing

data; in practice, the unweighted estimates are similar.

We also conduct analyses at the village level in which the polygon is the administrative

boundary of the village. We have less statistical power to estimate program effects when

we analyze the entire village because only a portion of land in a village is owned by PFOs.

However, the village-level analysis is useful for investigating within-village spillovers. For

the village-level data, there are no cases of entirely missing data.
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3.2 Survey data

Our baseline survey took approximately 1 to 1.5 hours for a respondent to complete

and asked about characteristics of the forest owner’s land, his past tree-cutting behavior,

attitudes toward the environment, consumption, and other topics. We also recorded the

location of the PFO’s home using hand-held GPS devices.

We conducted a similar survey at endline and use these data to measure program impacts

on outcomes other than objective forest cover such as self-reported tree cutting, whether the

PFO restricted others’ access to their land, and socioeconomic outcomes such as expenditures

and child health. We also asked questions about the program such as why treatment PFOs

did or did not take up the program.

At endline, we successfully re-surveyed 1020 (93%) of the 1099 baseline PFOs. The

survey completion rate was higher in control (95%) than treatment villages (91%), and in

particular, PFOs in treatment villages who did not take up the program were less likely to

participate, as shown in Appendix Table A2. Some of them had moved or died, but most

just did not want to participate in the survey; anecdotally, PFOs who were wary of outsiders

were less likely to participate in both the program and the endline survey. Thus, for the

survey-based results, we calculate Lee bounds on the treatment effects (Lee, 2009).

3.3 Administrative data on program enrollment and payments

Our final data source is the administrative records of the implementing partner, CSWCT.

For each of our baseline PFOs, we know whether he enrolled in the program, how much forest

area he enrolled, and how much he was paid each of the two years of the program. We also

have data on how much land PFOs set aside for reforestation, how many trees they planted,

how many survived, and the payment received for this activity.

4 Descriptive statistics and empirical strategy

4.1 Descriptive statistics

Table 1 summarizes key baseline variables from the PFO survey and satellite data and

tests for balance between the treatment and control groups. The first two columns report
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variable means and standard deviations for the treatment and control subsamples, and the

third column reports the normalized difference in means (treatment mean minus control

mean, divided by the pooled standard deviation).

Regarding balance, none of the 18 variables tested has imbalance at the 10% signifi-

cance level. Also, the magnitudes of the normalized differences are small, well below the

conventional threshold for imbalance of 0.25 (Imbens and Wooldridge, 2007).

PFOs, on average, are 47.5 years old and have 8 years of education. The next variable

listed is the self-reported “log” of the land area owned by the PFO. The variable uses the

inverse hyperbolic sine transformation, which approximates the log function but accommo-

dates zeros. In levels, the mean (median) land area for the sample is 10.8 (5.3) hectares.

About 85% of PFOs report having cut trees in the three years preceding the baseline

survey. There are two broad reasons to cut trees. One is because the tree products are

valuable. Large trees can be converted into lumber, medium-sized or crooked trees can be

burned to make charcoal, or small trees can serve as building material for huts. Most of

the trees for lumber and charcoal are sold to timber and charcoal dealers and feed into a

national market, with much of the end use in urban areas. The second reason to cut trees

is because the cleared land can then be used for other purposes, almost always cultivation

in this setting. About 24% of our sample had deforested to use the land for cultivation, and

71% had done so to use or sell the timber products. PFOs often cut down and sell trees

for emergency cash to pay for unexpected costs such as hospital bills or large, infrequent

expenses such as school fees. About a quarter of the sample reports having done so. On

average, revenue from timber products in the previous year is 110,000 UGX or $44.

The baseline survey asked several other questions related to land and conservation.

One in ten were involved in an environmental program, a little more than half agreed that

deforestation was a problem in the community, and a small number (5 percent) agreed with

the statement that it is necessary to damage the environment to improve one’s life. (Not

surprisingly, this small minority has very low program take-up.)

The next rows summarize variables based on the satellite imagery. The amount of area

classified as tree-covered in the PFO’s land circle averages 4.1 hectares, which represents
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about one fifth of the land area. The average percent change in photosynthetic vegetation

in the pre-intervention period from 1990 to 2010 is 3.6%.

While our survey sample comprises only PFOs, anecdotally, PFOs are richer than non-

PFOs in their village. Consistent with this, among PFOs, we find that the larger the amount

of forest owned, the higher baseline per capita income is. Thus, this program, by virtue of

targeting landowners, is regressive within the community (but progressive on a global scale

because funds were being transferred from international donors to a developing country).

4.2 Empirical strategy

Using the data described above, we estimate the following equation via ordinary least

squares regression to quantify the impacts of the PES program:

TreeCoverij = α + βTreatj + γBaselineTreeCoverij +X1ij · δ +X2ij · µ+ εij. (1)

The outcome is the amount of tree cover at endline on the land owned by PFO i in village

j after the intervention has been in place for roughly one and a half years. As a proxy for

the land owned by the PFO, we use a circle of land surrounding his home. The regressor of

interest is Treat which equals 1 in the treatment villages and 0 in the control villages. The

coefficient β is the effect of the PES program, which is hypothesized to be positive.

We control for baseline tree cover as well as the vector X1, which encompasses variables

related to our stratification procedure, in all specifications. X1 comprises subcounty fixed

effects, as the randomization was stratified by subcounty, and the village-level variables

we sought baseline balance on in our randomization: number of PFOs, average household

earnings per capita, distance to a road, and average land size (Bruhn and McKenzie, 2009).

X2 are additional control variables we include in our preferred specification, namely 1990

and 2010 measures of vegetation on the PFO’s land, based on Landsat images (to control for

any pre-trends in deforestation) and dummy variables for the date of the baseline satellite

image. Because the treatment varies at the village level, we adjust for non-independence of

errors within a village, i.e, we cluster on village.

In the regressions, we weight observations by the proportion of the PFO’s land with
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non-missing satellite data. As described in the previous section, because of cloud cover (and

to a lesser degree because of land lying outside village boundaries), in the estimation sample

we have data for on average 79% of the land circle. The proportion varies from less than

1% to over 99%; the histogram is shown in Appendix Figure A2. In essence, we have an

aggregate outcome variable measured with a sampling rate that varies by observation, so to

improve efficiency we weight by this sampling rate (Solon, Haider, and Wooldridge, 2015).

We also estimate a model where the outcome is the change in tree cover between baseline

and endline, i.e., that modifies equation (1) by constraining γ to be equal to 1. In addition, we

estimate proportional effects using the inverse hyperbolic sine (IHS) transformation, which

approximates the log function but is defined at 0 (Burbidge, Magee, and Robb, 1988). We

also show results where the unit of observation is the village.

In addition, we examine survey-based outcomes, estimating an equation analogous to

(1). We control for the baseline outcome in cases where it was collected. We include a

dummy variable for observations with missing baseline values, and impute the baseline value

to be the sample mean for those observations.

5 Impacts of the PES program

5.1 Program take-up

Of the 564 PFOs in our sample in treatment villages, 180, or 32%, enrolled in the PES

program. In addition, 6 PFOs in control villages (1%) enrolled; they resided in control

villages but owned forest in treatment villages. Sampling and assignment to treatment were

based on the village of residence, but CSWCT allowed a PFO to enroll any land located in

a treatment village. Table 2, column 1, estimates the effect of treatment on take-up as a

regression; residing in a treatment village increases take-up by 31.9 percentage points.

Column 2 reports the treatment effect on PES payments (the total payments over the

two years), which was 90,000 UGX, or $36. (In the tables, monetary amounts are reported

in units of 10,000 UGX, which is $4). Thus, per PFO who enrolled, the average payment

was $113 ($36 ÷ 31.9%). Most of these payments (89%) were for avoided deforestation, with

the balance for reforestation. On average, a treated PFO received 25.4% of the amount he
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was eligible for (column 4), implying that enrollees earned on average 80% of their eligible

amount. Some enrollees violated the contract and received no payment, some fully complied

and received 100%, and some partially complied (e.g., their seedlings died) and they received

partial payment, at the discretion of CSWCT.15

It is surprising that program take-up was so low. Enrollment confers option value to

the PFO, even if he is unsure whether he wants to comply; if he then does comply, he will

receive money, and if he does not, while he receives no payment, there is also no punishment.

Moreover, with imperfect monitoring, there is a chance of a false positive in which the PFO

deforests, CSWCT assesses that he complied, and he gets paid.

To better understand why take-up was low, the endline survey asked treatment-village

PFOs why they did or did not sign up for the program. The overwhelming reason for lack of

take-up is mundane: Two thirds of PFOs who did not enroll were unaware of the program or

did not know what it was about (see Appendix Figure A1). CSWCT’s marketing efforts did

not succeed in informing all PFOs about the program. Similarly, the logistics of enrolling

were a barrier to enrollment. CSWCT collected the signed contracts on a particular day in

each village, and if a PFO was unaware of this process or absent that day, he missed, or at

least thought he had missed, his chance to enroll. Together, these reasons account for 77%

of non-enrollment. These implementation problems could likely be addressed in future PES

programs, leading to higher take-up.

About 11% of non-enrollment is due to more fundamental reasons. Many PFOs found

the PES contract complex and difficult to understand. In particular, many were worried

that the contract might be a ploy to grab their land. While in future programs it might be

possible to explain the PES contract more thoroughly to PFOs and assuage their concerns,

this barrier to enrollment is rooted in lack of formal property rights, concerns about theft

and corruption, and low levels of education, factors which are common in many of the

low-income settings amenable to deforestation PES programs. The remaining 12% of non-

enrollment is because the PFO preferred deforesting to the financial incentives so simply was

not interested; CSWCT deemed him to not have eligible forest; or miscellaneous reasons.

15In unreported results, we find that enrolling in the PES program did not crowd out participation in
other environmental programs. No comparable program was offered in the area at the time.
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Besides asking PFOs why they did not take up the program, we can also use the base-

line data to assess the determinants of take-up. Few PFO characteristics predict take-up, as

shown in Appendix Table A3, which is consistent with take-up being largely related to supply

factors such as marketing rather than demand. Four of the characteristics we examine are

significantly correlated with take-up. PFOs with more land, and less tree cover conditional

on land owned, are more likely to enroll. In addition, PFOs who had cut trees for emer-

gency or lumpy expenses recently were less likely to take up the program; as discussed by

Jayachandran (2013), a limitation of PES programs that offer a steady stream of payments

to preserve forest (or other environmental assets) is that even if the net present value of

the payments exceeds the revenue from selling the timber, liquidity-constrained PFOs might

choose immediate money over future PES payments. Also, the small minority who believe

it is necessary to damage the environment to improve life have much lower take-up.

Finally, we test whether take-up is systematically higher for those with lower counter-

factual deforestation. To do so, we use the control group and regress the change in tree

cover on the variables in Appendix Table A3, column 1, and use the results to calculate the

predicted change in forest cover for treatment PFOs. Column 4 shows that take-up of the

program is unrelated to predicted deforestation, again suggesting no selective take-up by

those who would have anyway kept their forest intact.16

5.2 Remote-sensing results

5.2.1 Impacts of the PES program on forest cover

The main results of the paper are presented in Table 3. Here we examine the effect of

the PES program on tree cover. All columns control for the baseline value of the outcome

and stratification controls (subcounty fixed effects and village-level variables that were bal-

anced before randomization). Column 2 onward additionally control for the area covered by

photosynthetic vegetation in 1990 and 2010 and dummy variables for the date of the baseline

satellite image.

As context for interpreting the treatment effects, it is useful to first understand the

16The predicted change in tree cover has a standard deviation of 1.05, so the coefficient implies that when
the variable is one standard deviation lower (i.e., more deforestation), take-up is 2.6 percentage points lower.
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business-as-usual patterns of deforestation. In the control group, the average tree loss per

PFO between baseline and endline is 0.35 hectares, which is 8.7% of baseline tree cover.

This corresponds to 5.8% loss per year. Note that this rate of tree loss is higher than most

estimates of Uganda’s rate of forest loss, which are based on changes in the edge of the forest.

Our high-resolution data detects additional loss of trees due to selective tree-cutting within

the forest, i.e., forest degradation.

Column 1 shows that the PES program caused an increase in tree cover at endline,

relative to the control group, of 0.25 hectares per treatment PFO. The treatment group

experienced net tree loss, but significantly less than the control group. Column 2 adds in

control variables for pre-baseline vegetation, and the results are similar; the effect size is 0.27

hectares.17 This effect is statistically significant with a p-value of 0.012. This is our main

specification, which we use later in the paper for heterogeneity and cost-benefit analyses.

The coefficient on baseline forest cover is close to 1, which is not surprising because

a tree that is not cut down or does not die will grow a bit over two years, but is largely

persistent. As such, the estimates are similar when estimated in changes (column 3).18

The magnitude of the treatment effect represents over half of their baseline to endline

decrease in tree cover. This effect size is large, even larger than the take-up rate (although

we cannot statistically reject that the effect size is the same as or less than the take-up rate).

This suggests that the payments were not simply inframarginal to behavior, and, in fact,

those who took up the program would have deforested more than the typical PFO, absent

the program, which is quite surprising.

One partial explanation for the large effects is that some non-enrollees thought they

were enrolled in the program, and these PFOs might have avoided deforestation based on an

incorrect belief that they would be paid if they did so.19 In the endline survey, we asked the

17The unreported coefficient on 2010 vegetation is positive, and the coefficient on 1990 vegetation is very
similar in magnitude and negative, both with p-values < 0.01. These patterns indicate that, first, the
Landsat vegetation variable provides additional information on baseline tree cover, and, second, vegetation
loss in the two decades prior to the study is predictive of a loss in tree cover over the study period.

18The point estimate is also similar if we do not control for baseline tree cover. Re-estimating column 1
without baseline tree cover, the coefficient on Treat is 0.34, with a standard error of 0.45. The large increase
in the standard error reflects the high explanatory power of baseline tree cover.

19These could be cases where the PFO misunderstood the procedure to enroll or where CSWCT made
a mistake in not registering their contract. In any case, they did not receive any monitoring or payments,
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treatment group if they were enrolled in the program. Of the 384 non-enrollees, 46 reported

being enrolled. Meanwhile, 20 of the 180 actual enrollees (those who enrolled according to

CSWCT’s records), reported that they were not enrolled. Thus, self-reported take-up was 5

percentage points ((46-20)/564) higher than official take-up. Note that these patterns could

be due to measurement error in our survey data rather than PFO misperceptions.

In addition, a small part of the tree gain could be from the reforestation component

of the program. On average 0.1 hectare was set aside for reforestation per treated PFO,

and the number of surviving trees per PFO was only 10 , as shown in Appendix Table A4.

Seedlings would not have grown large in two years, but suppose each had a crown area of 5

square meters or 0.0005 hectares (which is likely an overestimate). This would mean that

reforestation explains 0.005 hectares of the forest gain.

Another possible effect that would increase the effect size is if the program had positive

spillovers to non-enrollees in treatment villages. For example, village norms about tree-

cutting or barring others from taking trees from one’s land might have changed.

5.2.2 Robustness of the results

The appendix presents several robustness checks on the main results. Appendix Table

A5 examines proportional effects on tree cover using the IHS transformation. The treatment

caused a 4.4% increase in tree cover, which represents about 61% of the 7.3% average re-

duction in tree cover in the control group. Note that this deforestation rate in the control

group and proportional treatment effect size are somewhat smaller than when estimated in

levels, implying that PFOs with a larger amount of baseline tree cover have a higher rate of

deforestation and larger proportional treatment effect.

Appendix Table A6 shows unweighted results, which do not take into account the extent

of missing remote sensing data. The results are similar to the main results.

Appendix Table A7 addresses the skewness of the land area distribution by dropping

the top 1% of PFOs in terms of baseline forest cover. (The results are similar when dropping

outliers in terms of endline forest cover or baseline land ownership). Not surprisingly, the

results in levels are smaller in magnitude than in the main results, but remain statistically

according to CSWCT’s records.
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significant. The effect size corresponds to deforestation being 57% lower in the treatment

group than in the control group. The last three columns of Appendix Table A7 use equally-

sized land circles for each PFO that are based on the median land area in the sample, as

an alternative approach to ensure that large PFOs are not driving the result. In addition,

PFOs’ self-reports on land area are often inaccurate, and using the median size removes this

noise (but also removes signal to the extent they are accurate). The median circles are on

average smaller (because of the skewed distribution), and the magnitudes of forest cover in

both the treatment and control group are smaller in levels, but the proportional change in

forest cover is similar to the main results.

Appendix Table A8 estimates the effects using alternatively-sized land circles. The first

three columns show the results using circles whose area is the PFO’s land area; unless the

PFO’s landholding is exactly a circle centered on his home, these circles will omit much

of their land. We continue to find statistically significant treatment effects, though not

surprisingly, the amount of tree gain in hectares is smaller; the circles are half the size, and

the coefficient is 56% of the size, suggesting that these circles are too small to encompass

the area where the program is having impacts. The next three columns show the results

using circles that are 3 times as large as the PFO’s land area. Again, we find positive,

statistically significant impacts on tree cover. While these circles are 50% larger than our

main specification, the treatment effect is only 31% larger, which suggests that circles twice

as large as the landholding encompass most of the PFO’s land and the area where the

treatment effects occur.

As described in the data section, we placed an order for the baseline QuickBird images

in May 2011, requesting that the study region be imaged as soon as possible. The majority of

the region was imaged in May and June, but some of the area was not imaged until December

2011. The subcounty lotteries occurred between August and December 2011, which means

the baseline image was taken after randomization in some cases. Hence, our arguably most

important robustness check is to restrict the sample to cases where the subcounty lottery

occurred after the date of the baseline satellite image. When we do so, we continue to

find positive, statistically significant effects on tree cover, as shown in Appendix Table A9.
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The time span between baseline and endline images is longer in this subsample compared

to the full sample (because we have dropped observations with late baseline data), so with

a constant rate of deforestation, more deforestation should occur in the control group in

this subsample, and, likewise, more deforestation should be averted in the treatment group.

Indeed, we find a larger treatment effect than in the full sample, as well as a higher amount

of deforestation in the control group.

In summary, the results are robust to various potential concerns about the estimation.

5.2.3 Threats to validity

One concern in interpreting the treatment effect on tree cover is that PFOs might have

simply shifted their deforestation to other land. The results presented above are net of several

potential forms of such leakage. First, if PFOs preserved the land that CSWCT classified

as forest and that was regulated under the PES contract but cut down other patches of

trees on their land, our results measure the net effect because they examine the entire land

owned by PFOs rather than just their natural forest. Second, the fact that the land circles

we examine are larger than the land owned means we incorporate increased tree-clearing on

nearby land as well. Third, there could be within-village shifting from one PFO to another.

The low take-up rate suggests there was ample scope for this behavior; one way to game

the PES program is for two PFOs to agree that one will enroll, the other will not, and they

will do their joint tree-clearing on the non-enrollee’s land. (Only one treatment village had

100% take-up). If the PFOs who engaged in this behavior are in our sample, then we also

incorporate this type of shifted tree-clearing through our intent-to-treat estimates.

Our PFO-level results, however, do not net out displacement of deforestation to others

in the village who are not in our sample. To examine this potential concern, we also estimate

village-level effects, where the unit of analysis is the entire area of the village as defined by

government boundaries. We have less statistical power to detect treatment effects when we

are no longer zeroing in on PFOs’ land, so to improve statistical power we include as an

additional control variable the sum of baseline forest cover in PFOs’ land circles.20 The

20The lower power is not surprising given that the land owned by the PFOs in our sample constitutes, on
average, only 21% of the total land in the village.
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last two columns of Table 3 present these results. The treatment effects are positive and

marginally significant in column 4 and significant at the 5% level when estimated in changes

(column 5). The effect size corresponds to 37% to 40% less deforestation in treatment villages

than in control villages.

To assess whether there are within-village spillovers, we can compare the village-level

point estimate to the PFO-level estimate. Column 4 indicates a 4.93 hectare aggregate gain

in tree cover per treatment village. In the analogous PFO-level specification (Table 3, column

2), we estimated a 0.273 hectare increase per PFO. We have on average 9.1 PFOs per village

in our sample, but this underestimates the number of eligible PFOs because not all in our

sample. Sixty percent of program enrollees are in our sample, and applying this scale factor

to our PFO-level results predicts a 4.13 hectare gain in tree cover per village. The signature

of within-village displacement would be if this 4.13 hectare effect among PFOs were larger

than the village-level effect based on the boundaries of the village. Instead it is similar to

and in fact somewhat smaller than the village-level estimate of 4.93 hectares.21 Thus, we

find no evidence that tree-cutting merely shifted within the village.

PFOs who lived near government forest reserves had an additional option to (illegally)

take trees from the reserves. However, Appendix Table A10, columns 1 and 2, which examine

treatment effect heterogeneity based on distance to the forest reserves or the village being

contiguous to the forest reserves (which applies to 17 of the 121 villages) show no evidence

of this behavior. To recap, we find no evidence of PFOs simply shifting their deforestation

within-person or within-village or to government forest reserves, which suggests the PES

program in fact led to additional forest cover.

Another possibility that would bias the results is if the program had spillover effects on

control villages. The results would be biased upward if the program increased deforestation

in the control group. For example, treatment PFOs might have sought trees from control

villages (although this seems unlikely given that there was untapped potential to procure

21Instead of scaling based on enrollees who are not in the sample, one can also scale based on PFOs listed
in the census who are not in the sample. The census identified 12.0 PFOs per village, and multiplying this
number by the PFO-level effect of 0.27 gives an aggregate effect of 3.27 hectares per village, which is again
actually smaller than our village-level estimate.
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trees from non-enrollee PFOs within their village). A more likely form of spillover is higher

demand in control villages from outside timber dealers because supply had dried up in

treatment villages. Another possible spillover is that the control group was upset about not

receiving the program and reacted by deforesting more than usual. To test for these three

mechanisms, we examine whether there is greater tree loss in control villages that are closer

to treatment villages. We find no evidence of such spillovers, as shown in Appendix Table

A10, column 3. While this test sheds light on local spillovers, it does not assess if there

were region-wide effects. For example, there could be an aggregate increase in demand for

timber in all of our control villages caused by the PES program. The study region feeds into

a national timber market, and the PES program was relatively small, so the program seems

unlikely to have had large general equilibrium effects, although such effects would be more

pertinent if the program were scaled up. Even though we cannot identify price effects that

are aggregate to our study region, we did ask questions on the endline survey about visits

by timber dealers. Columns 4 and 5 of Appendix Table A10 show that there was no increase

in visits by timber dealers in control villages relative to treatment villages.

Of course, the reduction in deforestation in the study region might also be offset by

increases outside the region. The premise of this and other PES programs is that demand

for timber products is at least somewhat elastic, so program effects will not just be undone

elsewhere. People will reduce consumption or substitute toward options with a lower carbon

footprint. For example, if PFOs clear less forest for subsistence farming, their demand for

food might be met by farms with much higher agricultural yield.

A different type of concern is related to PFOs’ expectations. PFOs were told that the

program would last for two years, and the study results might or might not lead to program

continuation and expansion in a few years. In the control group, behavior might not reflect

“business as usual” if PFOs anticipated getting the program in the future. A priori, these

anticipation effects could go in either direction. Perhaps PFOs who thought it was likely the

program would come to their village kept their forest intact to be eligible for the program

(which would bias the estimates toward 0), or perhaps they wanted to deforest while they

could (bias away from 0). Similarly, the impacts in the treatment group might vary with their
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expectations. Some PFOs might have thought the program would last forever, and because

non-compliers were not allowed to rejoin the program later, this misperception about the

program horizon would have raised the valuing of complying in the short run. The last two

columns of Appendix Table A10 examine these possible effects due to expectations. First, we

examine whether deforestation in the control group varies with whether the PFO thinks the

program will come to his village, which we asked on the endline survey in control villages.

Second, we examine whether the program effects are larger for PFOs in the treatment group

who think the program will last longer than it actually did; we asked this question on the

endline survey in treatment villages. We do not find evidence that either of these types of

expectations affected how much PFOs deforested.

5.2.4 Heterogeneous impacts

Having shown the average treatment effects, we next examine heterogeneity in the effects

by baseline characteristics. We first analyze how the effects vary with the initial amount of

forest. The direction of this heterogeneity is not clear a priori. On the one hand, those with

more forest have more potential forest to keep intact, which could lead to larger program

impacts. On the other hand, the fact that more of their forest is intact suggests they may

have deforested less in the past, so they might have lower counterfactual tree-cutting and

smaller program effects. We find that the first of these possibilities is more relevant: Tree

gain is larger for PFOs with more tree cover at baseline (Table 4, column 1). Column 2

shows this same pattern holds using the proportion of land that is tree-covered.

The next four columns examine heterogeneity by whether and why the PFO reported

clearing trees recently. Those who had cut trees recently exhibit larger treatment effects,

and this seems to be more true for those who cut trees for timber products as opposed to

cultivation. Column 6 shows that, despite the lower take-up among those who cut trees

for emergency or lumpy expenses discussed earlier, the intent-to-treat effect on forest cover

seems to be larger for them (but statistically insignificantly). Column 7 shows that the

higher the revenue from timber products at baseline, the larger the treatment effect.

The pattern seen across the first seven columns is that if a characteristic is predictive of

more deforestation in the control group between baseline and endline (negative main effect of
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Characteristic), it is also associated with more averted deforestation in the treatment group

(positive interaction effect). Column 8 tests for this pattern more comprehensively. Using

the control group, we regress the change in tree cover on several baseline characteristics

(the same ones used to predict take-up in Appendix Table A3). We then use the results to

calculate the predicted change in forest cover for both control and treatment PFOs.22 The

negative interaction effect in Column 8 indicates that the PES program caused larger gains in

forest cover for treated PFOs whose forest loss, absent the program, would have been larger.

This pattern reaffirms what earlier results suggested: To first approximation, enrollment in

the program was unrelated to predicted counterfactual deforestation, enrollees complied and

refrained from deforesting, and as a result, the largest program impacts are seen for those

who would have deforested the most had the program not been offered to them.

5.3 Household survey results

We now turn to examining outcomes using the endline household survey data.

5.3.1 Self-reported tree-cutting and other behaviors related to land

Self-reports by PFOs corroborate the remote-sensing result that the intervention reduced

deforestation. As seen in Table 5, treatment group PFOs are less likely to have cut any trees

in the past year. An important caveat is that PFOs might have given inaccurate answers, for

example if enrollees thought that admitting to tree-cutting on the survey would jeopardize

their PES payouts.

Attrition from the endline survey was higher in the treatment group than in the control

group, and in particular, treated PFOs who did not take up the program were less likely to

participate in the survey. As such, attrition likely biases upward the magnitude of the treat-

ment effects. We therefore also present Lee bounds on the treatment effects for the survey

results. The lower-magnitude bound provides a conservative estimate of the effect.23 Table

22The predicted value used as the regressor for control group observations is estimated excluding that
observation itself to avoid bias (Abadie, Chingos, and West, 2013).

23Lee bounds make a monotonicity assumption about attrition: Treatment status affects selective attri-
tion in only one direction. With more attrition in the treatment group, the upper (lower) bound assumes
that selective attrition in the treatment group is by those with high (low) outcome values, and thus trims
observations in the control group with high (low) outcomes such that the attrition rate is equalized between
groups (Lee, 2009).
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5, column 1, shows that the point estimate for cutting any trees is -0.14 in the untrimmed

sample, and the smaller-magnitude Lee bound is -0.10.

Deforestation to clear land for cultivation and to obtain timber products both seem to

have decreased, although there are wide bounds on these estimates. Columns 5 to 7 show

that in the treatment group, total revenue from timber products is lower by 2.89 million

UGX ($116), or 23 log points, and there is a 4 percentage point (27%) lower likelihood of

receiving any revenue from timber in the past year. These point estimates are based on

the untrimmed sample and are suggestive, but the Lee bounds indicate that we cannot say

anything conclusive about these outcomes.

Complying with the PES contract entails reducing one’s own tree-cutting, but in our

context, where others are given access to forest or might encroach on it, complying also

means ensuring that others do not clear trees on one’s land. As seen in Table 6, there is a

roughly one third drop in the likelihood of allowing people to gather firewood from the forest

(even though gathering fallen wood was allowed under the contract). There is no significant

decrease in access granted to others who take trees from the land (though the point estimate

is suggestive of such an effect). The program significantly increased how much PFOs patrol

their land, as seen in column 3. While preventing illegal activity, in principle, should be

done by the state, this role often falls to the individual in this context. PFOs have a private

incentive to prevent theft of their forest even absent the PES program, but the program

seems to have increased the value of doing so and induced more patrolling. Treatment PFOs

did not respond to the program by fencing their land, however.

A reduction in others’ right to gather firewood and access PFOs’ land is very likely a

regressive effect. In our study region, it is the norm for landowners to let poorer neighbors

gather firewood or very small trees (“poles”) for building material. Thus, the program could

have had a negative impact on non-forest-owners, unless PFOs found some other way to

make transfers to their poorer neighbors.

Interestingly, the program also seems to have affected perceived property rights: Treated

PFOs are more likely to report that their ownership of their forest strengthened in the past

two years, though the point estimate is small and the lower bound estimate is insignificant
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(column 5). The program neither increased nor decreased disputes with neighbors about

land (column 6).

5.3.2 Socioeconomic impacts

The last set of survey outcomes we examine is related to economic well-being. In

principle, the program could have either increased or decreased current income. The PES

payments could have enriched PFOs, or they could have tolerated a reduction in current

income in exchange for wealth accumulation in the form of intact forest. In any case, the

net effect is unlikely to be large in magnitude. The payment levels were chosen to be of

the same order of magnitude as monetary opportunity costs, and the treatment caused a

reduction in deforestation so payments were not inframarginal to behavior. Thus, it seems

unlikely that the program would lead to a large increase in income, except perhaps for those

with a particularly low opportunity cost, where a smaller payment would have sufficed to

induce their reduction in deforestation, leaving them with inframarginal cash on the intensive

margin. At the same time, because take-up was voluntary, decreases in permanent income are

unlikely, and credit constraints or impatience probably prevented most PFOs from incurring

a large decrease in current income, even if the value of their forest assets increased.

Measuring income is difficult because most individuals are self-employed or casual labor-

ers, so we use expenditures as a proxy for current income. Table 7, columns 1 to 3, examine

spending in three broad categories: food, non-food, and alcohol and tobacco. The survey

asked about spending in the past 30 days or 6 months in several finer categories, and we

aggregated the data after harmonizing the lookback period. We do not find strong evidence

of either an increase or decrease in expenditures. Non-food spending shows a positive effect

but the lower bound effect is insignificant; the point estimate of a 5.3% increase is equivalent

to 10,900 UGX ($4.35) per month. Column 4 examines the respondent’s self-reported status

on a 9-point income ladder, relative to his community. The point estimate is suggestive of

an increase in self-reported relative income, but the result is not particularly strong.

Another effect the program might have had was on borrowing. Those who would have

cleared trees for large spending needs might have switched to taking out loans, or if the

program increased current income, it could have, in turn, decreased the need to borrow. We

32



find no impact on loans (column 5). Finally, columns 6 and 7 examine two measures of child

health, malaria and diarrhea. We find some suggestive evidence that the program decreased

the self-reported rate of child diarrhea. Overall, we interpret the results in Table 7 as

providing weak evidence that the program may have had some, but not major, positive effects

on economic well-being of eligible PFOs and stronger evidence that it did not significantly

decrease their economic well-being.

6 Cost-effectiveness

We next convert the program’s effect on tree cover into delayed CO2 emissions, calculate

the monetary value of the delayed emissions, and compare this benefit to the program costs.

Amount of delayed CO2 emissions

The program averted 0.268 hectares of deforestation per PFO eligible for the program.

This estimate uses our intent-to-treat gain in tree cover from our main specification (Table

3, column 2) and subtracts 0.005 hectares potentially due to reforestation.24 The average

duration from baseline to endline was 1.5 years, but the payment data we use are for 2

years of compliance. To be conservative, we ignore the fact that the amount of averted

deforestation likely accumulated during the remaining half year of the program.

We use Global Forest Map satellite-based estimates of biomass in forests, available at a

30-meter resolution, to estimate the biomass and carbon in forestland in our study villages;

the average is 153.5 tons of carbon per hectare (World Resources Institute, 2016).25 The car-

bon stored in other vegetation (e.g., agricultural cultivation) is negligible compared to trees,

so this amount also represents the change in carbon stocks from tree-clearing (Houghton,

2007). To be conservative, we ignore the flow of carbon that trees absorb, assuming the

forest is close to carbon-neutral if it remains intact.

Combining these numbers, averted carbon per eligible PFO is 41.1 tons. Equivalently,

the averted CO2 is 150.7 tons. (A CO2 molecule is 3.67 times as heavy as a carbon atom.)

24We ignore the CO2 that the newly planted trees absorb during the intervention, as the amount is small.
25This value is the carbon per hectare of forest with at least 67% tree cover whereas our effect size is in

hectares of tree cover, so we might be underestimating the carbon stored per hectare of tree cover.
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Program costs per ton of delayed CO2 emissions

The average payment per PFO (inclusive of payments for reforestation) is $37.70 over

the two years of the program.26 Thus, the program paid $0.25 ($37.70 ÷ 150.7 tons) to delay

each ton of CO2 emissions.27 We assume this full amount is a program cost, but note that

payments in excess of the amount required to gain compliance are not true economic costs.

Payments to PFOs are not the only program cost. There are also costs for monitoring

enrollees’ forests and for program administration. Monitoring costs were $88 per program

enrollee, or $28 per eligible PFO.28 We assume an additional cost per eligible PFO of $30

for marketing of the program and overall program management. We further assume a 10%

transaction fee for PES payments. Combining these assumptions, the administrative costs

amount to $0.41 per averted ton of CO2.

The monitoring costs could be considerably lower at scale-up because, for the sake of

the randomized trial, the program was rolled out in a geographically dispersed set of villages.

It seems reasonable that with greater geographic density, monitors could conduct 2 rather

than 1 spot check per day.29 In this case, the administrative costs of the program would be

$0.32 per averted ton of CO2.

Thus, our best guess of the total program costs at scale-up—incentive payments plus

administrative costs—is $0.57 per averted ton of CO2.

Social benefit per ton of delayed CO2 emissions

The amount paid to avert carbon emissions can be compared to the “social cost of

carbon” or SCC (which is, more precisely, the social cost of CO2). The middle estimate used

26This number is slightly higher than our full-sample estimate of $36 (Table 2, column 2). The estimate
of impacts on tree cover is based on the 995 PFOs with non-missing remote sensing data, and their forest
area is slightly larger than average because small land circles are more likely to be fully cloud-covered. The
average payment among the subsample with non-missing remote sensing data is $37.70.

27One might want to include potential payments to the net 5% of non-enrollees who thought they had
enrolled but were not paid. Scaling up by (32%+5%)/32% yields $0.29 in payments per ton of CO2.

28CSWCT hired forest monitors who each covered 30 enrollees. Monitors were paid $90 per month, and
for transportation, were given on average two bicycles each. Adding in repair costs, the bicycles cost $480
per monitor over the course of the program. The source for this cost data is CSWCT.

29A forest monitor was supposed to conduct 1 spot check every one or two months per PFO; at once per
6 weeks, he conducted slightly fewer than 1 spot check per day, assuming 25 work days per month.
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by the United States EPA for 2012 is $39 (in 2012 USD).30

The SCC represents the benefit of permanently averting carbon emissions. While this

program was intended to be a prototype of what could be a permanent program, it was a two-

year program. The program effects we estimate represent a delay in tree-cutting. To quantify

the delay length, we need to make assumptions about deforestation after the program ended,

which we do not have direct measurements of. Our base case scenario assumes that PFOs

deforest at a 50% higher rate than usual after the program ends until they catch up on all

their postponed deforestation, thus undoing the 2 years’ worth of treatment effects over 4

years. The average delay in deforestation in this scenario is 3 years, assuming a uniform

rate of deforestation. We also consider two more extreme scenarios. First, we assume PFOs

catch up on all their delayed deforestation immediately when the program ends, in which

case the benefits are for a delay of, on average, 1 year. Second, we assume PFOs resume

their normal rate of deforestation after the program ends, rather than an accelerated rate;

this is equivalent to a permanent two-year delay in both the deforestation that would have

occurred during the intervention as well as all later deforestation.31

When a tree is cleared, its carbon is not all immediately emitted into the atmosphere.

We assume that the average lag between tree-cutting and carbon emissions is 10 years.32

The value of avoided future emissions depends on both the discount rate (which decreases

the value) and the growth rate of the SCC (which increases the value). We use 3% for the

discount rate (the EPA’s middle rate) and 1.9% for the growth of the SCC, based on EPA

projections (Interagency Working Group on Social Cost of Carbon, 2013).

Putting these assumptions together, the discounted benefit of delaying a ton of CO2’s

worth of tree-cutting for our base case (treatment effects undone after 4 years) is $1.11. The

30 This value is the average SCC across the three integrated assessment models used by the US Environ-
mental Protection Agency (EPA), and assumes a discount rate of 3%, which is the EPA’s median scenario.
The SCC for 2010 and 2015 are $33 and $38 in 2007 US dollars (USD); interpolation gives a SCC for 2012
of $35 in 2007 USD, or $39 per metric ton of CO2 in 2012 USD.

31We assume that PFOs clear their forest at the same rate we observe between baseline and endline (8.7%
of their stock of trees every two years) until their forest is depleted. The amount of deforestation that is
delayed for two years, discounted back to the present, is 2.55 hectares per PFO, or 9.4 times the amount
observed during the intervention.

32The exact time profile depends on many complex factors and is beyond the scope of this paper. A
10-year delay is consistent with 45% of the biomass being burned with immediate release, 45% decomposing
with a mean survival of 15 years, and 10% being used as lumber with the carbon stored for 30 years.
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CO2 benefits are twice as large as the program costs.

If, instead, PFOs catch up on their backlog of avoided deforestation the moment the

program ends, the benefit-cost ratio falls to 0.7. Alternatively, if PFOs resume deforesting

at their typical rate after the program ends, the benefit cost-ratio rises to 12.3. This last sce-

nario of a permanent two-year delay in deforestation is the relevant one for extrapolating to

a longer-lasting program: If the program effects we observe over two years persist with a per-

manent intervention, the net present cost to permanently avert a ton of CO2 would be $3.10,

much less than the social cost of carbon. Note that this is a very tentative extrapolation.33

Table 8 summarizes the PES program costs and benefits per ton of averted CO2 emis-

sions for our base case, the two extreme scenarios discussed above, and several alternative

scenarios. These figures suggest that, under most assumptions, the program costs are lower

than the social benefit of the delayed tree-cutting and CO2 emissions. It is important to note

that the cost-benefit numbers have a wide confidence interval. Our estimate of the effect

of the program on tree cover has estimation error; the Global Forest Watch data on forest

biomass has estimation error; we need to make assumptions about how long after tree-cutting

the carbon from biomass is re-released into the atmosphere and the rate of deforestation af-

ter the program ends; and, perhaps most importantly, the social cost of carbon is based on

highly complex models of climate and the economy, and different modeling assumptions give

widely divergent estimates of the SCC.

Another way to benchmark the program is against other environmental programs. Per

ton of averted CO2, this program appears to be less expensive than many alternative policies

in place in the US to reduce carbon emissions that have been empirically evaluated such as

hybrid and electric car subsidies; per averted ton of CO2, those two policies cost 4 to 24

times as much as the carbon benefits they generate (Knittel, 2012; Gayer and Parker, 2013).

Alternative programs in developing countries are also often cost-ineffective; for example,

per ton of averted CO2, giving households incentives to upgrade their refrigerators and air

33We assume the payments needed to deter deforestation rise over time at the same rate as the SCC. The
costs might rise faster than this rate if the opportunity cost of avoided deforestation is convex in the delay
length or grows rapidly due to rising prices of timber products. The restrictions on tree-cutting in the PES
contract were tailored to the two-year duration; one would likely want to modify the contract conditions for
a longer-duration program.
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conditioners in Mexico costs over 10 times the SCC (Davis, Fuchs, and Gertler, 2014).34

A very important caveat is that these cost-benefit calculations do not quantify the

carbon impacts of behavioral responses beyond tree-cutting in the study area. For example,

how much less fuel do urban consumers use? What fuel sources do they substitute toward?

Many of these impacts occur outside the study area and are beyond the scope of this study.

In addition, while our analysis does not detect general equilibrium effects, such effects could

be important if PES programs were implemented at large scale.

Beyond averted CO2, there are also other benefits of the program. For example, the

program redistributes from the wealthy to the poor. While PFOs are not poor relative

to their neighbors, they are poor in global terms. If funded through international carbon

markets, PES program costs—both the payments to PFOs and even the administrative costs

incurred by local organizations like CSWCT—would represent income distribution. We did

not find large improvements in consumption for participants, but they accumulated wealth

in the form of a more valuable forest, with no apparent loss to current income. Another

benefit that we cannot quantify with our study design is increased biodiversity, for example

through a higher likelihood of the chimpanzee population surviving. Biodiversity is valuable

to society per se and, in the case of chimpanzees, boosts Uganda’s tourism revenue.

On the opposite side of the ledger, the program has other costs besides program im-

plementation costs. As seen in our survey results, one effect of the program was that PFOs

gave their neighbors less access to their land to gather firewood. Most of those affected in

this manner are the poorest, landless individuals in the community, and the program could

have made them worse off. A do-no-harm version of PES might want to include small cash

transfers to the poor, non-forest-owning individuals in the community.

34This is not to say that there might not be other approaches more effective than PES. The “McKinsey
curve” identifies several ways to reduce carbon emissions that its authors project to have negative abatement
costs, such as increased use of LED lighting (McKinsey and Company, 2009). The McKinsey estimates are
projections, rather than being based on evaluations of policies in place.
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7 Conclusion

This paper evaluated an important policy tool being used to mitigate climate change,

namely Payments for Ecosystem Services in which financial incentives are given to keep

forest intact. While the logic of using financial incentives to reduce deforestation is well-

established, a concern with such a program is that many of the payments will be inframarginal

to behavior, so the program will have minimal impact on deforestation per dollar spent.

We measure causal impacts of a PES program in Uganda through a randomized con-

trolled trial in which 60 of 121 study villages received the two-year program. Using high-

resolution satellite images, we find that the program led to a sharp reduction in deforestation.

Our cost-benefit calculations suggest that the program costs were less than the social benefit

of the delay in CO2 emissions from deforestation that was generated by the program.

Thus, in this setting, PES appears to have been effective. Neither the problem of

inframarginality nor leakage seems to have dampened cost-effectiveness. Future research is

needed to assess whether these findings are generalizable to other settings and to long-term

programs. Nonetheless, we view our results as a proof-of-concept that PES programs could

be a cost-effective way to avert deforestation in developing countries—and hence a powerful

tool to mitigate climate change.

38



References
Abadie, A., M. M. Chingos, and M. R. West (2013): “Endogenous Stratification in

Randomized Experiments,” Discussion paper, National Bureau of Economic Research.

Alix-Garcia, J., C. McIntosh, K. R. Sims, and J. R. Welch (2013): “The Ecologi-
cal Footprint of Poverty Alleviation: Evidence from Mexico’s Opportunidades Program,”
Review of Economics and Statistics, 95(2), 417–435.

Alix-Garcia, J., and H. Wolff (2014): “Payment for Ecosystem Services from Forests,”
Annual Review of Resource Economics, 6, 361–380.

Alix-Garcia, J. M., E. N. Shapiro, and K. R. Sims (2012): “Forest Conservation and
Slippage: Evidence From Mexico’s National Payments for Ecosystem Services Program,”
Land Economics, 88(4), 613–638.

Alix-Garcia, J. M., K. R. Sims, and P. Yañez-Pagans (2015): “Only One Tree from
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Table 1: Descriptive statistics and randomization balance

Treatment Control Std. diff.
(1) (2) (3)

Household head’s age 47.499 47.589 0.003
[13.605] [14.659]

Household head’s years of education 7.715 7.931 -0.056
[4.003] [4.187]

IHS of self-reported land area (ha) 4.062 4.004 0.053
[1.021] [0.968]

Self-reported forest area (ha) 1.727 2.068 -0.042
[3.318] [12.413]

Cut any trees in the last 3 years 0.845 0.858 -0.031
[0.362] [0.350]

Cut trees to clear land for cultivation 0.236 0.241 -0.016
[0.425] [0.428]

Cut trees for timber products 0.704 0.721 -0.037
[0.457] [0.449]

Cut trees for emergency/lumpy expenses 0.250 0.292 -0.088
[0.433] [0.455]

IHS of total revenue from cut trees 1.238 1.397 -0.085
[2.118] [2.248]

Rented any part of land 0.163 0.198 -0.091
[0.370] [0.399]

Dispute with neighbor about land 0.218 0.206 0.035
[0.413] [0.405]

Involved in any environmental program 0.100 0.111 -0.035
[0.301] [0.315]

Agree: Deforestation affects the community 0.539 0.548 -0.014
[0.499] [0.498]

Agree: Need to damage envi. to improve life 0.064 0.043 0.089
[0.245] [0.204]

Tree cover in land circle (ha) 4.355 3.845 0.050
[12.466] [9.178]

Weighted tree cover in land circle (ha) 4.403 3.999 0.057
[11.643] [8.252]

% of land circle with tree cover 0.199 0.209 -0.044
[0.161] [0.157]

% change in vegetation, 1990–2010 0.035 0.037 -0.016
[0.066] [0.058]

Observations (forest owners) 564 535
Number of villages 60 61

Notes: The table reports subsample means with standard deviations in brackets. The last column reports the
regression-adjusted difference in mean between the treatment and control subsample divided by the pooled standard
deviation, and an asterisk denotes that this difference has a p-value less than 0.10. The standardized difference and p-value
are based on a regression with subcounty fixed effects, with clustering at the village level. IHS denotes the inverse hyperbolic
sine transformation of the variable. Weighted forest cover is the mean weighted by the proportion of the forest owner’s land
with valid satellite data. The data source for Tree cover in land circle, Weighted tree cover, and % of land with tree cover is
the baseline QuickBird satellite image. The source for % change in vegetation is 1990 and 2010 Landsat satellite images. The
source for all other variables is the baseline survey.



Table 2: Program take-up

Take-up
Amount

paid

Amount
paid for
avoided

deforesta-
tion

Proportion
of eligible
amount

paid

(1) (2) (3) (4)

Treated 0.319∗∗∗ 8.991∗∗∗ 7.962∗∗∗ 0.254∗∗∗

[0.030] [1.862] [1.799] [0.026]

Control group mean 0.011 0.416 0.403 0.007
Observations 1,099 1,099 1,099 1,099

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, ***
p < .01. All columns include subcounty fixed effects and the four village-level baseline variables used to
balance the randomization: number of PFOs in baseline sample, average weekly earnings per capita,
distance to the nearest main road, and average size of the reported land nearest the dwelling. Amount paid
and Amount paid for conservation are in 10,000 UGX. Outcome data are from CSWCT administrative
data.
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Table 3: Effect of PES program on forest cover

PFO-level land circles Village boundaries

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

Tree cover
(ha)

Change in
tree cover

(1) (2) (3) (4) (5)

Treated 0.246∗∗ 0.273∗∗ 0.273∗∗ 4.929∗ 5.344∗∗

[0.109] [0.107] [0.107] [2.607] [2.508]

Baseline outcome 0.998∗∗∗ 1.005∗∗∗ 0.960∗∗∗

[0.034] [0.072] [0.025]

Control group mean 3.650 3.650 -0.349 155.530 -13.371
Control variables No Yes Yes Yes Yes
Observations 995 995 995 121 121

Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in
columns 4 and 5. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and
means are weighted by the proportion of available satellite data. Tree cover is measured in hectares (ha).
The first 3 columns use a land circle centered on the PFO’s home that is twice his self-reported land area,
and the next 2 columns use village boundaries. All columns include subcounty fixed effects and the four
village-level baseline variables used to balance the randomization. Columns 2 to 5 also include the 1990 and
2010 area covered by photosynthetic vegetation and dummy variables for the date of the baseline satellite
image. Columns 4 and 5 control for aggregate baseline tree cover in the land circles of PFOs in the village.
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Table 4: Heterogeneous effects on forest cover

Heterogeneous treatment effects on tree cover by:

Above-
median

tree cover
in land
circle

% of land
circle with
tree cover

Cut any
trees in

the last 3
years

Cut trees
to clear
land for

cultivation

Cut trees
for timber
products

Cut trees
for emer-

gency/lumpy
expenses

IHS of
total

revenue
from cut

trees

Predicted
change in
tree cover

(1) (2) (3) (4) (5) (6) (7) (8)

Treat × Characteristic 0.469∗∗ 1.964∗∗ 0.429∗∗ 0.032 0.344∗∗ 0.408∗ 0.122∗∗∗ -0.694∗∗

[0.200] [0.927] [0.171] [0.133] [0.167] [0.220] [0.043] [0.295]

Treated 0.021 -0.157 -0.092 0.269∗∗ 0.021 0.147 -0.015 -0.006
[0.070] [0.150] [0.138] [0.119] [0.126] [0.091] [0.081] [0.086]

Characteristic -0.578∗∗∗ -3.001∗∗ -0.329∗∗ 0.071 -0.334∗∗ -0.411∗∗ -0.105∗∗∗ 0.523
[0.199] [1.176] [0.131] [0.116] [0.139] [0.196] [0.038] [0.352]

Observations 995 995 993 995 995 995 993 994

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The outcome variable in all columns
is endline tree cover, which is measured in hectares. All regressions are weighted by the proportion of available satellite data. All columns include
subcounty fixed effects, four village-level baseline variables used to balance the randomization, the baseline outcome, 1990 and 2010 photosynthetic
vegetation, and dummy variables for the baseline satellite date. In column 8, predicted tree loss is the predicted value from the regression reported in
Appendix Table A3, column 3.
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Table 5: Effects on self-reported tree-cutting

Cut any
trees in the

last year

Cut trees
to clear
land for

cultivation

Cut trees
for timber
products

Cut trees
for emer-

gency/lumpy
expenses

Total
revenue
from cut

trees

IHS of total
revenue
from cut

trees

Any
revenue
from cut

trees in the
last year

(1) (2) (3) (4) (5) (6) (7)

Treated -0.140*** -0.034* -0.090*** -0.027** -28.929 -0.232* -0.041*
[0.034] [0.018] [0.030] [0.013] [21.639] [0.118] [0.021]

Baseline outcome 0.116*** 0.065*** 0.134*** 0.028* 0.023 0.143*** 0.069***
[0.039] [0.023] [0.029] [0.016] [0.040] [0.031] [0.024]

Lee bound (lower) -0.161*** -0.041** -0.107*** -0.031** -31.575 -0.312** -0.049**
[0.034] [0.018] [0.030] [0.013] [22.719] [0.120] [0.022]

Lee bound (upper) -0.104*** 0.011 -0.048* 0.021** 5.905** 0.065 0.001
[0.033] [0.016] [0.028] [0.011] [2.339] [0.105] [0.020]

Control group mean 0.453 0.085 0.339 0.069 32.900 0.823 0.152
Control group SD [0.498] [0.279] [0.474] [0.254] [446.503] [2.033] [0.359]
Observations 1,018 1,018 1,018 1,018 1,018 1,018 1,018
Observations (Lee bounds) 994 994 994 994 994 994 994

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed
effects and the four village-level baseline variables used to balance the randomization. Total revenue from cut trees is in 10,000 UGX. IHS denotes
inverse hyperbolic sine transformation. For observations where the baseline outcome is missing, we impute the value as the sample mean, and include
in the regression a dummy variable for observations with imputed baseline values. Outcomes refer to the previous one year; baseline values refer to
the previous three years.
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Table 6: Effects on land use and protection of land

Allow others
to gather
firewood
from own

forest

Decreased
access to

others who
take trees
from forest

in last 2
years

Increased
level of

patrolling
the forest in
last 2 years

Has any
fence around

land with
natural
forest

Claim to
ownership of

forest
became

stronger in
last 2 years

Had dispute
with

neighbors
regarding

land in last
2 years

(1) (2) (3) (4) (5) (6)

Treated -0.170*** 0.039 0.109*** 0.036 0.071** -0.014
[0.033] [0.024] [0.039] [0.033] [0.033] [0.025]

Baseline outcome 0.013 0.102***
[0.089] [0.031]

Lee bound (lower) -0.185*** 0.033 0.094** 0.007 0.048 -0.024
[0.033] [0.025] [0.039] [0.033] [0.033] [0.026]

Lee bound (upper) -0.148*** 0.062** 0.132*** 0.055 0.081** 0.028
[0.032] [0.024] [0.039] [0.034] [0.033] [0.024]

Control group mean 0.427 0.202 0.378 0.667 0.663 0.140
Control group SD [0.495] [0.402] [0.485] [0.472] [0.473] [0.347]
Observations 976 980 984 1,020 999 1,020
Observations (Lee bounds) 957 965 965 998 982 998

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed
effects and the four village-level baseline variables used to balance the randomization. For observations where the baseline outcome is missing, we
impute the value as the sample mean, and include in the regression a dummy variable for observations with imputed baseline values. For columns
with no baseline coefficient reported, the variable was not collected in the baseline survey.
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Table 7: Socioeconomic effects

IHS of food
expend. in

last 30 days

IHS of
non-food

expend. in
last 30 days

IHS of alco-
hol/tobacco
expend. in

last 30 days

9-step
income
ladder

Has
outstanding

loan or
repaid a loan
in past year

Child was
sick with
malaria in

last 30 days
(age 0-15)

Child was
sick with

diarrhea in
last 30 days

(age 0-5)
(1) (2) (3) (4) (5) (6) (7)

Treated 0.065 0.156** -0.010 0.214* -0.009 -0.031 -0.064**
[0.074] [0.066] [0.062] [0.114] [0.024] [0.029] [0.032]

Baseline outcome 0.527*** 0.648*** 0.334*** 0.381*** 0.233*** 0.182*** 0.090
[0.037] [0.028] [0.029] [0.036] [0.032] [0.040] [0.068]

Lee bound (lower) -0.029 0.053 -0.072 0.070 -0.049** -0.105*** -0.118***
[0.070] [0.064] [0.060] [0.113] [0.023] [0.029] [0.033]

Lee bound (upper) 0.144* 0.215*** 0.090 0.432*** 0.010 0.042 0.034
[0.075] [0.064] [0.059] [0.110] [0.024] [0.030] [0.030]

Control group mean 2.524 4.363 0.613 4.034 0.770 0.401 0.202
Control group SD [1.177] [1.354] [1.026] [2.080] [0.421] [0.490] [0.403]
Sample Households Households Households Households Households Children Children
Observations 1,020 1,020 1,020 1,016 1,019 2,266 498
Observations (Lee bounds) 998 998 998 994 996 2,145 470

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed
effects and the four village-level baseline variables used to balance the randomization. IHS denotes inverse hyperbolic sine transformation. For
observations where the baseline outcome is missing, we impute the value as the sample mean, and include in the regression a dummy variable for
observations with imputed baseline values. The outcome in column 4 is the respondent’s rating of his income relative to others in his community on a
9-step ladder. In column 6 and 7, each observation is a child and child age-in-years fixed effects are included. Column 6 controls separately for the
baseline prevalence among children 0 to 7 and 8 to 15 years old.
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Table 8: Cost-benefit analysis

Scenario
Benefit
per ton of
CO2

Cost per
ton of
CO2

Cost-
benefit
ratio

1. Base case: Program effects undone over 4 years $1.11 $0.57 0.51

2. Program effects accumulate for final 6 months $1.11 $0.43 0.38

3. Program effects undone immediately $0.37 $0.57 1.52

4. Deforestation resumes at normal rate (permanent delay) $0.74 $0.06 0.08

5. Program effects undone over 2 years $0.74 $0.57 0.76

6. Avg time until emissions is halved to 5 years $1.17 $0.57 0.48

7. Avg time until emissions doubled to 20 years $1.00 $0.57 0.57

8. Monitoring rate remains at 1 spot check per day $1.11 $0.66 0.59

Notes: This table compares the costs of the PES program, measured per ton of averted CO2 emissions, with the social benefit of the averted
emissions. The base case assumes (a) no further treatment effects during the 0.5 years between endline satellite data collection and program end (b)
an average 3-year delay in deforestation (treatment effects undone over 4 years) (c) average time from tree-cutting to CO2 emissions of 10 years, and
(d) a monitoring rate of 2 spot checks per monitor per day. Row 2 modifies (a) to assume the treatment effects accumulate at the same rate in the
final 0.5 year as was observed in the first 1.5 years. Row 3 modifies (b) to assume a 1-year delay in deforestation (treatment effects undone the day
the program ends). Row 4 modifies (b) to assume the averted deforestation and all subsequent deforestation are delayed by the 2-year duration of the
program. Row 5 modifies (a) to assume a 2-year delay in only the averted deforestation during the intervention (treatment effects undone over 2
years). Row 6 and 7 modify (c) to shorten and lengthen the gap between tree-cutting and emissions. Row 8 modifies (d) to assume 1 spot check per
monitor per day. See section 6 for further discussion.
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ONLINE APPENDIX

Data Appendix
Household survey
Endline respondents: In 53 cases, the endline respondent was a different member of the household
than the baseline respondent. In 18 of these cases, the baseline respondent had died, in 3 cases he
was too ill to participate, and in 22 cases he was temporarily or permanently away from the
village. The remaining 10 cases are miscellaneous reasons.

Remote sensing analysis
Procurement of images: The QuickBird satellite is operated by DigitalGlobe. We contracted with
an image reseller, Apollo Mapping, to task our images.

Top-of-atmosphere reflectance: Calculations for top-of-atmosphere reflectance, which accounts for
factors such as solar zenith angle and Earth-Sun distance at acquisition time, were done following
DigitalGlobe’s “Radiance Conversion of QuickBird Data” technical documentation.

Variable construction
IHS transformation: The inverse hyperbolic sine transformation is the function
f(x) = ln(x +

√
x2 + 1). Except for values of x close to 0, it approximates ln(x) + ln(2). Before

transforming the QuickBird variables with the IHS function, we rescale the variables in levels such
that the 10th percentile of the baseline value using actual-sized circles is 1. We apply the same
procedure to the Landsat variables, forest area, and baseline per capita income. For baseline per
capita income, the raw 10th percentile is 2500 UGX, and we use the same scale factor for all other
monetary values before applying the IHS transformation. The results are insensitive to the scale
factors used.

Food, non-food, and alcohol/tobacco expenditures: The categories for food were as follows: tea;
soda; milk; sugar; meat; fish; rice; beans; salt; snacks and meals consumed outside home; other
foods. the categories for non-food were as follows: petrol and diesel; paraffin; body soap; clothing
soap; other cosmetics, combs, razors; transport (excluding petrol and diesel); air time and use of
public phones; domestic assistant or farm help; funeral expenses; shoes and sandals; clothing and
bedding (not including school uniforms); livestock care (medicine, food, enclosures); school fees
(not including uniforms and supplies); school supplies; bride price expenses; religious tithes.

Distance to forest reserves: Distance to forest reserves is the shortest distance between the PFO’s
home and the boundaries of government forest reserves.

Number of treatment villages within 5 kilometers: For calculating the number of villages near
village A, any other village is considered within 5 km if any portion of its polygon is within 5 km
distance of village A’s centroid.

Cost-benefit calculation
Tons of carbon per hectare: Global Forest Watch uses Landsat data to estimate the biomass in
forests globally at a resolution of 30 meters. The most recent data at this resolution are from
2000. We calculate the average carbon per hectare in forests with at least 67% forest cover within
our study village boundaries. The value is 307 tons of above-ground biomass per hectare, and we
apply the standard factor of 0.5 to obtain tons of carbon per hectare.
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Appendix Figure A1: Reasons for not taking up the program

67.5%
4.1%

9.9%

5.4%

3.8%
6.7%2.5%

Unaware of program or what it is Fear land grabs/distrust NGOs

Didn’t know how to sign up Want to cut trees/low payment

Deemed ineligible by CSWCT Contract too complicated

Other

Notes: This figure is based on responses to questions asked on the endline survey to non-enrollee PFOs in
treatment villages. PFOs were asked if they were aware of the program. Those who were aware but said
they did not enroll were asked their reason for not enrolling.
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Appendix Figure A2: Proportion of PFO’s land with valid remote sensing data

Notes: The figure shows a histogram of the proportion of sample PFOs’ land that has available satellite
data. PFO land is proxied by a circle twice as large as his self-reported land area. The main source of
missing data is cloud cover. Area outside the study villages is also missing remote sensing data.

53



Appendix Table A1: Sample attrition

Number of PFOs

Treatment
group

Control
group

Total

Baseline survey (with GPS location of PFO home) 564 535 1,099

Baseline survey and satellite land circle 508 487 995

HH reports owning no land 2 3 5

Didn’t report land area 0 1 1

Entire land circle has cloud cover 54 44 98

Baseline survey and endline survey 512 508 1,020

Baseline survey, satellite land circle, and endline survey 463 464 927

Notes: The top row represents our full sample and the following rows state the number of PFOs with
available endline and satellite data (broken down by reason for missing satellite data).
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Appendix Table A2: Determinants of sample attrition

All PFOs
PFOs with

missing
satellite data

PFOs with
missing

endline data

Std. diff.
(1-2)

Adj. std. diff.
(1-2)

Std. diff.
(1-3)

(1) (2) (3) (4) (5) (6)

Household head’s age 47.543 47.500 44.671 0.035 -0.070 0.207*
[14.122] [13.555] [14.772]

Household head’s years of education 7.820 8.330 7.385 -0.147 -0.270** 0.119
[4.093] [4.223] [3.845]

IHS of self-reported land area (ha) 4.034 3.543 3.804 0.540*** 0.253*
[0.996] [1.348] [1.165]

Self-reported forest area (ha) 1.893 1.213 1.197 0.072* -0.088 0.078**
[8.978] [2.500] [1.450]

Cut any trees in the last 3 years 0.851 0.760 0.772 0.273** 0.165 0.271**
[0.356] [0.429] [0.422]

Cut trees to clear land for cultivation 0.238 0.231 0.152 0.022 0.018 0.199*
[0.426] [0.423] [0.361]

Cut trees for timber products 0.712 0.596 0.696 0.254** 0.165 0.088
[0.453] [0.493] [0.463]

Cut trees for emergency/lumpy expenses 0.270 0.212 0.316 0.136 0.082 -0.047
[0.444] [0.410] [0.468]

IHS of total revenue from cut trees 1.315 1.030 1.086 0.094 -0.010 0.135
[2.183] [2.176] [1.992]

Rented any part of land 0.180 0.096 0.139 0.257*** 0.132 0.082
[0.384] [0.296] [0.348]

Dispute with neighbor about land 0.212 0.173 0.266 0.118 0.081 -0.148
[0.409] [0.380] [0.445]

Involved in any environmental program 0.106 0.071 0.013 0.148* 0.103 0.335***
[0.307] [0.259] [0.114]

Agree: Deforestation affects the community 0.544 0.531 0.434 0.045 0.068 0.246**
[0.498] [0.502] [0.499]

Agree: Need to damage envi. to improve life 0.054 0.071 0.065 -0.071 -0.077 -0.088
[0.226] [0.258] [0.248]

Treated 0.513 0.538 0.658 -0.072 -0.098 -0.324***
[0.500] [0.501] [0.477]

Take-up 0.319 0.250 0.154 0.171 0.124 0.306*
[0.467] [0.437] [0.364]

Tree cover in land circle (ha) 4.105 3.070 0.121*
[10.978] [3.901]

% of land circle with tree cover 0.204 0.211 -0.004
[0.159] [0.150]

% change in vegetation, 1990–2010 0.036 0.027 0.153
[0.062] [0.060]

Observations 1,099 104 79

Notes: The table reports subsample means with standard deviations in brackets. Column 4 reports the regression-adjusted
difference in mean between the full sample and the observations with missing satellite data divided by the pooled standard
deviation. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The standardized difference and p-value are based
on a regression with subcounty fixed effects, with clustering at the village level. Column 5 is the regression-adjusted
standardized difference when IHS of land area is included as a control variable. IHS denotes the inverse hyperbolic sine
transformation of the variable. Column 6 reports the regression-adjusted standardized difference between the full sample and
the observations with missing endline data. Summary statistics for Take-up are based on the treatment group only.
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Appendix Table A3: Determinants of program take-up in treatment group

Take-up Take-up
Change in
tree cover

Take-up

(1) (2) (3) (4)

Household head’s age 0.002 0.003
[0.001] [0.003]

Household head’s years of education 0.004 0.001
[0.005] [0.014]

IHS of self-reported land area (ha) 0.055∗ 0.059∗∗ -0.318∗∗

[0.028] [0.024] [0.135]

Self-reported forest area (ha) -0.004 -0.073
[0.006] [0.054]

Cut any trees in the last 3 years 0.036 0.038
[0.094] [0.163]

Cut trees to clear land for cultivation 0.028 0.046
[0.057] [0.140]

Cut trees for timber products 0.090 0.049
[0.076] [0.178]

Cut trees for emergency/lumpy expenses -0.129∗∗∗ -0.099∗∗ -0.340∗

[0.041] [0.040] [0.195]

IHS of total revenue from cut trees -0.010 -0.049
[0.010] [0.029]

Rented any part of land -0.046 0.004
[0.067] [0.175]

Dispute with neighbor about land 0.051 -0.063
[0.045] [0.109]

Involved in any environmental program -0.014 0.216∗

[0.079] [0.125]

Agree: Deforestation affects the community 0.032 -0.037
[0.039] [0.086]

Agree: Need to damage envi. to improve life -0.239∗∗∗ -0.200∗∗∗ -0.403
[0.075] [0.068] [0.346]

Tree cover in land circle (ha) -0.003∗∗ -0.003∗∗

[0.001] [0.001]

% change in vegetation, 1990–2010 0.285 1.787∗∗

[0.348] [0.886]

Predicted change in tree cover -0.024
[0.034]

Sample
Treatment

group
Treatment

group
Control
group

Treatment
group

Observations 564 564 486 564

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns
include subcounty fixed effects, and the first three columns include the four village-level baseline variables used to balance the
randomization. Missing independent variables have been imputed with the sample mean, and a dummy variable for missing
values is included in the regression. IHS denotes the inverse hyperbolic sine function.



Appendix Table A4: Program impacts on tree-planting

Took up
reforestation

option

Reforestation
area

Total trees
planted

Total trees
survived

Have
planted trees
in the past

12 mths
(1) (2) (3) (4) (5)

Treated 0.149*** 0.101*** 31.007*** 9.813*** 0.168***
[0.018] [0.016] [3.556] [1.555] [0.040]

Lee bound (lower) 0.157***
[0.040]

Lee bound (upper) 0.200***
[0.039]

Control group mean 0.002 0.001 1.710 0.933 0.282
Control group SD [0.043] [0.022] [25.339] [16.534] [0.450]
Observations 1,099 1,099 1,099 1,099 1,019
Observations (Lee bounds) 998

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, ***
p < .01. All columns include subcounty fixed effects and the four village-level baseline variables used to
balance the randomization. The outcome in columns 1 to 4 are from CSWCT administrative data on
program participation. Reforestation area is measured in hectares. The outcome in column 5 is from the
endline survey.
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Appendix Table A5: Proportional treatment effects on forest cover

PFO-level land circles Village boundaries

IHS of tree
cover

IHS of tree
cover

Change in
IHS of tree

cover

IHS of tree
cover

Change in
IHS of tree

cover
(1) (2) (3) (4) (5)

Treated 0.038 0.044∗ 0.044∗ 0.046∗∗ 0.047∗∗

[0.024] [0.023] [0.023] [0.022] [0.021]

Baseline outcome 0.982∗∗∗ 0.940∗∗∗ 0.967∗∗∗

[0.006] [0.015] [0.032]

Control group mean 2.866 2.866 -0.073 6.936 -0.095
Control variables No Yes Yes Yes Yes
Observations 995 995 995 121 121

Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in
columns 4 and 5. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and
means are weighted by the proportion of available satellite data. IHS denotes inverse hyperbolic sine. The
outcome is the IHS transformation of tree cover. The first 3 columns use a land circle centered on the
PFO’s home that is twice his self-reported land area, and the next 2 columns use village boundaries. All
columns include subcounty fixed effects and the four village-level baseline variables used to balance the
randomization. Columns 2 to 5 control for the 1990 and 2010 area covered by photosynthetic vegetation
and dummy variables for the date of the baseline satellite image. Columns 4 and 5 control for the IHS of
aggregate baseline tree cover in the land circles of PFOs in the village.
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Appendix Table A6: Unweighted forest cover results

PFO-level land circles Village boundaries

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

Tree cover
(ha)

Change in
tree cover

(1) (2) (3) (4) (5)

Treated 0.183∗ 0.213∗∗ 0.215∗∗ 4.998∗ 5.430∗∗

[0.099] [0.095] [0.098] [2.857] [2.736]

Baseline outcome 1.004∗∗∗ 1.007∗∗∗ 0.958∗∗∗

[0.034] [0.067] [0.025]

Control group mean 3.526 3.526 -0.319 146.906 -12.273
Control variables No Yes Yes Yes Yes
Observations 995 995 995 121 121

Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in
columns 4 and 5. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. Tree cover is measured
in hectares. The first 3 columns use a land circle centered on the PFO’s home that is twice his self-reported
land area, and the next 2 columns use village boundaries. All columns include subcounty fixed effects and
the four village-level baseline variables used to balance the randomization. Columns 2 to 5 also include the
1990 and 2010 area covered by photosynthetic vegetation and dummy variables for the date of the baseline
satellite image. Columns 4 and 5 control for aggregate baseline tree cover in the land circles of PFOs in the
village.
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Appendix Table A7: Forest cover results removing outliers

PFO-level land circles PFO-level land circles
(dropping top 1%) (median-sized)

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

(1) (2) (3) (4) (5) (6)

Treated 0.196∗∗ 0.206∗∗ 0.240∗∗ 0.115∗∗ 0.138∗∗∗ 0.147∗∗

[0.088] [0.081] [0.097] [0.052] [0.051] [0.056]

Baseline outcome 0.898∗∗∗ 0.833∗∗∗ 0.898∗∗∗ 0.877∗∗∗

[0.026] [0.042] [0.027] [0.028]

Control group mean 3.239 3.239 -0.336 2.112 2.112 -0.209
Control variables No Yes Yes No Yes Yes
Observations 986 986 986 1,002 1,002 1,002

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and means are
weighted by the proportion of available satellite data. All columns include subcounty fixed effects and the four village-level baseline variables used to
balance the randomization. The control variables included in columns 2, 3, 5, and 6 are the 1990 and 2010 area covered by photosynthetic vegetation
and dummy variables for the date of the baseline satellite image. The first 3 columns omit the top 1% of observations based on baseline tree cover.
The next 3 columns use land circles that are equal-sized for all PFOs; the size is twice the sample median self-reported land size.
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Appendix Table A8: Forest cover results with different-sized land circles

PFO-level land circles (x1) PFO-level land circles (x3)

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

(1) (2) (3) (4) (5) (6)

Treated 0.140∗∗ 0.155∗∗ 0.155∗∗ 0.330∗∗ 0.363∗∗∗ 0.357∗∗∗

[0.067] [0.066] [0.065] [0.139] [0.134] [0.136]

Baseline outcome 1.021∗∗∗ 1.013∗∗∗ 0.962∗∗∗ 0.971∗∗∗

[0.062] [0.094] [0.017] [0.042]

Control group mean 1.758 1.758 -0.173 5.618 5.618 -0.539
Control variables No Yes Yes No Yes Yes
Observations 973 973 973 1,008 1,008 1,008

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and means are
weighted by the proportion of available satellite data. All columns include subcounty fixed effects and the four village-level baseline variables used to
balance the randomization. The control variables included in columns 2, 3, 5, and 6 are the 1990 and 2010 area covered by photosynthetic vegetation
and dummy variables for the date of the baseline satellite image. The first 3 columns use land circles with an area equal to the PFO’s self-reported
land area. The next 3 columns use a land circle with an area equal to 3 times the PFO’s self-reported land area.
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Appendix Table A9: Forest cover results in subsample with baseline satellite data collected
prior to randomization

PFO-level land circles Village boundaries

Tree cover
(ha)

Tree cover
(ha)

Change in
tree cover

Tree cover
(ha)

Change in
tree cover

(1) (2) (3) (4) (5)

Treated 0.300∗∗ 0.407∗∗∗ 0.406∗∗ 8.050∗∗∗ 8.148∗∗∗

[0.144] [0.143] [0.154] [2.808] [2.678]

Baseline outcome 0.944∗∗∗ 0.833∗∗∗ 0.990∗∗∗

[0.032] [0.061] [0.024]

Control group mean 4.095 4.095 -0.459 172.841 -16.576
Control variables No Yes Yes Yes Yes
Observations 580 580 580 78 78

Notes: Standard errors are clustered by village in columns 1 to 3 and are heteroskedasticity-robust in
columns 4 and 5.. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All regressions and
means are weighted by the proportion of available satellite data. Tree cover is measured in hectares (ha).
The first 3 columns use a land circle centered on the PFO’s home that is twice his self-reported land area,
and the next 2 columns use village boundaries. All columns include subcounty fixed effects and the four
village-level baseline variables used to balance the randomization. Columns 2 to 5 also include the 1990
and 2010 area covered by photosynthetic vegetation and dummy variables for the date of the baseline
satellite image. Columns 4 and 5 control for aggregate baseline tree cover in the land circles of PFOs in the
village. The sample is restricted to observations for which the baseline satellite image was collected prior to
the subcounty lottery.
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Appendix Table A10: Testing for spillover effects and anticipation effects

Tree
cover

Tree
cover

Tree
cover

Get visits
from

timber
dealers

Increase
in timber

dealer
visits last
2 years

Tree
cover

Tree
cover

(1) (2) (3) (4) (5) (6) (7)

Treated 0.202 0.313∗∗∗ 0.020 -0.016
[0.241] [0.112] [0.034] [0.025]

Treat × Distance to forest reserve 0.009
[0.035]

Treat × Contiguous to forest reserve -0.338
[0.339]

# of treatment villages within 5km 0.019
[0.039]

Believes program likely to come to village 0.076
[0.075]

Believes program ends in 2015 or later -0.118
[0.112]

Sample All All
Control
group

All All
Control
group

Treatment
group

Observations 995 995 487 1,020 1,020 487 508

Notes: Standard errors are clustered by village. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. All columns include subcounty fixed
effects and the four village-level baseline variables used to balance the randomization. In columns 1 to 3 and 6 and 7, regressions are weighted by the
proportion of available satellite data, and the regressions include 1990 and 2010 Landsat photosynthetic vegetation, the baseline outcome, and
dummy variables for the baseline satellite date. The outcomes in columns 4 and 5 are from the endline survey. Column 4 controls for the baseline
outcome; the variable in column 5 was not collected at baseline.
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