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Abstract

Bureaucracies often post staff to better or worse locations, ostensibly to provide incentives.
Yet we know little about whether this works, with heterogeneity in preferences over postings im-
pacting effectiveness. We propose a performance-ranked serial dictatorship mechanism, whereby
bureaucrats sequentially choose desired locations in order of performance. We evaluate this us-
ing a two-year field experiment with 525 property tax inspectors in Pakistan. The mechanism
increases annual tax revenue growth by 30-41 percent. Inspectors that our model predicts face
high equilibrium incentives under the scheme indeed increase performance more. Our results
highlight the potential of periodic merit-based postings in enhancing bureaucratic performance.
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Governments face many constraints in providing incentives to workers. Pay is often subject to
strict civil service regulations that make it a mechanical function of tenure and education, with
little room for rewarding performance. Scope for promotion can also be limited and mechanical,
often restricted by legally-protected seniority-based promotion systems, limiting the potential of
career concerns (a la Gibbons and Murphy 1992; Holmström 1999) to provide incentives as well.

In such rigid bureaucratic environments, one way in which managers can provide incentives
is through their control of where people are posted. One often hears anecdotal stories of bad
performers in a tax or police bureaucracy being sent to remote and unattractive locations as a
punishment, or good performers being sent to an attractive location as a reward for exemplary
performance. And indeed, in many bureaucracies, transfers occur quite frequently. Yet despite the
potential for postings to be used as an incentive device, in practice, in most bureaucracies, many
other factors other than performance – such as personal or political connections, or idiosyncratic
preferences of managers, or simply bureaucratic arbitrariness – are used to assign positions (Iyer
and Mani, 2012). And even to the extent that performance matters for postings, the ambiguity
of assignment rules in most contexts limits the degree to which they provide ex ante incentives to
improve performance.

Even if one wanted to use postings to provide incentives, doing so in practice is complicated as
workers may have heterogeneous preferences: what is a desirable posting for one person may be a
terrible posting for another. Therefore, to use postings as an incentive, managers need to take these
diverse preferences into account. An additional challenge that arises in doing so is the problem
of preference revelation: the manager must get the workers to truthfully reveal their preferences,
knowing that those preferences will be used to provide them with incentives. And even if the
incentive aspects of such a system can be worked out, the allocation of people to tasks induced
by such a system, and the disruption caused by moving people around, may cost the organization
more than the performance gains induced by the incentive effects.

These challenges aside, such mechanisms can be extremely attractive both because they impose
a lower fiscal burden on the state, and also because they provide a measure of fairness and merit in
an otherwise fairly regular phenomenon of transfers. Moreover, unlike performance pay, which is
less effective in environments with high rents, transfer mechanisms can actually exploit the existence
of (future) rents in order to obtain more desirable present behavior (similar to re-election motives
inducing desirable political behavior).

In this paper, we ask whether one can explicitly leverage the ability to transfer as an incentive
device through a large-scale field experiment in a real-world government bureaucracy: the property
tax department of the Province of Punjab, Pakistan. We randomize entire groups of tax inspectors
into a system where postings will be explicitly based on performance (and where they know this in
advance), or into a control group where postings operate as in the status quo.

In order to do so, we designed and implemented a transfer mechanism, which we term a
performance-ranked serial dictatorship (henceforth, PRSD). We build on the theoretical litera-
ture on allocation problems (e.g. Abdulkadirŏlu and Sönmez 1998; Svensson 1999), which shows
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that serial dictatorships – where individuals are ordered somehow, and take turns choosing among
remaining positions – are the unique strategy-proof mechanism (in the sense of inducing individuals
to report their true preferences) for efficiently allocating a fixed set of slots to individuals when in-
dividuals’ preferences are unknown. This literature is often silent, however, on how the individuals
should be ordered, and typically they are ordered randomly, to create what is known as a “random
serial dictatorship”.

Our mechanism uses the ordering of individuals in a serial dictatorship to provide incentives.
Specifically, individuals are ordered based on their performance. The highest performing individual
gets first choice of posting, the second-highest performing individual gets second choice, and so
on. Individuals’ incentives come through the fact that as they increase their performance, they
increase their likelihood of getting a higher position in the serial dictatorship, and thus possibly a
more preferable slot. Since performance-ranked serial dictatorships are a special instance of a serial
dictatorship, they are also strategy-proof, in the sense that revealing one’s true preferences over
slots is always a dominant strategy. The idea of creating the ordering in a serial dictatorship based
on merit has been used before: the Army, for example, creates its priority list for allocating new
offers to specific services based on an “order of merit,” a weighted average of academic performance,
physical fitness, and military performance (S̈ı¿œnmez, 2013); what is new in this context is that
the primary purpose of the mechanism, and in our study of it, is the ex ante incentives to improve
performance the system creates based on the desire to move to higher positions in the list.

The incentives to increase effort embodied in such a mechanism are complex and heterogeneous
across individuals. In particular, the incentive effects depend on an individual’s own preferences
among slots, the preferences of others, the expected distribution of everyone’s performance out-
comes, and differences in the elasticity of effort to motivation. For example, if an individual i’s
most preferred slot j is ranked very low by everyone else, individual i faces weak incentives, since he
will get j with very high probability regardless of his effort. On the other hand, even if individual i
is the only person who ranked slot j as a first choice, if slot j is highly ranked by others, individual
i still needs to exert effort to ensure that his slot is not taken by another individual who doesn’t
get his first choice and who prefers slot j to his other remaining options. Analogously, if individual
i anticipates being very likely or very unlikely to outperform others in their comparison group due
to factors exogenous to their effort, he is likely to have lower ex ante incentives.

We begin by setting out a simple model that describes the incentives created by the performance-
ranked serial dictatorship as a function of preferences and expected outcomes. We then simulate the
equilibrium effort under the model using rich data on the complete set of preferences over postings
that we elicited at baseline from all of our tax inspectors, as well as predicted performance under
the status quo. This allows to characterize the heterogeneity in incentives across tax inspectors that
would be induced by the scheme based on their preferences, under differing assumptions about how
much inspectors know about the preferences of others and the degree to which certain individuals
expect to perform better than others.

We then analyze the impact of this type of lateral allocation scheme through a randomized
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field experiment we conducted over two years in a real bureaucracy. We worked with the Provincial
Excise and Taxation Department of Punjab, Pakistan, which is comprised of approximately 500 tax
units, or “circles.” Each circle covers a predefined geographic area, and is staffed by an “inspector.”
Within each district (i.e. roughly the same metropolitan area / county), we randomly assigned
circles into groups of about ten circles each. There was substantial heterogeneity within groups in
circle characteristics – for example, even within districts, the 90th percentile circle has a tax base
more than three times as large as the 10th percentile circle. An examination of our preference data
suggests that while there are clearly more “popular” circles that many inspectors like, there is also
a substantial idiosyncrasy in preferences, including a substantial status quo preference, such that
inspectors face (predictably) differential incentives under the scheme.

The experiment took place as follows. At the beginning of the first year, inspectors in a
randomly-selected half of the groups were told that at the end of the first year their job postings
within the group would be reassigned using a performance-ranked serial dictatorship, where the
ranking was done based on the year-on-year improvement in a metric of circle level tax perfor-
mance.1 At the end of the year, postings within the group were re-assigned based on preferences,
as per the mechanism. Control group postings continued under business-as-usual. Groups were
re-randomized again at the beginning of Year 2 into treatment and control groups (stratified based
on the first year treatment status), and again treatment groups were told that postings would be
allocated based on a performance-ranked serial dictatorship. The transfers were implemented again
as promised for second year treatment groups at the end of Year 2.

We find that overall, the promise of performance-based postings substantially raised revenues.
We estimate that revenues were about 5 log points higher in treatment groups than in control
groups in the first year, and 9 log points higher in treatment groups than in control groups in the
second year.2 This amounts to an increase in the growth rate of tax revenues of 41 percent in the
first year and of 30 percent in the second year. Note that this is a pure incentive effect – this is the
effect on revenue merely from announcing that the scheme will be applied to determine postings in
the subsequent year.

These magnitudes are substantial not just in an absolute sense, but also compared to a perfor-
mance pay scheme we evaluated in the same context. In particular, a previous randomized trial we
conducted in a largely overlapping set of locations in the years prior to this experiment (2011-2013)
showed that on average, piece rate schemes paying the tax inspectors an average of 10 percent of
every marginal dollar collected led to increased tax revenues by about 9 log points (Khan, Khwaja
and Olken, 2016), with the most successful piece-rate scheme achieving a 13 log point increase.

1In half the groups, the metric was randomly selected to be year-on-year growth in actual tax revenue; in the
other half, the metric was year-on-year growth in tax assessments.

2Groups performed broadly similarly regardless of whether they were incentivized based on revenue or tax as-
sessments, though the estimates suggest revenue-based estimates were more effective in the second year. Note that
after the design for this project was finalized, analysis we conducted in Khan, Khwaja and Olken (2016) showed that
the main mechanism for raising revenue in that study was actually increasing tax assessments. Given this, it is not
surprising that the two performance metrics used – revenue and size of tax base – end up being largely similar in this
context (See Appendix Table A.3).
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This means that the increase in tax revenues from the performance-based postings scheme in the
second year had an impact between two-thirds and equal the size of very substantial piece-rate
schemes – but at zero fiscal cost to the government.

We then take the theory to the data to see whether or not those workers whom the model
predicts should face stronger incentives under the performance-based serial dictatorship do, in fact,
respond more to the scheme. In particular, we simulate the equilibrium effort implied by the PRSD
under the model under varying assumptions for two factors that determine the strengths of these
incentives: (i) whether individuals know the preferences of others and (ii) whether they can can
forecast their likely place in the performance distribution under business-as-usual.

We find evidence that those individuals who were predicted by the model to have stronger
incentives under the scheme indeed increase their revenue more in response to being randomly
allocated to the performance ranked serial dictatorship scheme. These results imply that collecting
information on preferences for slots and the expected distribution of outcomes can allow one to
reliably predict in which contexts such incentive schemes have the greatest potential to improve
performance. More generally, this also builds on the small empirical literature, largely (though
not entirely) drawing from sports, on how tournament-based compensation schemes can lead to
heterogeneous effort choices depending on individuals’ forecast of the likely incentives they face
from the tournament (e.g., Prendergast, 1999; Sunde, 2009; Boudreau, Lakhani and Menietti,
2016), and shows how these ideas can be applied in a case where the heterogeneity in the prize (in
our case, a job posting) comes from an allocation decision.

While our results highlight the incentive properties of a performance-based serial dictatorship, a
related question is the allocation of people to slots it induces. Where individuals finally end up will
be determined by the composition of workers’ preferences – and in particular, by what the highest
performing workers prefer, since their preferences will get implemented with high probability. In
our context, it turns out that high performers tend to largely prefer larger circles. Therefore, on
net, treatment areas end up allocating the highest performers to larger circles than in control areas.
In our context, if we think that the effect of workers on tax revenue is proportional (that is a high
performer can increase tax revenue more in a larger circle), this allocation may serve to further
enhance the impacts of the scheme.

These effects thus far have focused only on the first year the program was announced – when
the program had incentive effects, but the allocation effects had not been realized. By randomizing
treatments again in the second year, we can also examine dynamic effects of the program. We find
that the effects on revenue persist in the second year even for those inspectors no longer exposed to
incentives, but after the postings from the scheme had been implemented. One reason for this may
be that, in this context, the prime mechanism to increase tax revenues is to add new properties
to the tax rolls; once added, they continue to pay taxes. Allocation effects induced by the scheme
could also contribute; indeed the point estimates are larger in the second year, after the incentives
are no longer in place, than they were initially. While we cannot definitely disentangle mechanical
persistence from allocation effects, the key point is that the allocation effects do not appear to be
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negative.
We include one cautionary note, however: the results show that exposing an inspector to the

scheme for two years in a row has no larger an effect than exposing the inspector to the scheme once,
and if anything the point effects are lower. One possible explanation, consistent with the theory,
is that over time inspectors learn more information about the preferences of others and their likely
place in the outcome distribution. Our simulations suggest that, in general, more information
about the preference matrix and the likely outcome distribution tends to diminish incentives; this
would be consistent with diminished effects over time as people learn more about the preferences
of others and their likely performance outcomes. It could also be that inspectors find being at risk
of losing their posting right after they “earned it” discouraging thereby dampening effort for those
who included in the scheme a second time.

On net, the results suggest that bureaucracies can use workers’ preferences over their allocations
to jobs to create incentives. The results suggest that the degree to which this approach will be
useful depends on several factors, all of which can be checked by collecting some simple preference
data at baseline. First, both the model and the empirical results suggests that the strength of the
incentives will depend on (beliefs regarding) the homogeneity of preferences and the distribution of
expected outcomes; by collecting baseline data on preferences and business-as-usual performance,
one can use the model to simulate whether the incentives are likely to be weak or strong. Second,
the degree to which the allocations induced by the scheme are likely to further the principal’s
objectives depends on what characteristics make a location popular. In our setting, top performers
preferred larger circles, suggesting that allocation effects would serve to further increase tax revenue;
but in other contexts (for example, assigning teachers to schools), the principal might not want
top performers in the spots they desire most. By analyzing what types of characteristics make
a location popular, the principal can decide whether allocating top performers to those types of
locations is likely to further the principal’s overall objectives. Finally, our results also suggest that
these schemes - especially to the extent that they generate actions that have persistent effects -
may work better when periodically applied.

The remainder of this paper is organized as follows. Section 1 describes the context we are
working in, the data and intervention. Section 2 outlines a model that characterizes the marginal
incentives implied by the performance-ranked serial dictatorships. Section 3 presents the experi-
mental design and empirical strategy. Section 4 then presents the main empirical findings as well
as additional results, including the heterogeneous impacts implied by the model, the allocation
impacts of the scheme, and the dynamic effects. Section 5 concludes.

1 Setting, Data, and Intervention

1.1 Setting: Property Tax Administration in Urban Punjab, Pakistan

This study takes place in urban areas of Punjab, Pakistan. Punjab is quite large – its population of
110 million would rank it twelfth in the world were it a country – and the cities that we study here
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include a number of large metropolitan areas, ranging from over eleven million people in Lahore to
about two million in Multan and Gujranwala. Like other low income countries, tax collection in
Pakistan is generally low, with issues ranging from a low tax base to inadequate enforcement and
corruption.

In this study we work with the Punjab Excise and Taxation department’s property tax division.
The property tax is not only one of the most significant of regional taxes, but is one where there
is substantial returns to effort, and also substantial potential for tax evasion. Punjab’s urban
property tax is computed based on a formula that takes into account the square footage of land
and buildings on the property, multiplied by standardized values from a table that depends on
neighborhood wealth status, residential, commercial or industrial property status, whether the
property is owner occupied or rented, and location (i.e. on or off a main road).

The primary unit of tax collection is the “circle,” a predefined geographical area that covers
anywhere from two to ten thousand unique properties. The circle is led by an inspector who is
essentially responsible for all stages of the tax: he determines each property’s tax liability, sends
an annual tax bill to the property owner, and is ultimately responsible for collections and dealing
with any issues raised by the taxpayer. Together with a clerk in charge of record keeping and a
constable who assists the inspector in the field, the team maintains a record of all properties and
their attributes (size, type of use, etc.), apply the valuation tables to each property, and determine
which exemptions apply.

Although property tax should be formulaic, property tax inspectors play a key role in tax
administration, because they are the only source the government has for the inputs into this formula,
how the formula is applied, and for even discovering which properties exist in the first place and
should be taxed. Not surprisingly, collusion between taxpayer and tax inspectors is thought to be
widespread, reducing government revenue.

As is common for civil servants in developing economies, tax officials receive fairly low wages that
are rarely, if ever, tied to performance. In our previous study (Khan, Khwaja and Olken, 2016), we
showed that tax inspectors respond to performance pay – offering the three tax officers (inspector,
constable, and clerk) performance pay equal to a total of 30 percent of all taxes collected above a
historical benchmark increases taxes by 9 log points. The additional revenue comes about not by
overtaxing, but rather by adding new properties to the tax rolls and by eliminating undertaxation.
The current study takes place in essentially the same setting, with sufficient overlap so that the
comparison between the two is meaningful.3

This paper instead focuses on an alternative incentive mechanism – the assignment of inspec-
tors to circles. Such postings – either to better or worse assignments – are often the primary tool
available to supervisors who want to improve performance. In our context, in fact, these transfers

3Due to our desire to create proximate groups of 10 or so circles within which the PRSD scheme was applied (as
we describe in more detail below), the current sample is somewhat smaller, with around 81% of the tax-circles in
our prior study part of the current paper sample. We should note though that in terms of inspectors only 3% of the
inspectors were treated under the interventions introduced in both these papers (for all four years), with 62% having
been treated at least one. Thus, while there is sufficient overlap to draw meaningful comparisons between the two
studies, it is not the case that the inspectors we constantly under some experimental scheme for four straight years.
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of inspectors between circle are fairly common, with about one-third of tax inspectors typically
transferred between circles each year. Inspectors are likely to care about where they are posted,
as there is substantial heterogeneity across circles. For example, the number of properties varies
substantially – the 90th percentile circle has more than three times as many taxable properties as
the 10th percentile circle. Even more important is heterogeneity in ease of collecting taxes, oppor-
tunities for corruption, and amenities – all of which can be used to provide incentives. However,
in practice, the transfer process is opaque and subject to political influence, so their use as an
incentive device is in practice limited. The fact that political influence and other factors other than
performance often influence postings is common in many settings, particularly for those outside the
very top of the civil service (see, e.g. Iyer and Mani 2012).

1.2 Data and Summary Statistics

Our primary data source is circle-level administrative data on tax performance. The administrative
data is based on the quarterly reports that each inspector files, which show their overall collections
(separately for current year and past years/arrears collections) and the total assessed tax base. We
digitized these reports for all tax circles.4

Summary statistics for key variables from the administrative data are shown in Table 1 for
the second year of the experiment (FY 2015). First, current year tax revenues are substantially
larger than arrears (i.e. collections against past years’ unpaid taxes) – the mean of log current year
tax revenues is 16.00 compared with just 13.54 for log arrears, implying that, on average, current
revenue is about twelve times as large as arrears. This suggests that the main impacts on total
revenue will likely be felt through increases in current year revenue. Second, the log recovery rate
(the log of tax revenue divided by the tax base net of exemptions) is -0.08 for current year taxes,
which implies that about 92 percent of all taxes that are demanded by the government are in fact
paid. In addition to nonpayment, a substantial issue is that many properties are either under-
assessed or not assessed at all. Tax inspectors can therefore respond to performance incentives by
adding new properties to the tax rolls, assessing existing properties more accurately, and increasing
collections of existing assessments.

In addition, we also collected rank-order baseline preference data from all inspectors over all
circles in their (randomly assigned) groups, which consisted of an average of ten circles from within
the same metropolitan area (more details on the construction of these groups below). Inspectors
were given a preference form prior to the assignment of treatment status, and were told to rank all
circles in their group from 1 to J , with 1 as the highest ranked circle.5

Before beginning our analysis of incentive effects, it is useful to examine the preference data
4In our previous paper (Khan, Khwaja and Olken, 2016) we also selected a random sample to be verified each year

by aggregating (thousands of) bank-verified receipts of individual payments; we found no statistically or economically
significant discrepancy between the administrative data and our independent verification.

5Inspectors had incentives to reveal their true preferences. The scheme was explained briefly to inspectors, so they
could understand that truthful revelation was a dominant strategy, and inspectors were told that if they were chosen
for the scheme, these preferences would be used in assignment (though they were, ex post, given an opportunity to
revise preferences).
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a bit further. We find that preferences have both a common and idiosyncratic component; in
particular, many inspectors seem to display a strong preference for their status quo allocation. To
see this, Figure 1a shows the distribution of inspectors’ ranks of their current position at baseline.
We normalize ranks such that 1 is the highest rank and 0 is the lowest rank. Figure 1a shows that
about half – 53 percent – of inspectors rank their own circle as their most preferred, with the rest
expressing a desire to move.

To examine the common component of preferences, for each pair of inspectors within the same
group, we calculate the pairwise correlation between their ranks. Figure 1b plots the distribution
of these pairwise correlations, along with what the distribution would look like if preferences were
randomly distributed. As is evident from Figure 1b, the distribution of correlations is substantially
shifted to the right compared with one would expect from random chance; the mean correlation
between inspectors’ ranks is about 0.22.

Given this preference data, it is also useful to estimate the degree to which the current allocation
is Pareto inefficient, from the perspective of maximizing inspectors’ utility. Note that any allocation
that results from a serial dictatorship will always be Pareto efficient in this sense, so to the degree
the current allocation is far from the Pareto frontier, there may be large gains in inspector utility
from implementing the scheme even holding effort constant. One way to characterize this is to
calculate the core allocation of inspectors to circles, using Gale’s Top Trading Cycle algorithm
(Shapley and Scarf, 1974). This algorithm computes the unique allocation of inspectors to circles
such that no inspector is worse off than he is in the status quo, and no inspector or group of
inspectors would want to deviate. The difference between the status quo and the core is a measure
of how inefficient the current allocation is. We find that 15 percent of inspectors would be able to
move to a posting they strictly prefer to the status quo in the core. Conditional on moving, these
individuals move to circles ranked about 30 percentiles higher in their preference ordering. The
relatively small number of movements suggests that while there is some Pareto-improving room
for improvement on the status quo, it is limited. The re-allocations induced by the scheme will
therefore largely be non-Pareto-improving, in the sense that increases in utility for some are likely
to lead to decreases in utility for others. We will return to this when we consider heterogeneous
impact of the scheme.

1.3 The Performance-Ranked Serial Dictatorship Scheme

We now describe the basic design of the Performance-Ranked Serial Dictatorship Scheme that
was introduced in collaboration with the Excise and Taxation department for a two year period
beginning in 2013. We describe the theoretical properties of this scheme in the subsequent section.

The primary goal of the scheme was to incentivize performance by linking performance explicitly
to postings. The scheme was known formally within the Excise and Taxation department as the
“Merit-Based Transfers and Postings” (MBTP) scheme to make this link clear.

The scheme worked as follows. Within each of the ten major metropolitan areas in Punjab, we
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randomly allocated circles into groups of approximately ten circles each.6 At the beginning of the
tax year (i.e. in July), groups were randomly selected to either participate in the MBTP scheme
or to remain in the status quo.

For groups selected to be in the MBTP scheme, all inspectors were told that they would be
ranked based on their performance, and then based on this ranking, would be given a choice
of circles within their group. Specifically, inspectors were told that if they were the top-ranked
inspectors in a group they would be posted in their first-choice circle, the next ranked inspectors
would be posted in their top preference from the remaining circles, and so on.7 Performance was
calculated in two ways (randomized by group): for one sub-treatment (the “recovery” group),
inspectors’ performance was calculated as the year-on-year percent increase in their current circles’
tax collected during a fiscal year; for the other sub-treatment (the “demand” group), inspectors’
performance was calculated as the year-on-year percent increase in their current circles’ assessed
tax base.

The scheme was implemented as promised. At the end of the fiscal year (but before final
performance had been calculated), inspectors submitted their final, binding set of preferences over
all circles in their group.8 Postings were then carried out as described: the top-rank inspector
was given his first choice of posting, the second-rank inspector was given his top choice among
remaining circles, and so on.

Note that postings were done within groups, which as described above were randomly selected
groups of ten circles within metropolitan areas. The fact that the scheme was done within metropoli-
tan areas ensured that no inspector would need to physically move his family as a result of the
scheme. The fact that choice was constrained to groups of ten circles was for experimental fea-
sibility, so that there would be both treatment and control areas within each metropolitan area.
While ten circles still entails substantial heterogeneity – within groups, the 90th percentile circle
has tax revenue almost nine times larger than the 10th percentile circle – the incentive effects we
find here are most likely an underestimate of the incentive effects that would be generated if choice
was given over a larger number of locations.

2 Modeling Incentives under PRSD

The incentives created by the performance-ranked serial dictatorship are complex, and depend on
the relationship of an inspector’s preferences with those of everyone else and how he expects his

6The major metropolitan areas correspond to “divisions” in the tax department, with the exception of the capital
city of Lahore. Lahore consists of two divisions, but they were combined to form a single metropolitan area for the
purposes of forming groups.

7In order to convince inspectors in the first year that postings would be made as promised, two additional groups
of ten inspectors each were randomly selected to have the merit-based postings implemented at the start of Year 1,
based on performance in the previous year following the same PRSD scheme. We exclude these twenty inspectors
from the analysis here.

8Although final postings were made on the basis of total performance during the fiscal year, inspectors were given
information at the end of the third quarter as to their tentative ranking before submitting their final preferences. The
final preferences were similar, but not identical, to the baseline preferences: the average rank-correlation of between
initial and final preferences is 0.63.
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performance to compare to others. This section describes a simple model to characterize these
incentives, and then simulates the model using preference data we collected at baseline to better
understand the heterogeneity in incentives under the scheme.

2.1 Allocation under the PRSD Scheme

Suppose that inspector i obtains utility uij from being assigned to circle j. This determines a
preference ordering over circles for each inspector i. We denote the overall preference matrix
implied by these preferences from all inspectors by P. Further, suppose that the outcome (in our
case, growth in tax revenue) for inspector i is given by

yi = yi0 + ei + εi (1)

where ei is the effort from inspector i, yi0 is the growth rate that would be observed in the absence
of effort (which may differ across circles), and εi is an iid error term with standard deviation σε.9

For any vector of outcomes y, the PRSD allocation mechanism, combined with the preference
matrix P, yields an allocation ri(y,P); that is, for a given preference matrix P, any realization of
outcomes y yields a mapping of assignments of inspectors to new circles given by ri(y,P), defined
such that inspector i is allocated to circle j if j = ri(y,P). The function ri(y,P) implements the
serial dictatorship given preferences P and the ordering from y; that is, for a given group g (we
suppress group classifiers for notational simplicity) the inspector i with the highest yi is given his
first choice circle amongst the set of circles in group g, the inspector i with the second highest yi
is given his first choice from among all remaining circles, and so on.

Suppose that the cost of effort for inspector i is given by the convex function c(ei). Then
inspector i will choose effort to maximize his expected utility:

max
ei

J∑
j=1

uijPr(j = ri(y,P))− c(ei) (2)

In solving this expression, inspector i takes the effort from other inspectors as given. We can
therefore rewrite this as

max
ei

J∑
j=1

uijPr(j = ri(yi,y−i,P))− c(ei) (3)

The first-order condition governing effort for each inspector i is given by
9Note that one might also be interested in the impact of incentives on the bargaining relationship between taxpayer

and tax inspectors, which we study in detail in Khan, Khwaja and Olken (2016), and which is not captured by (1).
In this paper, we take as given that the principal is interested in incentivizing tax collection. Since we are interested
primarily in exploring the properties of a performance-based allocation scheme, in this paper we therefore abstract
from the details of this bargaining game, and instead model the response to incentives using a more traditional moral
hazard framework with unobservable effort.
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dE [u]
dei

=
J∑

j=1
uij

∂Pr(j = ri(yi,y−i,P))
∂yi

= c′(ei) (4)

An equilibrium in the model is a choice vector e such that equation (4) is satisfied for all inspectors
simultaneously.10

To build intuition, it is worth noting that the first-order condition suggests that there are
several factors one would expect would influence the effort decision of a particular inspector i. The
first factor is the preference matrix P. If all inspectors i have identical preferences, then moving
inspector i’s outcome yi up one rank in the y distribution moves inspector i up one rank in his
preference distribution. To simplify notation, label the circles j such that 1 is the lowest-ranked
circle and J is the top-ranked circle.11 The FOC in this case can then be simplified to be

J∑
j=1

uij
∂Pr(Rank(yi, y) = j)

∂yi
= c′(ei) (5)

where Pr(Rank(yi, y) = j) denotes the probability that inspector i is ranked j’th in the distribution.
Note that while rank statistics like this are difficult to compute analytically, they can be easily
simulated, as we discuss in more detail below.

An alternative extreme is one in which each inspector has completely different preferences, and
in particular, each inspector has a unique first choice circle. In this case, the assignment function
assigns inspector i to his first choice circle regardless of performance. Relatedly, if for any inspector
i his most preferred circle is everyone else’s least preferred circle, he will be assigned to his most
preferred circle regardless of incentives. More generally, between these two extremes, to the extent
that an inspector i’s most preferred circle(s) are also highly preferred by others, one would expect
that inspector will generally face effectively higher returns from the scheme, though the precise
incentives depend on the complete structure of preferences, as we will explore in more detail below.

A second factor that influences effort is the distribution of the y0 – the predictable component
of an inspector’s performance – in equation (1). Unlike winner-take-all tournaments, which create
steep incentives for those who are potentially near the top of the distribution and little incentive for
those who have no chance at winning (Prendergast, 1999), this incentive scheme creates incentives
throughout the distribution, in the same way that optimal tournaments generally feature prizes
for all rank-order positions, not just first place (Lazear and Rosen, 1981), but the degree to which
there are incentives depends on how close other inspectors are to you. Intuitively, if the y0 are
close together, then a relatively small change in ei is sufficient to produce a change in rank with

10Since strategy spaces are non-empty and compact (inspectors’ actions/effort are limited to at most 24 hours
per day, creating an upper bound), and since inspectors’ utilities are continuous (due to the inclusion of the εi iid
error/noise term in equation 1), there exists a mixed-strategy Nash equilibrium of the game (Glicksberg, 1952).
However, the equilibrium need not necessarily be unique; we explore this further in our numerical simulations of the
model below.

11Note that this is slightly different notation from what we use in the empirical exercises, where we normalize ranks
to be on a [0, 1] scale, with 1 as the highest rank. We use the {1, ..., J} notation in the theory for ease of exposition,
but use the continuous measure in the empirics since different groups have different total numbers of circles J .
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high probability holding everyone else’s e constant. If the y0 are further apart, then a larger
change in e is required to produce the same change in expected rank, so one would expect smaller
effort in these cases. Figure 2 qualitatively illustrates different potential configurations of the y0

distribution. In Figure 2a, the y0 are close together, with uniformly strong incentives; in Figure
2b, the y0 are further apart, with lower incentives; in Figure 2c, the y0 are bunched in the middle
but further apart in the tails (as they would be if they were normally distributed, for example),
producing higher incentives for those in the middle of the distribution and weaker incentives in
the tails. The heterogeneity in incentives from the y0 in turn interacts in complex ways with
the heterogeneity in preferences; we therefore use simulations of the model below to compute
numerically the heterogeneity in incentives these two forces create.

A final component that influences outcomes is the uij ’s, the utility of different positions to the
inspectors. With common preferences and common y0’s, the classic result from Lazear and Rosen
(1981) suggests that there exists a set of uij ’s such that the scheme would replicate the efficient
piece rate scheme in terms of inducing socially optimal effort levels. That said, unlike the Lazear
and Rosen (1981) case where the tournament creator chooses the prizes arbitrarily, in this case,
the uij are fixed by inspectors’ preferences. Given this, in the more general case, with arbitrary
uij ’s, as well as heterogeneity in P and y0, the incentives from such a scheme will not necessarily
be optimal. Comparing the degree to which these provide incentives to an actual piece rate scheme
is thus also of interest to see how close, in practice, the incentives here come to a piece rate.12

Since the various components – information about alignment or idiosyncrasy of preferences P,
predictable performance y0, the change in utility from moving up or down a rank (i.e. the uij ’s),
and the error variance – all interact in equation (4) to produce incentives in complex ways, one
cannot easily characterize the heterogeneity in incentives faced by different inspectors analytically.
We therefore simulate the model to calculate the incentives faced by people under the scheme.

2.2 Applying the Model to Context

To better understand how the PRSD mechanism operates in our context, we simulate the model
given actual preference and (predicted) performance data in our context. We do so under different
assumptions about what information inspectors have about others’ preferences P and predictable
performance y0. The idea of the simulation is to see what the model would predict in terms of the
relative strength of incentives across different inspectors i based on the distribution of preferences
P and the predictable component of performance y0. In Section 4.2 below, we then investigate
the degree to which inspectors whom the model predicts should face greater incentives under the
scheme do in fact respond more when randomized into the experiment.

To operationalize the model, we begin by characterizing marginal return to effort (i.e. dE[u]
dei

from equation (4)) for a given effort vector e, and then we solve for the Nash equilibrium vector
12While there are number of lab experiments along these lines (e.g. Bull, Schotter and Weigelt 1987),there are

relatively few empirical studies along these lines. The study of tournaments by Bandiera, Barankay and Rasul (2013)
is one prominent example, which also considers endogenous team formation induced by the different incentive systems.
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of efforts. To calculate the marginal return to effort (i.e. dE[u]
dei

from equation (4)), we need to
parameterize the utility over slots, uij , and estimate the distribution of y0. For the utility over
slots uij , the preference data P we have from inspectors is ordinal, i.e. their ranking over slots. To
cardinalize it, we parameterize the utility function over different circles (uij) linearly, with uij = 1
for inspector i’s top-ranked circle and uij = 0 for inspector i’s lowest ranked circle.13 In order to
obtain y0, we first regress actual revenue change on two lags of a circle’s (log) revenue and tax
base for the control group. We then use both the coefficients and residual from this regression to
predict y0 and σ2

ε (the variance of the error in equation (1)). The distribution of estimated y0 is
shown in Appendix Figure A.1.

Before we turn to the equilibrium effort, we first illustrate the importance of different informa-
tion assumptions, using simulations of the model. Figure 3 plots a histogram of the distribution of
marginal incentives dE[u]

dei
under the model across inspectors i evaluated at the point e = 0, under

different assumptions of knowledge. Since these are evaluated at the point e = 0; that is, these are
the starting marginal returns to effort at the point the scheme is turned on. 14

Panel A begins by plotting the distribution of dE[u]
dei

under the assumption of full knowledge;
that is, that all inspectors know the full distribution of P and y0. The figures shows substantial
heterogeneity in marginal returns across inspectors, with a mass of inspectors at 0, facing effectively
no marginal return to effort, and some facing a relatively steep marginal return.

The remaining panels of Figure 3 plot the same figure under alternative assumptions of what
inspectors know, turning off first knowledge of P, then knowledge of y0(predicted performance),
and then knowledge of both P and y0. Note that when we turn off knowledge of P, we need to
make an alternate assumption for what inspectors i believe about the preferences P for all other
inspectors. We examine two possible assumptions: 1) that inspectors i believe that inspectors −i
have random preferences, and 2) that inspectors i believe that all other inspectors −i have the same
preferences they do. As discussed above and shown in Figure 1, preferences have both a common
and idiosyncratic component, so reality is likely to be somewhere between these two extremes.

Note that less knowledge – either not knowing P or not knowing y0 – leads to a rightward
shift in the distribution of expected utility. That is, adding knowledge about either P or y0 seems
to dampen incentives for some people. Intuitively, with knowledge of y0, people may now know
that their outcome is less responsive to effort, since they may be predicted to be far apart from
other inspectors (panels B and C). With knowledge of P , some people know they are likely to get
a good outcome regardless of how hard they work, dampening their incentives (panel D). As is
evident from the figures, in our context there is substantially more heterogeneity in effort due to
P than due to y0 – turning off knowledge of y0 makes a noticeable but small difference, whereas
turning off knowledge of P entirely and assuming everyone has identical P eliminates most of the

13We also experimented with alternative functional forms, where we make utility quadratic or cubic in the normal-
ized rank. Results are virtually identical; see Appendix Table A.7, which is analogous to Table 4.

14These marginal returns to effort at e = 0 are also similar to level-1 reasoning (Camerer, Ho and Chong, 2004;
Crawford and Iriberri, 2007), in which each individual i calculates their best response to others business-as-usual
responses.
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heterogeneity in incentives.
If inspectors know neither P nor y0, all inspectors in a given group have the same incentives.

When inspectors assume that all inspectors share their preferences, the incentives are at their
maximum (panel e). Intuitively, this is because moving up one rank in the outcome distribution
always moves the inspector up to one rank higher preferred circle. When inspectors do not know y

but assume other inspectors have random preferences (panel f), incentives are dampened somewhat
(by approximately half); intuitively, this is because in some random orderings, inspectors outcomes
will not depend on their performance (e.g. if they uniquely prefer a given circle that everyone
else ranks poorly).15 These graphs suggest that the scheme is likely to work best in cases where
inspectors have similar preferences and where their predicted outcomes in the absence of effort are
as similar as possible. We will return to examine this prediction directly in the empirical results
below.

We now turn to simulating the equilibrium effort induced by the scheme. While Figure 3
provided a basic sense of how informational assumptions could vary the strength of the incentives,
it only showed the distribution of dE[u]

dei
evaluated at e = 0. However, to accurately predict how

much inspectors will respond to the incentives, we need to solve for a Nash equilibrium in efforts,
i.e. for a vector of efforts e such that equation (4) is satisfied simultaneously for all inspectors.
This requires additional assumptions. Specifically, in order to do so we need to parameterize the
right-hand side of equation (4), i.e. cost function c(e). While there are of course a range of ways
of doing so, we take a parsimonious approach and parameterize the cost function c(ei) as a simple
quadratic, i.e. c(ei) = αe2

i , with α as an unknown cost of effort parameter.16 We then estimate α
using simulated method of moments so that the average effort in the model matches the average
change in effort induced by the experiment. That is, we choose α so that E[yi−yi0] from the model
matches the experimental estimate of the change in total log revenue estimated via equation (6)
below.17 Remaining details of the simulation exercise are presented in Appendix A.1.

In practice, the full Nash equilibrium results are quite similar to the results shown in Figure
3; the correlation between the marginal returns evaluated at e = 0 plotted in Figure 3 and the
full Nash equilibrium vector of efforts e is 0.89 for the full knowledge case, and even higher for the
other less knowledge cases considered.

Note that in fitting the model here we are only using a single, average moment – we are not
using any heterogeneity across inspectors in response to treatment to estimate the model. While one
could allow for a more flexible cost function and use additional empirical moments to estimate all
relevant (cost, informational, utility function) parameters, our parsimonious approach allows us to

15The reason that the simulated marginal returns are not exactly identical in panel (f) comes from the fact that
there are different numbers of circles in different groups.

16We also experimented with alternative functional forms for the cost function. In particular, in Appendix Table A.6
below, we present our main out-of-sample heterogeneity tests using simulated efforts from cost functions c(ei) = αe

3
2
i

and c(ei) = αe3
i , respectively. The results are virtually identical to the main results in Table 4 (discussed in more

detail below) which are based on c(ei) = αe2
i .

17We use the estimate of α for Year 1; re-estimating α for Year 2 produces a different α but does not qualitatively
change the results.
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perform “out-of-model” empirical tests. By only using a single moment to estimate α, our predicted
effort levels under the model are not guaranteed to fit any particular pattern of heterogeneity in
effort levels in the data. Thus, if we find that inspectors who have higher predicted effort level
indeed respond more to being randomized into the PRSD, this serves as a test of the basic model.
We examine this test empirically in Section 4.2 below.

3 Experimental Design and Estimation

In this section we first describe the overall research design, which uses a randomized controlled
trial to examine the impacts of the PRSD. We then present the primary estimating equations to
examine both the overall impact of the PRSD schemes as well to examine potential heterogeneity
of impact as implied by the theoretical analysis and simulations in the previous section.

3.1 Experimental Design

We study the impact of the performance-ranked serial dictatorship using a randomized controlled
trial. In order to do so, at the start of the first year circles were randomly assigned to be groups of
9-11 circles each, within metropolitan area. This results in 41 groups. After soliciting baseline pref-
erences of all inspectors for circles in their assigned group, groups were randomized into treatment
and control areas, stratified by metropolitan area. Within treatment areas, half the groups were
randomly assigned to have performance judged by year-on-year change in tax recovery, and half
were randomly assigned to have performance judged by year-on-year change in tax assessments.18

In the second year, groups were randomized again into treatment and control, stratified based
on their treatment in the first year. The re-randomization was done prior to inspectors who
participated in the first year submitting their final preferences, which means that the preferences
(and allocation) of those inspectors reflects the fact that they know whether they will be continuing
in the scheme for a second year. This allows us, in Year 2, to explore both a) the differential effects
of Year 1 circles having already experienced the PRSD scheme in the past but no longer receiving
the incentives effects, b) the effects of participating in the scheme for multiple years in a row, and
c) the pure effect of joining the scheme for the first time in Year 2 relative to pure controls.

The overall treatment assignment matrix as of Year 2 is shown in Table 2, and map is shown
for several sample districts in Appendix Figure A.4. Note that if a Year 1 group was randomized
to continue in Year 2, the performance metric used (revenue or tax assessment) was assigned to be
the same in Year 2 as it was in Year 1. Note also that an additional 115 new circles were included
for the first time in the Year 2 lottery.

18Note that in Year 1, performance was judged using what the department calls “net demand,” which represents
the total taxes assessed after exemptions are taken into account. Given that there is some heterogeneity in the
exemption rate across circles, exemptions are included in the performance metric, and circle staff have little control
over the exemption rate, in Year 2 in an effort to simplify the performance metric further, performance was judged
only using “gross demand” (which is the taxes assessed before exemptions are taken into account).
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Lotteries were conducted by computer publicly in the central tax authority office in Lahore at
the start of each fiscal year.19 Appendix Table A.1 compares treatment circles to control circles
on key tax recovery variables at baseline. The treatments appear completely balanced in Year 1
(p-value 0.674); in Year 2; the p-value for balance is 0.065; and pooled, the p-value is 0.230. We
have verified that controlling for all these variables does not qualitatively affect the main results
(see Appendix Table A.4.)

3.2 Estimating Specifications

To test whether the incentives embodied in the transfer mechanism outlined above actually led to
improved performance, we estimate treatment effects on log revenue for circle c as follows

log yct = αt + γt log yc0 + βTREATc + εct (6)

where log yc0 is the baseline value of the outcome variable and TREATc is a dummy for being in
the first year of receiving a treatment. In estimating equation (6) for Year 2, we restrict ourselves
to circles that were randomly selected to be in the control group in Year 1, so β from equation (6)
can be interpreted as the pure incentive effects of the scheme, before any allocations have taken
place. We estimate the equation separately for Year 1, Year 2, and pooling both years together
(with time fixed effects αt and separate coefficients γt for each year in the pooled regression).20 We
report randomization-inference based p-values, where we use our actual randomization Stata code
(including both assigning circles to groups, and then assigning groups to treatment or control) to
generate counterfactual randomizations. We explore time dynamics and allocation effects below.

The theoretical analysis in Section 2 has predictions for which inspectors would face the highest
marginal returns under incentive scheme, as given by equation (4). We use the baseline preferences
elicited from inspectors, and the simulations described in Section (2.2), to compute the predicted
equilibrium effort ẽi for each inspector i under the model.

We then test whether those inspectors predicted to have higher marginal incentives under PRSD
do in fact respond more when randomly allocated to the treatment by estimating the following
equation:

log yct = αt + αg + γt log yc0 + (7)

+β1TREATc × ẽi + β2ẽi + β3TREATc ×Xc + β4Xc + εct

19In Year 1, the lottery for Lahore to assign circles to groups was held on July 26, 2013; baseline preference data
was collected between July 27 and July 31, and the lottery to assign groups to treatment or control status was held on
August 3. Outside of Lahore, the lottery to assign circles to groups was held on August 3, 2013; baseline preference
data was collected between August 4 and August 20, and the lottery to assign groups to treatment or control status
was held on August 29. In Year 2 the lottery to assign to assign groups to treatment was conducted province-wide
on August 5, 2014.

20For our main results, we focus the 410 circles that participated in the Year 1 lottery, as this holds the sample
constant throughout and as we only have baseline preference data for these 410 circles. Results for Year 2, however,
are similar when we incorporate the new circles that were not included in Year 1 lottery. See Appendix Table A.5.
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where ẽi is the model’s prediction for how much effort inspector i would exert, as estimated in the
previous section. We normalize ẽi from the model to have standard deviation 1. Note that ẽi is
predicted for all inspectors, both in treatment and control, and differences in ẽi across inspectors
i arise only from differences in their baseline preferences P and in y0. We use year 1 data to
fit the model and generate the ẽi, and then estimate equation (16) using year 2 data so as to
provide a more demanding “out-of-sample” test; we also show that using dE[u]

dei
, which comes from

simulations using only baseline data on P and y0, instead of ẽi produces very similar results. We
include group fixed effects (αg); since randomization occurred by group, this subsumes the main
effect of treatment (TREATc). We also control for the interaction of TREAT with other circle
characteristics Xc that may be correlated with the cost of effort in that circle, in particular the
size of the tax base at baseline and the baseline recovery rate (i.e. the log share of taxes assessed
that are actually paid.), as well as the main effects of those characteristics Xc. The coefficient of
interest is β1, which captures whether the performance-ranked serial dictatorship treatment was
more effective for those inspectors predicted by the theory to face stronger incentives under the
scheme.

In addition, we present further analysis below that takes advantage of the Year 2 re-randomization
to examine both the dynamic implications from running the PRSD scheme (both when it is applied
only once and when it is repeated) as well as trying to separate out the various components that
may be at play when the scheme continues over time. To do so, we estimate the following regression:

log yc2 = α+ γ log yc0 + β1TREAT Y 1c (8)

+β2TREAT Y 2c + β3TREAT Y 1c × TREAT Y 2c + εct

where TREAT Y 1c is a dummy for having received the treatment in the first year, TREAT Y 2c
is a dummy for receiving the treatment in the second year, and TREAT Y 1c × TREAT Y 2c is
a dummy for receiving a treatment in both years. The coefficient β1 is thus interpretable as the
effect on Year 2 collections of receiving treatment in Year 1 and NOT receiving it in Year 2, which
captures both persistence of the scheme over time and whatever implications there may from having
allocated inspectors according to the PRSD; the coefficient β2 is the effect of receiving the treatment
for the first time in Year 2 relative to pure controls, and the effect β1 +β2 +β3 is the effect in Year
2 of receiving a treatment in both years relative to pure controls.21

4 Results

4.1 Effect of the first year of treatment

We first examine the impact of the PRSD scheme had any positive impact on overall tax collections.
While in general one would expect the scheme to at least weakly increase effort (and hence tax

21Note while that the coefficient on β2 should be very similar to the coefficient in (6) in Year 2 data, since both
estimate the effect of starting to receive the scheme in Year 2 relative to pure controls, they need not be mechanically
identical since the estimated coefficient on baseline recovery, γ, will be slightly different between the two regressions.
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collections), it is worth noting that there are other possible effects. For example, the scheme may
shorten an inspector’s time horizon in a circle, since some inspectors (particularly low-performing
inspectors in popular circles) may now expect to be replaced. With shorter time horizons inspectors
may choose to invest less in a given circle than they may otherwise.

The empirical results from estimating equation (6) are presented in Table 3. Table 3 presents
results for total tax revenue; Appendix Table A.2 presents results separately for current year tax
revenue, arrears revenue (i.e. collections against past-due amounts from previous years), and total
tax revenue.22 In the first year (column 1), circles in which inspectors that were told they would be
reallocated at the end of the year based on their performance grew by about 4.9 log points higher
than the control group. Compared with the control group’s average growth rate of 11.7 percent, this
represents a 41 percent higher growth rate than controls. For inspectors who were first included in
the scheme in the second year the impact is even greater – 9.2 log points higher revenue, or about
30 percent higher growth rate than controls. The results are presented graphically, both as CDFs
and PDFs, in Figure 4, and show that in Year 2 the effects are even more pronounced at higher
quantiles.

We should emphasize that both the Year 1 and Year 2 effects are the incentive impacts of
being in the scheme for one year on (different) randomly-selected groups of inspectors. Therefore
the difference between Year 1 and Year 2 inspectors is not on account of the former having been
exposed to the scheme for longer (we will examine longer term effects in subsequent sections), but
rather reflect perhaps a different (better?) understanding and perhaps increased credibility of the
scheme for inspectors who were included in the scheme in the second year.23

It is also worth emphasizing that these are purely incentive effects based on expected future
postings – these are the effects on revenue in year t from being told at the start of year t that one’s
posting in year t+ 1 will be based on performance in year t. While the results are therefore based
on inspectors’ beliefs about the future allocations under scheme, we verify in Appendix A.2 that
indeed the PRSD scheme did in fact increase the link between performance and the likelihood of
receiving one’s most preferred allocations (both in terms of higher performing inspectors moving
to a more desired location or, if the inspector had a status quo preference, being less likely to have
to move).

The magnitudes of the incentive effects from the PRSD are substantial. By way of comparison,
the financial incentive schemes we studied in the same property tax context in Khan, Khwaja
and Olken (2016), in which inspectors, constables, and clerks were together paid an average of
30 cents for each marginal dollar of revenue they collected, increased total revenue collected by
9.4 log points in the second year they were in effect, and the most effective of the three incentive
schemes we studied – a piece rate scheme – increased revenue by 12.9 log points. The performance-

22Note that the results on total collections in columns are not always an average of current and arrears collections
as the baseline control variable differs in each column.

23The control group also grew at a faster rate in Year 2 due to a province-wide revaluation effort, conducted in
both treatment and control areas, so it is possible the larger effect on revenues in Year 2 just reflects the fact that
the scheme leads to an approximately similar percent increase in the growth of tax revenues in both years.
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ranked serial dictatorship, studied here, increased total tax revenue by 9.2 log points – about
three-quarters as large an effect as the maximally effective financial reward scheme we studied,
which paid purely based on revenue collected. While the performance-ranked serial dictatorship
may entail administrative and political costs, financially it was completely free to the government,
whereas the financial incentives had the government almost doubling the wages of tax staff.24 This
suggests that leveraging postings for incentive purposes can be an extremely cost-effective way for
the government to improve performance.25

Appendix Table A.3 disaggregates the results on overall tax revenue into components of tax
revenue (the tax base, the net exemption rate, and the recovery rate)26, as well as separating
the results by whether the rank-ordering was done based on growth of tax revenue, or whether it
was done based on the growth in tax base. Overall, the main channel through which inspectors
increase tax revenue is by increasing the tax base, consistent with our findings in Khan, Khwaja
and Olken (2016). The point estimates suggest somewhat stronger effects both overall and on the
tax base for the treatment that directly incentivized revenue collection, which was perhaps most
easily understood for inspectors, though the differences are not statistically significant (p-value 0.16
for revenue; 0.215 for tax-base). We pool both sub-treatments for the remainder of the analysis.

4.2 Heterogeneity by marginal return to effort

While the scheme on average leads to positive incentives for inspectors to exert effort and in turn to
higher tax collections, recall that the theoretical analysis in section 2 implied that not all inspectors
may face equally strong incentives given heterogeneity in baseline preferences and heterogeneity
across circles. We now directly test for this heterogeneity by examining whether those inspectors
predicted to face higher incentives under the scheme as predicted according to the model (see
computation in Section 2.2) do in fact respond more when randomized into the treatment group.

We use Year 1 to estimate the model, and then use Year 2 as an out-of-sample check to see the
extent to which the heterogeneity predicted by the model indeed matches heterogeneous responses
to the experiment. The results, calculated by estimating equation (7) for Year 2 data, are presented
in Table 4. Recall one important factor in this exercise is what one assumes about the knowledge
inspectors have of each others’ preferences as well as “business as usual” performance in the tax
circles. We therefore present results in Panels A-D under different plausible assumptions regarding
what inspectors know.

Panel A first presents the results where ẽi – the Nash equilibrium level of effort under the model
24While one might argue that the government might have to compensate the inspectors for the extra effort they

exert under the scheme, anecdotal evidence suggest that inspectors are already earning substantial rents from the
job, so this is unlikely to be the case in practice.

25Note that in the case of the performance-ranked serial dictatorship reducing tax evasion, the change in revenue
for the government we estimate is actually the true increase in social welfare if we assume that the utility cost from
the effort exerted by tax inspectors is small relative to the change in tax revenue. See Feldstein (1999), Chetty (2009),
and the related discussion in Khan, Khwaja and Olken (2016).

26The net exemption rate is the ratio of tax bills after exemption to tax base, and the recovery rate is the ratio of
actual revenue to the tax bills after exemptions. All variables are expressed in logs, so that we can decompose log
revenue as follows: log revenue = log taxbase+ lognetexemptionrate+ log recoveryrate.
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– is calculated assuming inspectors know both the full vector of preferences P and predicted y for
all inspectors in their group; Panel B is calculated assuming they know y but they assume that
other inspectors’ preferences P are random; Panel C is calculated assuming they know y but they
assume that everyone has the same P that they do; and Panel D is calculated assuming they know
P but not y. We re-normalize ẽi to have standard deviation 1 in each panel so the magnitudes
are comparable across panels. As one might expect circle-specific factors such as tax base to be
correlated with ẽi and to affect the heterogeneity in terms of how costly effort could be, column 2
incorporates controls Xc and their interactions treatment TREATc ×Xc, where Xc is circle-level
log gross demand (i.e. the total tax base in the circle) and circle-level recovery rate (i.e. what
share of taxes are recovered) at baseline (given that team size remains the same regardless of circle
attributes, larger circles and circles with already higher recovery rates will likely require more effort
to generate further increases in revenue).

The results show that inspectors do indeed respond to the transfer-based incentive scheme more
when predicted to do so. Panel A suggest that one standard deviation higher predicted effort from
the model increases the average treatment effect on current-year tax collection by 0.038 log points
if no cost variables are included, and by 0.042 log points when the cost variables are included, but
these results are not statistically significant.

Comparing across the panels in Table 4 we can see that the inspectors’ beliefs that are most
consistent with our results is the scenario in Panel B where inspectors have full knowledge of
predicted differences in outcomes y (i.e. they do as good a job as predicting business-as-usual
performance as we do using data from past years growth rates) but know little about others’
preferences.27 In particular, the results in Panel B are that one standard deviation higher predicted
effort from the model increases the average treatment effect on current-year tax collection by 0.076
log points if no cost variables are included (p=0.033), and by 0.176 log points when the cost variables
are included (p=0.08). The fact that inspectors seem to know something about predicted y is not
surprising, since the main predictor of y is the previous year’s tax recovery level, which is public
information (see Appendix Table A.9). The results assuming full knowledge of predicted differences
in outcomes y but assuming random preferences are at least twice as strong as the results that
come from assuming full knowledge of both y and P. Assuming everyone has the same preferences
appears to be a poor assumption and is quite strongly rejected in the data.

Note that these are not mechanical effects, not only because the model is fit using year 1 data
and predicted on year 2 data, but also in the sense that the only information from the treatment
used in calculating the ẽi vectors is a single moment – the average impact of the treatment as
estimated in Table 3; no information about heterogeneous responses is used to calculate ẽi.28

27We should note that we are not making claims about overall model fit – in fact the R2 is very similar and high
across all models (perhaps unsurprising given we include baseline value of the dependent variable in these regressions).
Rather, we are highlighting the model where we find relatively robust and significant interaction effects.

28Note that the ẽi vectors on the right-hand side of equation 7 depend on the estimate of α, which could in principle
introduce additional uncertainty beyond that captured by the standard errors shown in Table 4. In practice, however,
since the standard error on the estimate of α is so small (see Appendix Table A.10), the additional variance introduced
by the uncertainty around α is virtually non-existent. To verify this, we reproduce Table 4 using estimates of ẽi derived
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It is also instructive to conduct an exercise where we estimate heterogeneity of treatment effects
based only on ex ante data (such as the distribution of P and y0, and circle characteristics). This
exercise is important because, to the extent that it works, it implies that the model in Section 3 can
be used to predict whether a particular service or unit would be a good candidate for application
of a performance-ranked serial dictatorship before applying the scheme. To do so, we re-estimate
equation (7), but instead of using the model-based equilibrium effort vectors ẽ, we instead use
the marginal incentives dE[u]

dei
across inspectors i, calculated under the model evaluated at the point

e = 0, as discussed in Section 2.2 above (again standardized to have mean 0 and standard deviation
1). Importantly, this measure of marginal returns to inspector effort is calculated entirely using ex
ante data. The results are presented in columns 3 and 4 of Table 4, and are virtually identical to
the results in columns 1 and 2 estimated using the full equilibrium effort vector ẽ..

In sum, the results suggest that inspectors seem to have some reasonable understanding of
their marginal incentives induced by the scheme, and to respond accordingly. These results also
provide an empirical validation for the theory outlined above: the theory appears to have some
predictive power as to which inspectors respond to the incentives most. And, the results imply that
if one knows the distribution of P and y, the model in Section 3 can be used to predict whether a
particular service or unit would be a good candidate for application of a performance-ranked serial
dictatorship.

4.3 Preferences and allocation effects

The results thus far have focused on the incentive effects of the scheme. But, the scheme also
changes allocations of inspectors to circles since best-performing inspectors are given priority in
choosing where they should be located. We have already noted previously (and detailed in Appendix
A.2) that the PRSD scheme did in fact increase the likelihood that higher performing inspectors
will move to/stay in their desired locations. To understand the allocation changes induced by
the PRSD scheme more generally, this section explores the preferences of inspectors and how the
scheme affects the types of circles to which high-performing inspectors are allocated.

We begin by exploring what attributes tend to make a circle popular – both for typical inspec-
tors, and for the inspectors who end up being ranked highly (and who therefore are more likely to
receive their top choices). Column 1 of Table 5 examines how top-ranked circles in Year 1 (based
on preferences expressed by all inspectors at baseline) compare to the average circle, on a variety
of metrics also measured at baseline. We draw circle characteristics both from our administrative
data, and from a property survey of over 16,000 properties we conducted at the time this experiment
was starting.29 Column 3 goes even further, and compares how circles ranked first by the ranked
inspector in each group – i.e. the inspector who will get his first choice no matter the preferences of
others – compare to the typical circle. Each cell reports a separate univariate regression comparing

at the 95 percent confidence interval of α (that is, α̂+ 2se and α̂− 2se) in Appendix Table A.8, and show they are
virtually identical to the estimates in Table 4.

29This survey was also the endline survey for Khan, Khwaja and Olken (2016); more details about the survey can
be found there.
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top-ranked circles to average circles.
The results show that inspectors appear to prefer circles that are large (i.e. Column 3 shows

that the top ranked inspectors are choosing circles that have a tax base 34 log points larger than
average). Their more preferred circles have fewer properties, but more valuable ones – perhaps
making for an easier job. These properties actually have lower bribe rates (where the bribe rates
are calculated as log of the the ratio between the typical bribe given (measured from the survey)
and the average property value).

The remaining columns repeat the same exercise, but for the allocations induced by the scheme
so we can see what (differential) allocation occurred in equilibrium as a result of applying the
scheme. Column 4 compares the circles where the top ranked inspector in every treatment group
ended up to the typical circle. Specifically, we define ytop as the value of y for circles where top-
ranked inspectors are allocated, and then compute E(ytop − ȳ | TREAT = 1). As expected, since
the top-ranked inspector gets his first choice for sure – this looks very similar to column (3).30

Columns 5 and 6 show the treatment effect on allocations - i.e. how the treatment affected
where top inspectors were placed (relative to control/business as usual). Specifically, for each
characteristic y, we compute the difference in allocations of top inspectors between treatment and
control, i.e.

E(ytop − ȳ | TREAT = 1)− E(ytop − ȳ | TREAT = 0) (9)

In column (5), we restrict attention to treatment circles where ranking was done based on actual
tax revenue, and calculate ytop for controls using tax revenue to rank control circles; column (6)
analogously calculates ytop restricting treatments to those ranked using tax base and using tax
demand to rank controls. All data is from the first year. These equations estimate how the scheme
changes allocations compared to the allocations of top performers in the status quo.

When we focus on allocation effects estimated using equation (9) – two main results stand out.
Column (5) shows that, for the circles ranked based on revenue, the scheme results in top-ranked
inspectors being more likely to be allocated to larger circles. Column (6) shows that, for the circles
ranked based on tax base, the scheme results in an allocation of inspectors towards circles with
fewer, but higher value, properties. The results are largely similar if we consider results for the
top-three ranked inspectors instead of the just the top-ranked inspector (see Appendix Table A.11).

The fact that there are some differences in allocations induced by the scheme may be important
in the longer term. On the one hand, if one had the view that the tax department had previously
been allocating people optimally to maximize the match between tax inspector characteristics and
circle needs, then any deviation from the status quo might reduce the department’s welfare. On
the other hand, the scheme appears to induce an allocation that puts top-performing inspectors

30Columns (3) and (4) need not be identical for two reasons. First, column (3) considers both treatment and
control, whereas column (4) considers just treatment circles. While baseline preferences should be similar between
treatment and control due to randomization, they will not be numerically identical. Second, inspectors were given
the chance to confirm (and revise if necessary) their preferences in the third quarter of each year. The preferences
used for assignment (and hence analyzed in column 4) end up being very similar, but not necessarily identical, to
preferences expressed at baseline analyzed in column 2.
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in larger circles and those with more valuable properties. If these individuals continue to perform
better this reallocation would increase overall tax collection.

4.4 Dynamic effects from repeated application of the transfer scheme

The results thus far have focused on the first year the incentive scheme was in place. While
we find relatively large impacts especially for those inspectors predicted to face higher marginal
incentives, an interesting question to ask is whether and how these results could change were the
scheme in place every year. One could imagine several reasons why these results could differ over
time. First, it could simply be that there is a limited scope for improvement and the impact of
the incentives diminishes over time. Second, the allocation effects discussed above could affect
performance, both in terms of level (i.e. moving better people to bigger circles, as discussed above,
could affect collections), and in terms of responsiveness to treatment (i.e., people may respond more
to incentives in a place they have selected vs. one that was exogenously assigned). Third, there
could be (adverse) disruption effects as people may perform differently when they have moved to a
new place. Finally, there could also be differential investment effects – if inspectors think they are
likely to be moved again quickly, they may not invest much in their new locations. And, knowing
that they are only in a new position for a year, they may change their preference ratings – if, for
example, there is a fixed effort cost of adjusting to a new location, those who know they may move
again after a year may prefer to just stay in place rather than move again and again.

To examine these issues empirically, we re-randomized the scheme at the beginning of Year 2 (as
described in Section 3). This created four groups, as shown in Table 2. To analyze the differential
effects, we restrict ourselves to Year 2 data, and estimate equation (8), which separately estimates
impacts for having received the PRSD scheme in Year 1 and not in Year 2 (β1), for receiving it for
the first time in Year 2 (β2), and for receiving it in both Year 1 and Year 2 (given by β1 +β2 +β3).

The results are presented in Table 6 for total recovery, current year recovery, and arrears.
There are several interesting results here. First, for both total and current recovery, we cannot
reject the null that β1 = β2, i.e. that the initial effect of having the program persists in the second
year.31 We should note that the difference between β1 and β2 captures not only differences in (i)
persistence (i.e. the former is the impact a year after the scheme has ended, and the latter is the
impact due to the incentives created by the scheme for the first time), but also (ii) any changes in
understanding/credibility about the scheme (those newly entering the scheme in the second year
have more information about how the schemes works, whether it is credible, and perhaps others
preferences), and (iii) any differences between circle allocation of the type discussed in Section 4.3
(since those who first entered the scheme are likely to be in different circles now as compared to
those who entered in the second year, since they have been re-assigned based on performance).

Nevertheless, on net, the key result is that the effects persist strongly even after the incentives
31Though the point estimates are quite similar, 0.109 for β1 and 0.081 for β2, the 95 percent confidence interval of

β1 − β2 is substantial, and runs from −0.077 to +0.133. We can, however, reject the null that effects were zero for
both β1 and β2.
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have been turned off. Indeed, the point estimate of β1, 0.109, is substantially larger than the Year
1 effect estimated in 6. This suggests that if anything, the allocation effects induced by the scheme
may have further enhanced its effects, rather than diminished them.

Second, a key result is the negative interaction term on β3. Note that we cannot reject that
the net treatment effect of experiencing the scheme the the second time in a row is the same as
experiencing it once (i.e. we cannot reject that β1 + β2 + β3 = β2, i.e. that β1 + β3 = 0 (p-value
0.401); what is clear though is that the effect of receiving the scheme twice is definitely not twice
the effect of receiving it once.

There are several factors that may be at play here. First, the simulations of the model suggest
that as inspectors learn each other’s preferences, this will tend to dampen incentives. Although we
do not have direct data on what inspectors believe about others, it is certainly plausible that they
know more about other inspectors’ preferences P in the second year, after observing a full set of
allocations, than when in the scheme for the first time.

Second, recall that as part of the design inspectors were allowed to change their preferences
before the first round of allocations occurred (but after they had found out whether they been
re-selected for continuation in the scheme or not). Appendix Table A.13 shows that inspectors who
know they will participate in the scheme again rate their own circle higher; that is, they are 14
percentage points more likely to prefer the status quo and not move positions if they know they will
face the PRSD scheme again in Year 2. This suggests that one possible reason for the smaller effect
is the allocations may differ. Another important difference between those inspectors randomly
selected to receive the scheme twice is and those receiving it for the first time in Year 1 that those
who experienced the treatment already in Year 1 may have been more likely to have been moved
already compared to those who had not. This would be the case if the performance-ranked scheme
creates more movements than occur as part of the status qu, and indeed, this apears to be the case
– Year 1 circles were about 10 percentage points more likely to have experienced a move. 32 Being
newly placed in a circle may make it harder to exert effort in response to the Year 2 treatment; a
new inspector may not know, for example, which properties can be added to the tax rolls.33

A final explanation for the negative interaction effect is simply discouragement: inspectors may
have felt that they just worked hard in Year 1 under the scheme, only to see their hard work be
“for nought” in the sense that both the new posting was only for one year, and they need to work
hard again in the second year. In any case, the results presented here suggest that while this type
of incentive scheme can be effective, it cannot be applied year after year.

32Appendix Table A.14 investigates this by looking both at a dummy for whether the inspector present the circle
at the mid-point of Year 2 (i.e. after postings from the scheme had been implemented) was the same as the inspector
who was in the circle at baseline, and also at the number of days that same inspector had been posted in the circle.
The results show that the Year 1 circles were about 10 percentage points more likely to have experienced a move.

33The increased disruptions may also have had a direct negative effect on revenues, but this seems small. We
explore this in more detail in appendix A.3, where we use baseline preferences and heterogeneity across circles in
how “business as usual” revenue growth interacted with treatment as an instrument for being moved. Overall, the
estimates suggest a negative effect of movements on total revenue of about 6 percent (statistically significant using
OLS, but noisy using IV). While the noise in the IV estimates suggest interpreting them with caution, they indeed
suggest that movements per se do adversely impact performance.
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5 Conclusion

Effective state bureaucracies play a central role in facilitating growth and development (Bertrand
et al., 2016; Best, Hjort and Szakonyi, 2017; Xu, 2017). Recent work in economics has explored
the importance and challenges of providing financial incentives to bureaucrats, both at the selec-
tion stage and once on the job (e.g., Dal Bó, Finan and Rossi, 2013; Deserranno, 2015; Khan,
Khwaja and Olken, 2016; Ashraf et al., 2016; Fisman and Wang, 2017). However, in many con-
texts, governments face many constraints on their ability to provide financial incentives, as many
governments have adopted strict civil service rules in an attempt to limit politicians’ ability to use
government jobs to reward political cronies. In these systems, pay and promotion are often rigid
and mechanical, usually based on initial level and seniority rather on performance, and introducing
explicit financial incentives is difficult.

This paper explores an alternative yet feasible approach to providing incentives. Many govern-
ments informally use postings, or horizontal movements, as a feasible avenue for rewarding good
performers and punishing bad performers. In practice, however, the ambiguity of assignment rules
and issues with revelation of agents’ preferences over postings may limit the degree to which these
can provide ex ante incentives to improve performance.

We propose a strategy-proof mechanism, the performance-ranked serial dictatorship, for using
lateral transfers to provide incentives within groups. We then show, using a randomized experiment
carried out over two years in a real tax bureaucracy in Punjab, Pakistan, that formalizing the
relationship between performance and transfers indeed improves performance. By the second year
of our study, those tax inspectors randomly allocated to the performance-ranked serial dictatorship
had a 41 percent higher growth rate in tax revenues than control tax inspectors. This is almost
the same magnitude of impacts as a performance-pay scheme we previously evaluated in the same
context, but rather than having to double inspectors’ pay, the zero-sum transfer mechanism was
virtually free for the government.

Our paper, in combination with our previous work (Khan, Khwaja and Olken (2016)), raises
interesting questions regarding how best to utilize pecuniary and non-pecuniary incentive systems
over the longer term. Both papers show that the primary means through which incentivized tax
inspectors increase collections is by expanding the tax base. Regardless of whether this is due
to a reduction in collusion or greater effort to uncover true tax liabilities, it does suggest that
such schemes may have lasting benefits. Therefore, to the extent that these schemes are costly to
implement - pecuniary schemes incur incentive payments and posting based schemes may induce
disruption costs - this suggests one may want to introduce such schemes every few years. Moreover,
to the extent that there is collusion between taxpayers and tax collectors, it may be desirable to
not have inspectors be able to maintain their status quo location indefinitely. Since there is more
agreement on rankings once status-quo preferences are not allowed, and since the PRSD mechanism
provides stronger incentives when there is more agreement on preferences, it may be even be the
case that the posting-based mechanisms are more effective in these cases.

The potential downside of performance-based posting is that the principal loses some flexibility
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over assignment. In our case, preferences were such that the best inspectors tended to want to
be placed in the largest circles, which seems consistent with the principal’s likely objectives, but
this type of alignment may not necessarily be the case in other contexts. For example, a school
system may want to assign top teachers to disadvantaged (and perhaps less popular) schools, or
a tax administrator may want to mandate that no inspector can stay in the same location for
more than few years. One could potentially address these issues by placing restrictions on the
preference set, which we regard as an interesting direction for future work. More generally, our
results demonstrate that bureaucracies have tremendous potential to improve performance at little
financial cost by periodically using postings as an incentive, particularly when preferences over
postings have a substantial common component.
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Table 1: Summary statistics

Mean SD
Mean of

within-group SD
N

Log Revenue (Total) 16.12 0.79 0.67 518
Log Revenue (Current) 16.00 0.80 0.69 518
Log Revenue (Arrears) 13.54 1.20 0.90 514
Log Tax Base (Total) 16.45 0.82 0.65 518
Log Tax Base (Current) 16.29 0.79 0.65 518
Log Tax Base (Arrears) 14.05 1.43 1.08 514
Log Recovery Rate (Total) -0.08 0.11 0.10 518
Log Recovery Rate (Current) -0.08 0.10 0.09 518
Log Recovery Rate (Arrears) -0.13 0.22 0.16 514
Log Non-Exemption Rate (Total) -0.25 0.22 0.17 518
Log Non-Exemption Rate (Current) -0.22 0.17 0.13 518
Log Non-Exemption Rate (Arrears) -0.38 0.58 0.45 514

Notes: Statistics from administrative data are shown at the end of Year 2 of the
study (FY 2015). Each observation is one of the 525 circles as defined at the time
of randomization.

Table 2: Treatment assignment of circles in Year 2

Year 2 Control Year 2 Treatment Total

Year 1 Control 207 50 257

Year 1 Treatment 72 81 153

(Not included in Year 1 lottery) 96 19 115

Total 375 150 525

Table 3: Treatment Effect on Log Tax Revenue

Year 1 Year 2 Pooled

(1) (2) (3)

Treatment 0.049 0.092 0.061
(0.022) (0.042) (0.020)
[0.009] [0.036] [0.002]

Baseline 0.892 0.946 0.944
(0.018) (0.019) (0.019)

N 405 251 656
Mean growth in controls 0.117 0.309 0.203

Notes: Tax revenue is comprised of revenue from the cur-
rent years tax due, plus revenue collected from previous
years’ unpaid taxes (arrears); the dependent variable in each
column is the log of the respective tax measure. Estimation
is by OLS. The unit of observation is a circle, as defined at
the time of randomization. Specification controls for base-
line values (FY 2013). Robust standard errors in parenthe-
ses. Standard errors are clustered by circle. Randomization
inference based p-values in brackets.
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Table 4: Heterogeneity in treatment effects in Year 2 by simulated marginal returns to effort

Eq effort e dEu/de at e=0

(1) (2) (3) (4)

Panel A: Full knowledge of P, Y

Treatment * Model-predicted effort 0.038 0.042 0.034 0.038
(0.051) (0.066) (0.048) (0.062)

Treatment * Tax base at baseline 0.004 0.005
(0.061) (0.061)

Treatment * Recovery rate at baseline -0.078 -0.076
(0.207) (0.207)

Model-predicted effort -0.017 -0.025 -0.016 -0.023
(0.021) (0.023) (0.020) (0.022)

R-squared 0.935 0.936 0.935 0.936

Panel B: Random P, full knowledge of Y

Treatment * Model-predicted effort 0.076 0.176 0.076 0.178
(0.036) (0.103) (0.031) (0.087)

Treatment * Tax base at baseline -0.081 -0.104
(0.073) (0.074)

Treatment * Recovery rate at baseline -0.339 -0.377
(0.310) (0.292)

Model-predicted effort -0.018 -0.046 -0.018 -0.044
(0.038) (0.045) (0.033) (0.040)

R-squared 0.936 0.937 0.936 0.938

Panel C: Assume identical P, full knowledge of Y

Treatment * Model-predicted effort 0.025 0.051 0.027 0.055
(0.027) (0.051) (0.028) (0.051)

Treatment * Tax base at baseline 0.011 0.008
(0.046) (0.046)

Treatment * Recovery rate at baseline -0.217 -0.230
(0.297) (0.301)

Model-predicted effort 0.006 -0.001 0.004 -0.004
(0.027) (0.028) (0.028) (0.029)

R-squared 0.936 0.936 0.936 0.937

Panel D: Full knowledge of P, no knowledge of Y

Treatment * Model-predicted effort -0.009 -0.014 -0.013 -0.019
(0.060) (0.069) (0.056) (0.065)

Treatment * Tax base at baseline 0.031 0.033
(0.062) (0.062)

Treatment * Recovery rate at baseline -0.043 -0.041
(0.181) (0.180)

Model-predicted effort -0.015 -0.018 -0.011 -0.015
(0.019) (0.020) (0.018) (0.019)

R-squared 0.935 0.936 0.935 0.936
N 249 249 249 249
Mean of control group 16.268 16.268 16.268 16.268

Notes: OLS regessions of log recovery on treatment assignment, with group fixed effects (Y2).
The unit of observation is a circle, as defined at the time of randomization. In Columns 1 and
2, the model-predicted effort is the Nash equilibrium level of effort. In Columns 3 and 4, effort
corresponds to the marginal incentives evaluated at e=0. Columns 2 and 4 include tax base and
recovery rate at baseline and their interactions with treatment assignment in the specification.
Robust standard errors in parentheses. Standard errors are clustered by circle.
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Table 5: Preferences and allocations

Y1 Preferences (Treatment) Allocation Difference in allocation

(1) (2) (3) (4) (5) (6)

All circles
b / se

All circles
Mean

Top inspectors’ circles

b / se

Treated inspectors

b / se

Treatment - Control
(Revenue)

b / se

Treatment - Control
(Tax base)

b / se

Log of tax base (Current) 0.167 15.870 0.343 0.312 0.537 0.173
(0.018) (0.055) (0.084) (0.079) (0.535)

Log of tax base (Arrears) 0.137 14.254 0.173 0.219 0.355 -0.092
(0.287) (0.677) (0.591) (0.601) (0.890)

Growth in tax base (Current) 0.001 0.101 0.004 0.011 0.006 -0.024
(0.865) (0.914) (0.762) (0.937) (0.550)

Growth in tax base (Arrears) 0.055 -0.321 -0.117 -0.068 -0.022 -0.199
(0.520) (0.556) (0.756) (0.958) (0.357)

Log of revenue (Current) 0.180 15.565 0.376 0.338 0.635 0.235
(0.013) (0.036) (0.052) (0.042) (0.440)

Log of revenue (Arrears) 0.151 13.848 0.113 0.152 0.669 -0.193
(0.219) (0.731) (0.652) (0.287) (0.654)

Growth in revenue (Current) -0.003 0.142 0.024 0.029 0.057 0.040
(0.765) (0.500) (0.427) (0.396) (0.507)

Growth in revenue (Arrears) 0.068 -0.331 -0.192 -0.164 0.144 -0.355
(0.470) (0.384) (0.501) (0.741) (0.127)

Any unofficial payment 0.050 0.395 0.040 0.034 -0.039 0.196
(0.058) (0.623) (0.668) (0.771) (0.161)

Log of unofficial payment rate -0.043 0.704 -0.219 -0.211 -0.378 -0.402
(0.289) (0.091) (0.088) (0.112) (0.066)

Log average p.c. expenditure 0.066 8.614 0.097 0.082 0.141 0.262
(0.154) (0.312) (0.418) (0.370) (0.127)

Properties for commercial use -0.004 0.322 -0.072 -0.072 -0.016 -0.092
(0.778) (0.164) (0.145) (0.838) (0.415)

Properties for residential use -0.006 0.424 0.114 0.119 0.056 0.150
(0.676) (0.099) (0.083) (0.585) (0.328)

Num of properties (in hundreds) -5.497 65.585 -15.182 -11.301 -4.070 -30.497
(0.126) (0.050) (0.098) (0.782) (0.008)

Log of average property value 0.204 7.630 0.487 0.489 0.062 1.450
(0.075) (0.163) (0.155) (0.955) (0.012)

N 1184 1184 136 123 197 199

Notes: Columns 1 and 3 present OLS regressions of circles attributes on a dummy variable that takes the value of 1 for circles that were ranked as TOP 1. Sample
consists in all treated circles and treated circles of TOP 1 inspectors, respectively. Column 4 shows regressions of circles characteristics on an indicator that takes
the value of 1 if the treated inspector that ended up in that circle ranked among the TOP 1 of his group. Columns 5 and 6 report the difference in allocation between
inspectors in the treatment and control group. Inspectors in Column 5 are ranked based on their performance in recovery (growth in recovery rate). In Column 6,
based on their performance in demand (growth in tax base).
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Table 6: Dynamic effects estimated in Year 2

(1) (2) (3)
Total Current Arrears

Y1 Treatment (β1) 0.109 0.085 0.128
(0.038) (0.040) (0.100)
[0.003] [0.020] [0.200]

Y2 Treatment (β2) 0.081 0.055 -0.074
(0.043) (0.041) (0.119)
[0.064] [0.235] [0.592]

Y1 AND Y2 Treatment (β3) -0.150 -0.085 -0.061
(0.067) (0.068) (0.178)
[0.014] [0.203] [0.733]

N 403 403 392
β1 = β2 0.564 0.560 0.167
β1 + β3 = 0 0.401 0.999 0.655
Mean growth in controls 0.309 0.408 -0.337

Notes: OLS regessions of log of tax revenue on Y1/Y2 treat-
ment interactions The unit of observation is a circle, as defined
at the time of randomization. Specification controls for baseline
values. Robust standard errors in parentheses. Standard errors
are clustered by circle. Randomization inference based p-values
in brackets. RI p-values displayed for tests of equality of coeffi-
cients.
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Figure 1: Descriptive statistics of baseline preferences over positions

(a) Distribution of inspector’s rank of their status quo circle
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Notes: Figure 1a shows the histogram of inspectors ranks of their status quo circle, at baseline, where the top-ranked circle is
normalized to 1 and the bottom ranked circle is normalized to 0. Figure 1b shows the distribution of pairwise rank correlations
among inspectors within a given group. The histogram in outline shows what the distribution would look like if inspectors’
preferences were random.
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Figure 2: Different scenarios for the distribution of y0 within a group

(a) When y0 is concentrated, the marginal return to effort
is high for all inspectors.

(b) When y0 is spread out, marginal returns to effort are
low.

(c) Within a group variation: inspectors with y0 close to-
gether face strong incentives, whereas those with y0 far
apart face weaker.
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Figure 3: Simulated Distribution of dE[u]
dei

under alternative assumptions about knowledge

(a) Full Knowledge of P and y
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(c) Assuming identical preferences P , full knowledge of y
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(d) Full knowledge of P , no knowledge of y
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(e) Assuming identical preferences P , no knowledge of y
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Notes: Each figure shows the distribution of dE[u]
dei

evaluated at e = 0 under the knowledge assumptions stated. Simulations
are as described in Section (2.2).
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Figure 4: Distribution of change in log tax revenue collected, by treatment
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(b) Year 2
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