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1 Introduction

An increasing number of important decisions are being made by machine learning

algorithms. Algorithms determine what information we see online; who is hired, fired,

and promoted; who gets a loan, and whether to give bail and parole. In the typical

machine learning deployment, an individual’s observed behavior is used as input to a

decision rule.

However, when algorithms are used to make consequential decisions, they create

incentives for people to ‘game’ the rule. When agents understand how their behavior

affects decisions, they may alter their behavior to achieve the outcome they desire.

When decision rules are gamed, they can produce decisions that are arbitrarily poor or

unsafe. The problem of manipulation stems from the fact that the standard approach

to training decision rules assumes that the relationship between the outcome of interest

and human behaviors will remain stable. But this assumption tends to be violated

as soon as a decision rule is implemented and agents have incentives to change their

behavior to achieve more favored outcomes (Lucas, 1976; Goodhart, 1975).

A classical solution to this problem in economics involves modeling behavioral

responses when designing policies; this approach has been integral to work in canonical

settings like taxation and mechanism design (Mirrlees, 1971; Akerlof, 1978; Ramsey,

1927; Agarwal and Budish, 2021). However, this insight is not typically used when

training the type of decision rules that have proliferated in society in recent years that

instead rely on atheoretic estimators to uncover high-dimensional correlations in data

(Breiman, 2001).

Instead, real-world applications of machine learning commonly use one of two

alternate approaches to deal with this problem. The first is to restrict the decision

rule to predictors that are thought to be more stable – an approach that amounts

to having a dogmatic prior that the cost of manipulation is either infinite for all

people (for included predictors) or zero (for excluded predictors). However, people can

manipulate most predictors (i.e., their behaviors) at some cost, and those costs may

be heterogeneous and difficult to assess in modern contexts that can have thousands

of predictors. Thus, many real-world deployments use a second approach, which

we refer to as the ‘industry approach.’ This approach relies on ‘security through

obscurity’ (NIST 2008) to make the decision rule more difficult to guess, and ad-hoc
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re-training to respond to the changing relationship between predictors and outcomes

(Bruckner and Scheffer, 2011). However, this approach learns about manipulation by

making decisions that turn out to be mistakes. Such mistakes may be tolerable in

low-stakes settings, but can cause great harm at unanticipated times in high stakes

settings like finance or governance. This approach also requires decision rules be kept

secret: the more clearly that agents know how their behavior affects a decision, the

easier it becomes to manipulate. This need for secrecy stands in sharp contrast to the

increasing societal demand for a ‘right to explanation’ about how algorithmic decisions

are made (Goodman and Flaxman, 2016; Barocas et al., 2018). Together, risk and

secrecy have become central concerns in active policy debates about regulation for

machine learning and artificial intelligence.1

This paper considers an alternate approach. We extend the classical economic

approach of modeling behavioral responses to the machine learning setting. We show

how machine learning models can be trained to anticipate manipulation, which leads

to better decisions when implemented in a real-world setting. Our approach explicitly

models agents’ incentives to manipulate, and illustrates how this game-theoretic model

can be embedded within the loss function of a machine learning decision rule. By

anticipating how agents will be strategic, the method produces decisions that perform

well when implemented—even when the decision logic is made fully transparent. We

then implement and evaluate the performance of empirical decision rules adjusted in

this manner through a real-world field experiment in Kenya. We use the experiment

to elicit costs of manipulating behavior, and show that the ‘strategy-robust’ approach

better anticipates real-world performance, and leads to more robust empirical decision

rules. Each component of the paper – theory, estimator, and experiment – is designed

to be relatively simple. Our main contribution is to integrate these components in a

single end-to-end example which demonstrates how a classical economic approach can

be used in a machine learning setting.

The paper is organized into two main parts. The first part develops a simple

adjustment to training machine learning models which produces strategy-robust

1For example, the White House’s Blueprint for an AI Bill of Rights (OSTP, 2022) lists safety as
the first concern and calls for risks to be anticipated and mitigated before deployment. Likewise,
the European Union’s General Data Protection Regulation mandates that “meaningful information
about the logic” of automated systems be available to data subjects (European Union, 2016).
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decision rules that are stable under manipulation. We consider a framework where

a policymaker wishes to make a decision yi for each individual i. They observe

training data: a subset of instances that possess both features xi and optimal decisions

yi. The policymaker seeks to estimate a decision rule ŷ(xi) that will be applied

to implementation instances where only features xi will be observed. Whereas the

standard approach selects a decision rule that is optimal for the distribution (xi, yi)

observed in training, our approach anticipates how individuals will adjust behavior

in response to the incentives generated by a decision rule; that is, it models xi(ŷ(·)).
Characterizing how behavior will respond to the rule requires a structural model,

which we embed within the machine learning estimator. While this general approach

can be applied to arbitrary estimators, we focus primarily on linear decision rules

of the form ŷ(x) = βx, with quadratic manipulation costs. This allows us to derive

analytic results that take a simple nonlinear least squares form (we later show how this

approach can be generalized beyond the linear case to train strategy-robust decision

trees). In Monte Carlo simulations, we show that this strategy-robust approach often

outperforms common alternatives when agents behave strategically.2

The second major part of the paper illustrates how this framework can be applied

in a real-world environment, using a field experiment in Kenya that we designed

specifically to stress-test strategy-robust decision rules. This experiment allows us

to train strategy-robust and standard decision rules, and evaluate their real-world

performance when implemented. Specifically, we built a new smartphone app that

passively collects data on how people use their phones, and disburses rewards to users

based on predictions formed from the data collected. The app is designed to mimic

‘digital credit’ products that are spreading dramatically and quickly transforming

consumer credit in the developing world (Bharadwaj and Suri, 2020; Suri et al., 2021).

Digital credit products similarly collect user data and use machine learning algorithms

to convert that data into a credit score, based on the insight that historical patterns

of mobile phone use can predict credit repayment (Björkegren, 2010; Björkegren and

2These simulations also show how, by contrast, models trained in the standard manner can perform
very poorly when agents behave strategically. The simple industry approach may not converge; even
if it does, convergence can be slow and lead to undesirable equilibria. We also observe how, in settings
where the ability to manipulate is a signal of the outcome (in the spirit of Spence, 1973), our method
can implicitly exploit this correlation by increasing the weight on features that are manipulable by
the types to be screened in, but not by those to be screened out.
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Grissen, 2020). However, as these systems have scaled, they increasingly face fraud

resulting from manipulation, as borrowers learn which behaviors will increase their

credit limits (McCaffrey et al., 2013; Bloomberg, 2015; Crosman, 2017).3 After being

hit by manipulation, several lenders have restricted lending.

This field experiment produces several results. First, consistent with prior work

showing that mobile phone data can predict credit repayment, we find that the data

collected through our smartphone app (xi(0)) can be used to predict the phone owners’

characteristics, such as income and intelligence.4

Second, during the training period, we structurally estimate xi(ŷ(·)) in our model;

that is, how the distribution of behaviors tends to shift when decision rule ŷ(·) is

implemented. These estimates are identified through a series of randomly assigned

experiments that offer simplified decision rules, each offering financial rewards based

on behaviors observed through the app. For example, participants may face decision

rules that reward them based on frequency of outgoing calls in a given week, or the

number of text messages they receive. The average weekly payouts are designed to be

similar in magnitude to the typical digital credit loans in Kenya at the time ($4.80

in Bharadwaj and Suri (2020)). The general shifts in behavior that we estimate are

intuitive: for instance, outgoing communications are less costly to manipulate than

incoming communications, and text messages, which are relatively cheap to send, are

more easily manipulated than calls. We also find that complex behaviors (such as the

standard deviation of talk time) are less manipulable than simpler behaviors (such as

the average duration of talk time). We also estimate substantial heterogeneity in ability

to manipulate between people; much of this heterogeneity arises from unobservables,

but we find that people who self-identify as tech savvy find it easier to manipulate

behavior.

Third, we evaluate the trained decision rules ŷ(x) in an implementation phase

of the experiment where we observe only participants’ current behavior x. We find

that, when actually implemented on decisions that affect people, ‘strategy-robust’

3For instance, a recent survey in Kenya and Tanzania found that one of the top five reasons
people report saving money in digital accounts is to increase the loan amount they qualified for (FSD
Kenya, 2018).

4Related work has used mobile phone data to predict income and wealth (Blumenstock et al.,
2015; Blumenstock, 2018; Aiken et al., 2021), gender (Blumenstock et al., 2010), and employment
(Sundsøy et al., 2016).
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decision rules perform substantially better than standard machine learning algorithms.

We make this comparison by exposing participants to predictive decision rules that

offer financial rewards if they use their phones like a person of a particular type.

For instance, some people receive a message that says, “Earn up to 1000 Ksh if the

app guesses that you are a high income earner, based on how you use your phone,”

while others receive messages that offer rewards for acting like an ‘intelligent’ person,

and so forth. Across a variety of such decision rules, we show that classifications

made by the algorithm trained with the strategy-robust approach are more accurate

than classifications from the standard approach. Additionally, the strategy-robust

adjustment more accurately predicts the real-world performance that decision rules

will attain when they are implemented and made transparent.

Finally, we use our method to estimate the performance cost of algorithmic

transparency: the loss associated with disclosing the details of the decision rule. In

the experiment, we experimentally vary the amount of information subjects have

about the decision rule ŷ, and show that the relative performance of the strategy-

robust decision rule increases with transparency. While transparency reduces the

predictive performance of standard decision rules by 17% on average, it reduces the

strategy-robust rule’s performance by only 6%. In our setting, the performance cost

of moving from an equilibrium where decision rules are secret to an equilibrium where

they are disclosed is less than 8%. Our model also allows policymakers to bound this

equilibrium cost of transparency even without disclosing decision rules to the world.

Taken as a whole, our paper provides a framework for implementing empirical

decision rules that are robust to manipulation. It introduces a new notion of fit,

which has analogues to other common linear regression approaches. For instance,

ordinary least squares (OLS) maximizes fit within sample; two stage least squares

(2SLS) sacrifices fit within sample to estimate coefficients that can be interpreted

causally; penalized least squares (such as LASSO and ridge) sacrifice within-sample fit

to generate simpler models that may better generalize to other samples drawn from

the same population. Our approach sacrifices fit within sample to maximize fit in

the counterfactual where the decision rule is used and agents manipulate against it.

Our solution is an example of a class of estimator that maximizes counterfactual fit

— predictive fit in a counterfactual state of the world. This is similar to the notion
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of fit across different domains as discussed by Andrews et al. (2023): our framework

optimizes models to perform well in the domains they induce.

We anticipate that approaches like the one we propose will be beneficial across

a variety of domains as human and machine intelligence increasingly interact. Our

approach combines experiments that measure how behavior responds to perturbations

in a decision rule, with a structural model to anticipate the response to any rule,

and embeds this behavioral response in an estimator that can be applied to high

dimensional data. Similar approaches are likely to be relevant in a range of applied

settings – especially when stakes are high or decision rules cannot be kept secret, in

new implementations where there is limited evidence of historical manipulation, and

when updating decision rules is costly or slow.

1.1 Connection to Literature

The conceptual problem of manipulation is not new. Goodhart (1975), in what has

since become referred to as ‘Goodhart’s Law’, noted that once a measure becomes

a target, it ceases to be a good measure. Lucas (1976) also famously observed that

historical patterns can deviate when economic policy changes. Empirically, agents

have been observed to attempt to game decision rules in a wide range of settings,

including New York high school exit exams (Dee et al., 2019), health provider report

cards (Dranove et al., 2003), pollution monitoring in China (Greenstone et al., 2019),

fish vendors in Chile (Gonzalez-Lira and Mobarak, 2019), and survey respondents in

Indonesia (Banerjee et al., 2018).

But concerns about manipulation have become more pronounced as an increasing

number of consequential decisions are automated based on complex correlations with

behavioral ‘big data’. In the online advertising industry, firms spend many millions

of dollars each year on search engine optimization, manipulating their websites in

order to be ranked higher by search engine algorithms (Borrell Associates, 2016). A

quick Google search suggests over 50 thousand different websites (and 3,000 YouTube

videos) contain the phrase “hack your credit score.” In consumer credit – and in our

main experimental application – digital behavioral data is now routinely used to assess

repayment risk, as exemplified by the digital credit products that are now widespread

in developing countries (Bharadwaj and Suri, 2020; Suri et al., 2021). In low-income
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countries, a similar combination of machine learning and behavioral data is now being

used to determine eligibility for social assistance and humanitarian aid (Aiken et al.,

2021; Mukherjee et al., 2023).

In the research literature, there are two main paradigms for thinking about how

to adapt decision rules to manipulation. In economics, the prevailing paradigm

develops canonical models that account for behavioral responses in specific settings.

In particular, the problem we study relates closely to the mechanism design literature

– we explore this connection in greater detail when discussing our model in Section 2.3.

Our paper is also related to the question in public finance of how to set taxes in

environments where agents adapt their behaviors. Mirrlees (1971) considers taxes

as a function of earnings, and faces the problem that taxation induces a behavioral

response. Akerlof (1978) suggests that conditioning on additional attributes that are

harder to manipulate (‘tags’) can improve efficiency. Ramsey (1927) suggests taxes

be set using the inverse of the matrix of the costs of manipulating behavior. The

market design literature has also considered designing allocation algorithms in the

face of strategic reporting (e.g. Agarwal and Budish, 2021).5 While these ideas are

well studied in canonical economics settings, we are not aware of a general framework

for addressing manipulation in empirical decision rules trained based on correlations

in high-dimensional data, the type of rules that have proliferated in society in recent

years.

By contrast, the modern machine learning paradigm typically relies on a variety of

atheoretic methods to train (and re-train) decision rules based on high-dimensional

correlations (Breiman, 2001). To address the manipulation that arises during imple-

mentation, a literature in statistics has considered variants of the ‘industry’ approach

that use iterated retraining to adapt to covariate shift (cf. Sayed-Mouchaweh and

Lughofer, 2012). These approaches are typically agnostic about the forces that lead

to shifts, instead learning from mistakes. However, the shifts induced by manipu-

lation have a predictable structure, so some of these realized mistakes – and latent

vulnerabilities – are unnecessary. Our approach demonstrates how these forces can be

5Also related, Bryan et al. (2015) experimentally estimates a model where individuals’ propensity
to repay a loan depends on a fixed type as well as a heterogeneous susceptibility to social pressure,
and Hussam et al. (2017) finds that people manipulate reports to favor friends and family when they
believe the reports will be used to allocate grants, and explores methods to reduce this tendency.
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modeled explicitly within a machine learning paradigm – a shift in perspective that

we hope can help bridge these two paradigms and lead to more robust systems.

In this respect, our paper relates to a budding theoretical literature that has

started to bridge these approaches, suggesting that behavioral responses might be

incorporated in decision rules trained from data. Recent work in mechanism design

(Frankel and Kartik, 2019, 2020; Ball, 2019; Hennessy and Goodhart, 2023) develops

conceptual foundations, and shows that in settings like ours, the revelation principle

can fail. In computer science, work on ‘strategic classification’ illustrates simple

theoretical cases. Bruckner and Scheffer (2011) and Hardt et al. (2016) compute

Stackelberg equilibria in linear classification settings where agents are strategic, with

known costs that are the same for all people; Dong et al. (2018) extend this approach

to an iterative environment. Perdomo et al. (2020) characterize general settings and

is agnostic about the functional form of the cost function. Kleinberg and Raghavan

(2019) and Milli et al. (2019) consider restricting to predictors that have a causal

impact on the outcome, which can result in productive manipulation (for example,

an exam induces students to study and learn general knowledge) but can reduce

predictive performance. A different strand on adversarial machine learning considers

the case where agents’ objectives are exactly opposed to the policymaker’s (cf. Huang

et al., 2011).6

While this theoretical literature has begun to suggest how behavioral responses

might be incorporated in machine decision algorithms, we are unaware of prior work

that demonstrates how to estimate such algorithms, or that implements and evaluates

the performance of such algorithms under real manipulation. Our paper thus makes

two main contributions. First, we develop an estimable approach to adjust how

decision rules are trained to anticipate manipulation. This yields rules that function

well under manipulation even when fully transparent. And second, to our knowledge

for the first time in any literature, we design and implement a field experiment that

estimates and evaluates such decision rules in a real-world setting.

6Also related is Eliaz and Spiegler (2019), which shows that incentive problems can theoretically
arise even in a setting where agents and the policymaker have identical objective functions, if the
policymaker adjusts their objective function with regularization.
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2 Model

This section introduces the model underlying our strategy-robust adjustment. We

focus on the stylized case where the decision rule is linear and costs are quadratic,

which allows us to derive solutions that directly map to the field experiment.7 Later,

in Section 5, we illustrate how the approach can be extended to a non-linear (decision

tree) setting.

2.1 Setting

A policymaker observes a training sample, i.e., a subset of instances that possess both

features xi and preferred decisions yi. The policymaker also obtains information on

the costs of manipulating features, which will be detailed later. The policymaker

would like to estimate the parameters of a decision rule ŷ(xi) that will then be applied

to a different implementation subset where only features xi are observed, and may be

manipulated. The decision rule ŷ(xi) could represent, for example, the amount of aid

or credit to grant based on a person’s visible assets or digital behavior; how much a

social network will prioritize a piece of content based on its characteristics and initial

engagement; whether to interview an individual based on the text in their resume;

and so forth.

The policymaker has a preferred action yi for each individual i. The action

yi = y(xi, ei) can be expressed as a function of i’s bliss behavior xi and an idiosyncratic

preference ei. However, the implemented policy ŷ(xi) may only be a function of the

individual’s behavior xi; in the linear case

ŷ(xi) = α + β′xi.

Individuals can manipulate their behavior xi away from their bliss level xi at some

cost, for instance by hiding assets (Camacho and Conover, 2011) or changing the

keywords on their resume (Caprino, 2019). Each individual receives utility from the

7Linear models are relevant to the empirical setting we explore: in the context of digital credit,
Björkegren and Grissen (2015) and Björkegren and Grissen (2020) find that models linear in parameters
achieve comparable or better performance than (nonlinear) random forests.
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policy’s decision, minus their own cost of manipulation8

ui(ŷ,xi) = ŷ(xi)− ci(xi,xi).

Individuals i are heterogeneous in two main respects: bliss behaviors xi and

manipulation costs ci(·). When manipulation costs are quadratic,

ci(xi,xi) =
1

2
(xi − xi)

′Ci(xi − xi)

for cost matrix

Ci =


c11i · · · c1Ki

...
. . .

...

cK1i · · · cKKi

 .
This parameterization allows for heterogeneity by behavior (indices jk) and person

(index i). Some behaviors may be harder to manipulate than others, either by

themselves (the diagonal) or in conjunction with other behaviors (the off-diagonals).

Different types of individuals may also find it more or less costly to manipulate

behaviors; for example, very clever people and or those with low opportunity costs

might have lower costs.

Optimal behavior

i chooses optimal behavior x∗i to maximize utility

x∗i (ŷ(·)) = arg max
xi

[ui(ŷ,xi)] . (1)

When the decision rule is linear and costs are quadratic, optimal behavior is

x∗i (β) = arg max
xi

[α + β′xi − ci(xi,xi)] = xi+C
−1
i β.

When the decision does not depend on behavior (β = 0), i’s optimal behavior equals

his bliss level (x∗i (0) = xi). However, as β moves away from zero, i’s behavior moves

in the same direction, down-weighted by his cost of manipulation (highlighted in blue).

8We focus on the benchmark case where the utility from the decision exactly coincides with the
policymaker’s prediction ui(ŷ) ≡ ŷ.
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2.2 Decision rules

If the decision rule could condition on the cost function ci of each individual i it faced,

it could in principle invert manipulation to infer each individual’s type. However,

cost functions are not observed during implementation. Even during training, the

policymaker typically has limited information about them: we assume they have

beliefs about i’s costs denoted with subscript q, Ciq ∼ Ci. We later discuss how the

policymaker can obtain these beliefs.

If the policymaker faces loss L(y, [ŷi]i) for classifying each individual i as ŷi, then

a strategy-robust decision rule is given by

ŷ(·) = arg min
ỹ(·)

E
[
L
(
y,
[
ỹ(x̂∗iq (ỹ (·))

]
i

)]
(2)

which deviates from standard supervised learning because it replaces i’s sample

behavior xi with their anticipated manipulated behavior x̂∗iq(ŷ(·)) if their costs were

Ciq.

In the linear setting, the strategy-robust decision rule is given by

αSR,βSR = arg min
α,β

E

[
1

N

∑
i

(
yi − α− β′(xi+C−1

iq β)
)2

+ . . .

]
(3)

which deviates from ordinary least squares by the manipulation term C−1
iq β. The term

‘. . .’, discussed in Section 2.3, may include regularization terms Rλ(·) that penalize

model complexity, or, if the policymaker cares about the costs that individuals incur

manipulating behavior, an additional term to represent those costs M(·).

Estimation

We estimate the primitives describing behavioral responses to the decision rule x∗i (ŷi(·))
in two steps. First, in a training sample, we observe labels y, and behavior x, for a

subset of the population. We estimate the distribution of manipulation costs C from

this subset. Second, these cost estimates are used in equation (3) to estimate βSR –

the strategy-robust decision rule. This decision rule can then be deployed to the full

population, including individuals for whom no labels y are observed.

There are a variety of ways one could imagine estimating the parameters that
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describe behavioral responses x∗i (ŷi(·)). The most direct approach – and the main

approach we test empirically – uses an experiment to randomly assign individuals

in a training sample to one of several decision rules ŷi, communicates the decision

rule to i, observes the resulting behavior x∗i (ŷi(·)), and estimates parameters of C
from those responses.9 In the linear setting, all parameters can be estimated with

simple perturbations from a base model β0. Consider assigning either this base model,

or a perturbed model βk = β0 + βδk that has been perturbed by amount β along

dimension k, where δk represents the kth unit vector. One will then observe the

resulting vector of manipulated behavior

x∗i (βk) = xi + C−1
i β0 + βC−1

i δk

where experimental variation in the last term identifies C.

In our field experiment (Section 3), we make additional assumptions about the

structure of costs (particularly, we will assume that off diagonal costs are zero, cjki ≡ 0

for j 6= k, and that a person’s relative gaming ability is the same across all behaviors,

cjkiq ≡ cjk · 1
γiq

) and then use a general method of moments (GMM) loss function for

estimation. We provide details on the estimation procedure, as well as how estimation

would change in other settings, after describing the field experiment. We use a

base model β0 = 0 to mimic ‘greenfield ’ settings before a decision rule has been

implemented. In real-world applications where a decision rule is already in use and

behavior is already manipulated (i.e., a ‘brownfield ’ environment), one may wish to

instead assess deviations from a status quo or proposed näıve model β0.

2.3 Intuition and Discussion

We provide intuition for how the method works using Monte Carlo simulations.

These simulations involve a policymaker who implements a linear decision rule (y =

β1x1 +β2x2 +α) that is based on two observed behaviors, x1 and x2. In the simulations,

x1 is initially more predictive of i’s type than x2, but it is also more susceptible to

manipulation (c11i � c22i). Figure 1 compares the performance of three different

approaches to designing decision rules in this setting.

9This approach makes several assumptions, including that costs of manipulation are stable over
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Figure 1: Common vs. Strategy-Robust Decision Rules

(a) βOLS (b) βLASSO (c) βSR
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predictive (b1 > b2), but is easily manipulable (c11i � c22i) and has more manipulation noise. (a)
OLS performance deteriorates when behavior can be manipulated. (b) LASSO penalization favors
x1, which will be manipulated as soon as the decision rule is implemented. (c) Our method
anticipates that x1 will be manipulated, and shifts weight to x2 as behavior becomes manipulable.

xi
iid∼ N

(
0,

[
1 0
0 1

])
, b =

[
1.4
1

]
, Ci = 1

γγhet
i

[
4 0
0 32

]
, 1
γhet
i

iid∼ Uniform [0, 10],

ei
iid∼ N (0, 0.25). Squared error measured on an out of sample draw from the same population,

incentivized to that decision rule.
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Panel (a) of Figure 1 illustrates the parameters selected by OLS. These parameters

do not depend on either the relative (c11i vs. c22i) or absolute (γ) costs of manipulation.

Instead, OLS maximizes predicted performance within the unincentivized sample

(xi(0), yi). As shown in the lower portion, of Figure 1a, OLS performs poorly as

manipulation becomes easier.

Our approach is related to regularization in that it systematically alters how

features are expressed in a model. LASSO regularization (panel b) likewise places

the most weight on x1, since it is most predictive of y in the unincentivized sample.

As the regularization penalty increases, both parameters are similarly penalized.

However, LASSO selection does the wrong thing: it kicks x2 out of the regression first.

Regularization is commonly used to reduce overfitting when drawing different samples

from the same state of the world. However, regularization does not consider how a

model would best fit a different state of the world – as occurs when a decision rule is

implemented and behavior becomes manipulated.

In contrast, the strategy-robust approach (panel c) adjusts the decision rule to

account for how features (xi(β), yi) will shift in the counterfactual state of the world

where people manipulate their features in response to the model. As shown in Figure

1c, when manipulation costs are high, our method approaches OLS; as manipulation

becomes easier, our method adjusts the model, in this case by penalizing x1, and thus

attains better performance. In general, this adjustment can either increase or decrease

the weight on manipulated features. Adjusting for strategy-robustness may be needed

even if there is no concern about overfitting (e.g., the sample is fixed, or one observes

the entire population).10

Understanding the strategy-robust adjustment

To better understand the strategy-robust solution, we step through moment conditions

in a simple case and illustrate comparative statics with simulations. The strategy-

robust solution for β coincides with a nonlinear least squares estimator in the simple

case where the policymaker knows the distribution of costs in the training sample, only

time. In Section 4.3 we discuss alternative assumptions and approaches to estimating these responses.
10The method can also exploit cost interactions, adjusting behaviors that make it easier to shift

other predictive behaviors (akin to Ramsey (1927) taxation). When manipulating x1 makes it easier
to manipulate x2 (c12i sufficiently negative), our method further reduces weight on x1.
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cares about predictive accuracy (M(·) ≡ 0), and there are no additional regularization

terms (Rλ(·) ≡ 0). First order conditions for β are then given by:

E
[
εi (β, x̂iq(β))

(
∂εi
∂β

′
+
∂εi
∂x

′∂x̂iq
∂β

)]
= 0

εi(β,x) = yi − α− β′x

The first term captures how β affects fit holding xi constant, and the second term

accounts for manipulation: the influence of β on xi. This results in moment condition:

E [x̂iq(β) · εi(β, x̂iq(β))] = −E
[
C−1
iq β · εi(β, x̂iq(β))

]
(4)

When estimated on unmanipulated behaviors (xi), this differs from standard

estimators due to three forces.

Shifts First, our solution anticipates that levels of behaviors will best respond to the

choice of β. The left side of equation (4) is akin to OLS except with counterfactual

behaviors x̂iq(β). When these behaviors cannot be manipulated (Ci → ∞), our

solution corresponds to OLS. If each behavior j has the same manipulation cost for

all people (i.e., cjki ≡ cjk), each person will shift their behavior the same amount in

response to a given decision rule β. As a result, the method will maintain the same

coefficient on the manipulated behavior, regardless of how easy it is to manipulate.

In that case, only the constant term need be adjusted. Although this does not affect

predictive performance, individuals may incur substantial costs manipulating. We

demonstrate this in a simulation in the Supplemental Online Appendix (section S4).11

Signaling and noise Second, our solution anticipates that manipulation may be

heterogeneous across people: our moment expectations are taken over the distribution of

gaming ability. This typically accounts for most of the adjustment of our method, and

can affect the decision rule in two ways. If the people who find it easier to manipulate

are differentially likely to have higher values of the outcome (yi), manipulation

represents a signal of the underlying type (as in Spence (1973) and Nichols and

11Please note that this paper contains two distinct appendices: The main Appendix included at
the end of this manuscript (where sections are prefaced with “A”), and the Supplemental Online
Appendix (where sections are prefaced with “S”).
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Zeckhauser (1982)). Our method will exploit these correlations, and will tend to

increase the weight on behaviors that are easy for the targeted people to manipulate

(demonstrated in a simulation in the Supplemental Online Appendix Section S4.2).

On the other hand, there is often additional variance in manipulation ability between

people that is not observably related to the outcome. Unlike revelation mechanisms

where a person’s type can be inferred from their behavior, in our setting, like the

theoretical settings of Frankel and Kartik (2019, 2020) and Ball (2019), individuals

have both heterogeneous types and heterogeneous ability to shift their behaviors. As

a result, the people with more desirable behaviors are a combination of those with

more desirable types and those with higher ability to game, regardless of type. This

unobserved variance will tend to ‘muddle’ the relationship between a behavior xi and

type xi (Frankel and Kartik, 2019). Because the mapping may not be one-to-one,

types may not be fully revealed. In these cases, our method will tend to attenuate the

coefficients of behaviors for which there is a lot of unobserved variance. When the

method attenuates the coefficients on manipulable behaviors, this force is typically

the major reason.

Subgame perfection Third, our solution anticipates the gradient of those behaviors:

how xi would respond if β were to deviate off path. This is because the right-hand

side of equation (4) differs from orthogonality, and results in a Stackelberg or subgame-

perfect equilibrium. In contrast, standard estimators assume that if β were to deviate,

xi would remain fixed. In that sense, standard approaches compute a one-step best

response. Thus, even if one trained a standard decision rule on data from a strategy-

robust equilibrium (yi,x
∗
i (β

SR)), it would result in a different decision rule that would

escape the equilibrium.12 In similar settings, Ball (2019) and Frankel and Kartik (2020)

show theoretically that a Stackelberg solution like ours that anticipates reactions

(and thus commits to not exploit partial equilibrium correlations) can lead to better

predictive performance than repeated best responses.

12β = βSR is a solution to Ei
[
x∗i (β

SR)εi(β,x
∗
i (β

SR))
]

= 0 only if the right hand side of

equation (4) is zero.
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Performance

Through further simulations, we illustrate how the strategy-robust approach can

produce better decisions when people manipulate behavior. Table 1 simulates a

scenario with three behavioral features, where x1 is initially more predictive of the

individual’s type (b1 = 3) than the other two features (b2 = b3 = 0.1); however, x1

is also easier to manipulate (c22i = 2 · c11i and c33i = 4 · c11i) and is subject to more

noise. (We assume that the noise is proportional to the manipulation cost.) Through

further simulations, we illustrate how the strategy-robust approach can produce better

decisions when people manipulate behavior. Table 1 simulates a scenario with three

behavioral features, where x1 is initially more predictive of the individual’s type

(b1 = 3) than the other two features (b2 = b3 = 0.1); however, x1 is also easier to

manipulate (c22i = 2 · c11i and c33i = 4 · c11i) and is subject to more noise. (Here the

noise is proportional to the manipulation cost.)

Panel B of Table 1 illustrates the performance of two status-quo approaches to

constructing decision rules. In the first row, OLS models the static relationship

between features and the outcome. This approach would perform well if behavior

were fixed (as indicated by the low squared loss in training data); however, once

people respond to the decision rule, the OLS rule leads to very poor decisions (the

loss ‘when implemented’). The next set of rows in Panel B illustrate a common

‘industry’ approach, in which the OLS model is periodically retrained. For instance,

after observing behavior in the first period (when the rule βOLS is active), the model

is then re-trained to obtain βOLS(2), which places lower weight on the manipulated

x1. However, once people respond to this new rule, it also performs poorly. As this

process continues, the rule always appears to predict well on the training sample

but makes poor decisions when actually implemented. In this case, the process does

not converge; it alternates between decision rules that place high and low weight on

x1.
13 Thus, standard approaches can perform poorly even in stable settings with

perfect information. In settings with noise or frictions in learning, a system might

unexpectedly and catastrophically fail when the other side discovers how to exploit it.

In contrast, the strategy-robust decision rule (βSR in Panel C) adjusts the coef-

13These oscillations can be dampened by using cumulative data from all prior periods, as shown in
the Supplemental Online Appendix (section S4.2.1). However, that still takes several iterations to
converge, and the resulting equilibrium is inferior to that of the strategy-robust approach.
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Table 1: Manipulation Can Harm Prediction (Monte Carlo)

Decision Rule Performance (squared loss)

β1 β2 β3 α On training data When implemented

Panel A: Data Generating Process (Unmanipulated)

bDGP 3.00 0.10 0.10 0.20 0.27 3745.05

Panel B: Standard Approaches

βOLS 3.04 0.06 0.12 0.21 0.27 3961.23

Industry Approach

βOLS(2) 0.06 2.09 −1.68 −0.80 3.28 625.76

βOLS(3) 3.11 −0.04 0.22 0.17 0.27 4332.21

βOLS(4) 0.12 2.08 −1.67 −0.76 3.07 619.06
...

βOLS(1001) 3.74 −1.34 1.57 −0.39 1.38 11 611.88

βOLS(1002) 0.70 1.86 −1.53 −0.40 1.67 565.38

Panel C: Strategy-Robust Method

βSR 0.50 0.54 −0.10 −1.81 9.16 1.94

If policymaker knows only the distribution of costs between individuals:

βSRCiq=bootstrapi(Ci) 0.31 0.49 0.15 −0.74 7.00 3.38

If costs are misestimated:

βSRCiq≡2·diag(Ci) 0.66 0.72 −0.35 −1.57 6.89 10.83

Notes: Monte Carlo simulation results. Panel A shows the coefficients that relate the outcome (y) to behaviors
(x) under the data generating process (DGP). Panel B shows coefficients from OLS. For the industry approach, the

training data for βOLS(r) is the manipulated data from when βOLS(r−1) is assigned. Panel C shows coefficients
estimated with the strategy-robust method with costs known during training (Ciq ≡ Ci); with heterogeneous
costs bootstrapped between individuals over 10 draws; and with costs mis-estimated to be double and to omit
off-diagonals. Performance is assessed on the same sample of individuals under the training data, and when the
data is manipulated. Parameters:

Ci = 1
γi

 1.0 0.1 0.2

0.1 2.0 0.8

0.2 0.8 4.0

 , x
iid∼ N

0,

 1.0 1.0 0.1

1.0 2.0 1.0

0.1 1.0 1.0


, γi =

{
1 xi1 ≤ 0.2

10 xi1 > 0.2
, ei

iid∼ N(0, 0.25)
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ficients by penalizing the behavior x1 which has more manipulation noise, instead

shifting weight to behaviors that are harder to manipulate (x2 and x3). It anticipates

manipulation off-path, sacrificing performance in the environment in which it is trained

(in-sample, no manipulation) for performance in the counterfactual implementation

environment where there will be manipulation. When individuals manipulate as

described in the model, the strategy-robust decision rule exceeds the performance of

standard estimators.14

Our method performs similarly well when the policymaker knows only the distri-

bution of costs C and not the cost of each individual in its training sample (second

to last row of Table 1). The method can also reduce risk when behavioral responses

are misestimated. For instance, the last row considers the case where all off-diagonal

elements are erroneously set to zero, and the estimated costs of manipulation are two

times too large. Performance deteriorates relative to the case where we know the true

cost matrix, but our method still outperforms OLS in the presence of manipulation.

Regularization and the social cost of manipulation

One may wish to add additional terms into ‘. . .’ in equation (3), for two reasons. First,

strategy-robust rules may be estimated on samples, in which case it can improve

out-of-sample counterfactual fit to combine the strategy-robust adjustment with

a regularization term such as RLASSO
λ (β) = λ

∑
k |βk|. We use this approach in

our experiment (Section 3) and demonstrate in a simulation (Supplemental Online

Appendix S4).

Second, when the policymaker cares about not only the resulting allocation, but also

the costs that individuals incur manipulating, one may include a function describing

this cost, M(·). A policymaker that is narrowly concerned with their own objective

may thus select different decision rules from one that cares about social welfare: for

instance, a profit-maximizing firm may be satisfied with an equilibrium where all

individuals expend welfare gaming a test; a social planner may not be.

14The strategy-robust approach can also be combined with the industry approach by using the
strategy-robust approach first, then iteratively retraining – see Supplemental Online Appendix
(Section S4).
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3 Field Experiment in Kenya

We designed a field experiment to test the performance of strategy-robust decision rules

in a real-world setting. Working with the Busara Center for Behavioral Economics in

Nairobi, we developed and deployed a new smartphone-based application (‘app’) to

1,557 research subjects.

The app was designed to mimic key features of ‘digital credit’ applications that

have become wildly popular in recent years and which are transforming how consumers

in developing countries access credit (Bharadwaj and Suri, 2020; Suri et al., 2021). In

a typical digital credit application, lending decisions are based on an ‘alternative credit

score’ that is constructed by applying machine learning algorithms to data on how

the loan applicant uses their phone (Björkegren, 2010; Francis et al., 2017; Björkegren

and Grissen, 2020). At the time of our field experiment, CGAP (2018) estimated that

27% of Kenyan adults had an outstanding ‘digital credit’ loan. Yet, there is mounting

evidence that digital credit is a domain where manipulation is problematic. In one

example, Bloomberg covered a story where “a scam artist studied the loan-approval

patterns for several months, using 30 different sim cards to generate data sets and

deciphering the lender’s algorithms. He fleeced the firm of $30,000 in one day and

then vanished.”15 The potential for manipulation is also salient to everyday customers:

in a survey conducted in Kenya and Tanzania, respondents listed the desire to obtain

larger digital loans as one of the top-five reasons for saving money in their mobile

money accounts (FSD Kenya, 2018).

This section describes the app and experimental design; estimates costs of manipu-

lation and derives strategy-robust decision rules using our method; and compares the

performance of these new algorithms to traditional learning algorithms. Our design

was pre-specified in a pre-analysis plan registered in the AEA RCT registry under

AEARCTR-0004649.

15Bloomberg Technology, Sep. 22, 2015. American Banker similarly describes how fraudsters
have learned to take out large loans by manipulating a sequence of loan applications (https:
//www.americanbanker.com/news/how-fraudsters-are-gaming-online-lenders).
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3.1 Experimental design and smartphone app

We designed our experiment to create incentives similar to those of a digital credit

lending app. These apps run in the background on a smartphone, and collect data

on phone use (including data on communications, mobility, social media behavior,

and much more). Digital credit apps use this information to allocate loans to people

who appear creditworthy (i.e., for whom ŷi exceeds some threshold). Since financial

regulations prevented us from actually underwriting loans to research subjects, we

instead focused on analogous problems where a decisionmaker wishes to allocate re-

sources to individuals with specific characteristics—for instance, by paying individuals

who have a certain income level, or other characteristic (e.g., level of intelligence or

education).16

Smartphone app The ‘Smart Sensing’ app we created has two key features. First,

it ran in the background on the phone to capture anonymized metadata on how

individuals use their phones, such as when calls or texts were placed, which apps were

installed and used, geolocation, battery usage, wifi connections, and when the screen

was on. In total, we extract over 1,000 behavioral indicators (“features”). Second,

the app delivered weekly “challenges” to participants, which appeared on the user’s

phone, and which provided financial rewards based on the user’s behavior (see Figure

2). We describe these challenges in greater detail below. Participants were paid a

base amount of 100 Ksh. for uploading data, plus any challenge winnings, directly via

mobile money at the end of each week.

Study population and recruitment The subject population consists of Kenyans

aged 18 years or older who own a smartphone and could travel to the Busara center in

Nairobi. Participants were recruited in person in public spaces in Nairobi, and were

invited for an enrollment session at the Busara center. During enrollment, participants

completed a baseline survey, and were asked to install and keep the Smart Sensing

app on their phones for roughly 16 weeks. During the consenting process, participants

were told the dimensions of behavior that would be recorded by the app, and were

16While these prediction targets differ from credit-worthiness, there are many settings where similar
characteristics are inferred by digital traces (for example, social assistance programs that target the
poor (Aiken et al., 2021), or digital advertisers who target college students).
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Figure 2: Smart Sensing App

(a) Installation Screen (b) Challenge under Transparency (c) Earnings Calculator

given the opportunity to ask questions. Participants had the opportunity to view the

Android permissions required for the app to function properly, and generally appeared

to understand the privacy tradeoffs involved in participation. Our sample includes

only participants who opted in. 83% of participants elected to receive challenges in

English, 16% in Swahili, and 1% in both languages.

Weekly rhythm The study followed a weekly rhythm. Each Wednesday at noon,

each participant received a generic notification on their phone that said, ‘Opt in to see

this week’s challenge!’ If the participant opened the app and opted in, they were shown

information about the decision rule they faced that week (see Figure 2). Challenges

were valid until 1pm Tuesday. At the conclusion of the challenge, participants had 21

hours to ensure that their data was uploaded (i.e., until 10am Wednesday). Busara

then determined how much each participant should be paid, and payments were sent

via mobile money by noon Wednesday, at which point the next week’s cycle would

begin.17

17Participants could attrite by not opting in to the weekly challenge or by not uploading their
data. In either case, the Busara center attempted to contact such individuals via text message and
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Randomization of decision rules Each week, each participant was randomly

assigned to one of three types of decision rules: control, simple, or complex. The

control decision rules (β0 ≡ 0), which were deployed during the first few weeks of

the experiment, did not require any action from participants; each individual who

successfully uploaded their data received the same reward irrespective of how they

used their phone in that week.18 Each simple rule made decisions based on one

specific behavior (βk = βkδk), and were of the form, ‘We’ll pay you βk for each xk

you do’, where behavior k and amount βk were assigned randomly. Most incentive

amounts were positive but some were negative (participants were incentivized to

reduce behavior).19 For example, one simple challenge was, “You will receive 12 Ksh.

for every incoming call you receive this week, up to Ksh. 250.” The control and simple

decision rules were used to collect training data.

Finally, in the last part of the study, we assign complex decision rules. These were

designed to mimic real-world applications of machine learning, in which people can

receive a desirable benefit based on how they are classified. An example is depicted in

Figure 2. The complex decision rules were of the form, ‘We’ll pay you m if you are

classified as ŷ.’ Our main analysis focuses primarily on responses to one such challenge,

‘Earn up to 1000 Ksh. if the Sensing app guesses you are a high-income earner’; the

results pooled over all complex challenges are provided in the Supplemental Online

Appendix (Table S1).

Predicting user characteristics from app data

Using data from the ‘control’ weeks, where the app collected data on user behavior

but did not provide incentives for people to change their behavior, we assess the

phone call, following an attrition protocol detailed in the Supplemental Online Appendix (Section
S1.4). We include in our analysis only participant-weeks where the participant opted in and uploaded
during the end-of-week upload window.

18Specifically, the subject received a challenge of the form, ‘Dear user, you do not have to do
anything for this week’s challenge. You will receive an extra Ksh 100 for accepting this challenge.’

19Each individual’s payment level for k was drawn from {−2rk,−rk, rk, 2rk, 4rk, 8rk}, for scalar rk.
We scaled the payout for each behavior so that the maximum payout could be achieved by someone
reaching the 90th percentile of baseline behavior. Given budget constraints we were not able to assign
simple challenges for all measurable behaviors, so we assigned simple challenges for behaviors k that
were predictive of main outcomes in control weeks, or similar to a predictive behavior. For example,
if outgoing calls were predictive, we also include a corresponding measure based on incoming calls.
See Supplemental Online Appendix Section S1.5.
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Table 2: Behavior Predicts Individual Characteristics

Monthly Income Intelligence

(Above Median Ravens)

Mean Duration of Evening Calls -0.559 (3.702) 0.0001 (0.0002)

Mean Duration of Outgoing Calls -1.770 (8.965) -0.0007 (0.0004)*

Calls with Non-Contacts -42.023 (14.033)*** •• -0.002 (0.0006)***

Outgoing Text Count •• 10.211 (12.396) 0.0004 (0.0006)

Incoming Text Count • 3.888 (7.974) •• -0.0002 (0.0004)

Evening Text Count • -9.029 (7.815) -0.0002 (0.0003)

Outgoing Call Count •• 76.752 (18.133)*** 0.002 (0.0008)*

Missed Outgoing Call Count -84.533 (31.636)*** • -0.003 (0.0014)**

Outgoing Texts on Weekdays -15.023 (15.210) -0.001 (0.0007)

Max Daily Incoming Text Count 2.901 (21.212) • 0.003 (0.0009)***

Intercept 5651.04 (430.141)*** 0.480 (0.019)***

N (individuals) 1539 1557

R2 0.026 0.027

Notes: Each column represents a regression of the outcome characteristics (column header) on behaviors
measured through the Sensing app (rows) Observations include data collected during the first week the
participant used the sensing app. Standard errors in parentheses. * = 10 percent significance, ** = 5
percent significance, *** = 1 percent significance. • : included in incentivized naive LASSO model, • :
included in incentivized strategy-robust (SR) model.

extent to which a user’s characteristics can be predicted based on how they use their

phone. In Table 2, we observe that phone data can weakly predict monthly income

and intelligence (above-median performance on Raven’s matrices).20

3.2 Evidence that simple decision rules induce manipulation

Participants change behavior when facing simple algorithms. We show this using data

from the ‘simple’ rules that form decisions based on one specific aspect of phone use

(such as increasing the number of incoming calls). Table 3 presents a regression of

each participant’s weekly level of different behaviors (columns) on randomly assigned

incentives to change specific behaviors (rows). There are three takeaways. First,

individuals manipulate the behaviors that are incentivized, as shown by the diagonal,

which is positive and significant for most behaviors. Second, some behaviors are

20The relatively low predictive power (R2 ≈ 0.03) is likely due to the fact that we have a small
sample of relatively homogeneous users that are observed for short time spans. We estimate the
regression model over the subset of predictors which were selected as predictive by LASSO, and for
which we estimate costs in the experiment (Section 3.3).
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more manipulable than others. For example, the number of texts sent was 49 times

more responsive to incentives than the number of people called during the workday.

And finally, incentivizing one behavior can affect others, as shown in the off diagonal

elements. For example, incentivizing missed incoming calls also increased the number

of texts sent (it may be that people sent messages to ask their contacts to call them

back). In theory, our method can exploit these cross-elasticities, though many are

noisily estimated in our data.

Table 3: Behavior Changes when Incentivized

Behavior incentivized Behavior observed (change per ¢ of incentive)

# Texts # Missed # Missed # People called # Calls

sent calls calls (Workdays, i.e. w non-contacts

(incoming) (outgoing) M-F, 9am-5pm) (weekends)

# Texts sent 24.51 -0.052 -0.836 -0.305 -0.022

(3.202)*** (0.588) (0.87) (0.217) (0.368)

# Missed incoming calls 4.15 0.708 0.825 0.128 -0.002

(2.196)* (0.403)* (0.597) (0.149) (0.252)

# Missed outgoing calls -0.213 0.324 1.187 0.22 0.502

(2.856) (0.524) (0.776) (0.194) (0.328)

# People called 2.308 0.156 0.679 0.497 0.108

(workday) (2.505) (0.46) (0.681) (0.17)*** (0.288)

# Calls w non-contacts -2.019 -0.056 1.234 0.015 1.233

(weekends) (2.866) (0.526) (0.779) (0.194) (0.329)***

Individual Fixed Effects X X X X X

Week Fixed Effects X X X X X

N (person-weeks) 7966 7966 7966 7966 7966

R2 0.704 0.552 0.637 0.604 0.491

Notes: Standard errors in parentheses. Bold indicates diagonal: effect on behavior j when behavior j is
incentivized. Each column represents a separate regression over the full set of behaviors assigned; only
the first five coefficients reported here. N represents person-weeks during which ‘simple’ (single behavior)
challenges were issued. * p < 0.1, ** p < 0.05, *** p < 0.01.

Separately, we find that behaviors that are to easier to manipulate on average also

have a higher variance between people when incentivized. That is, behaviors that

are hard to manipulate tend to be hard for everyone, but behaviors that are easy to

manipulate on average tend to be differentially manipulable for different people. This
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relationship is nearly proportionate (shown in Supplemental Online Appendix Section

S2.1), suggesting an approximation allowing separable heterogeneity by behavior and

by individual.

3.3 Parameterization and estimation

Having confirmed that, as expected, participants manipulate behavior when facing

a decision rule, we next show how the data from the control and simple decision

rules can be used to estimate the primitives of our model.In our context, given

experimental variation in the decision rules during training, we first impose structure

on the behavioral response (i.e., on the manipulation costs C), and then use GMM to

estimate those structural parameters from ‘training’ data (control and simple weeks).

We show how those parameter estimates can be used to construct strategy-robust

decision rules, and then, in Section 3.4, empirically evaluate those rules using separate

implementation data collected during the final stage of the experiment.

Parameterizing behavioral response

We parameterize manipulation costs to make better use of our limited sample. We

assume that manipulation costs take a quadratic form.21 We allow for separable

heterogeneity by behavior (jk) and person (iq), parameterized as

cjkiq =
1

γiq
· cjk.

We allow individual gaming ability, γiq = e−ω
′zi + vq, to vary with self-reported tech

skills zi ∈ {0, 1}, and with unobserved heterogeneity vq ∼ V (where Evq = 0).22

Separability in heterogeneity implies that the noise induced by manipulation in

behavior j will be proportional to its cost of manipulation cjj. As a result, this expects

that behaviors that are more manipulable on average are more subject to manipulation

noise, and our method will tend to attenuate their expression in decision rules.

21In the Supplemental Online Appendix (Section S2.1), we show that the quadratic cost assumption
is a reasonable (if imperfect) approximation of how people respond to variable incentive amounts.

22Tech skills explained the most heterogeneity in preliminary analysis. It is known only for the
sample used to estimate primitives, but not for the implementation sample. Spence signaling will
only be captured in this dimension of heterogeneity.
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Estimating costs and other primitives

We use the simple and control challenges that were deployed during the first few weeks

of the experiment to obtain training data to estimate manipulation costs and other

primitives (xi). Full details of the estimation procedure are provided in Appendix

A1; the Appendix also describes how estimation would work in a brownfield setting

where primitives are estimated after decision rules have already been implemented. It

also shows how an adapted procedure can be used in a ‘one shot’ setting where each

individual’s behavior is observed only once (in our case, given the cost of onboarding

new participants, we use multiple observations per individual to increase statistical

power). When estimating costs, we regularize towards standard methods (such as OLS

and LASSO). In particular, we penalize off-diagonal elements to zero because they are

otherwise noisily estimated in our sample; this results in a diagonal cost matrix C.

The estimated costs of manipulation, for the main behaviors selected by our

models, are summarized in Table 4; additional behaviors are contained in Appendix

Table A1). Several intuitive patterns to the costs of manipulation can be seen in the

top panel of Table 4. Outgoing communications are less costly to manipulate than

incoming communications. Text messages, which are relatively cheap to send, are

more manipulable than calls, which are relatively expensive. Simpler behaviors (such

as the number of texts sent) are more manipulable than complex behaviors (such as

the standard deviation of texts sent by day; see Appendix Table A1).

Costs are also heterogeneous across people, as shown in the bottom panel of Table

4. On average it is 9% easier for individuals who report advanced or higher tech skills

to manipulate behaviors. Including unobserved heterogeneity, the 90th percentile of

gaming ability finds it twice as easy to game as the 10th percentile. As noted, this

spread in manipulation ability, and how it correlates with the outcome, is a primary

reason that our method generates different decision rules.
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Table 4: Estimated Manipulation Costs

Heterogeneity by Behavior (C diagonal; subset of behaviors selected by models)

text you send

text you receive

text you send or receive in the evening (6pm−10pm)

time you call someone

second of your shortest weekend call

each different person you text or are texted by

time you receive a call

call you make that's missed

call with someone not in your contacts

text you receive on the day you receive the most texts

person who texts you

second of your average evening (6pm−10pm) call

second of your average call duration

        0.03

        0.04

        0.06

        0.48

        0.64

        1.02

        1.11

        1.91

        1.93

        3.47

        6.04

   19,761.46

3,108,632.19
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Parameters estimated using GMM. Top panel shows only behaviors used in models (• : naive LASSO,
• : strategy-robust); for all behaviors see Appendix Table A1. In cost matrix, off-diagonal elements
are regularized to zero (λcostsoffdiagonal →∞), diagonal elements are regularized with λcostsdiagonal = 1.0,
set via cross validation. vq plot omits top 5 percent of observations.
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Estimating Decision Rules

Once the primitives are estimated, the strategy-robust decision rules can be constructed

using the empirical analogue of equation (3):

αSR,βSR = arg min
α,β

[
1

N

∑
i

[
1

Q

∑
q

[
yi − α− β′(xi + C−1

iq β)
]2

+Rλ(β,y,Cq)

]]

which uses estimates of xi and Q random draws of the cost matrix Ciq, where draws

vq ∼ V are treated as random effects.23 In order to keep decision rules simple and

interpretable for our participants, we use LASSO regularization in Rλ(·) to restrict

decision rules to have at most three predictors.24 The distribution of unobserved

gaming ability V is affected by a shrinkage parameter, which we calibrate based on

performance on the first few weeks of decision rules (see Appendix A1).

3.4 Results: Näıve vs. Robust Decisions

The final and most important stage of the experiment compares decisions made

by algorithms trained with the standard approach to those made by the strategy-

robust approach that anticipates manipulation. As discussed above, the decision rules

themselves are constructed using estimates of primitives obtained during the first

few weeks of the experiment. We evaluate the performance of those decision rules

using data collected during the latter stages of the experiment. Importantly, there is a

clear line between these two stages; aside from the decision rule itself, no information

collected during the first stage of the experiment (such as responses to the baseline

survey, or any other individual-specific information) is considered by the decision rule

23We estimate xi as the simple average of xi during control weeks (without week fixed effects).
Due to the tight experimental timeline, the implemented decision rules were derived from preliminary
estimates of Ci. The main tables report the decision rules as assessed by final cost estimates; as
shown in the Supplemental Online Appendix (Section S2.3) decision rules resulting from preliminary
and final cost estimates are similar. The main analysis further omits select weeks when upload servers
were offline and there was a mistake in computing the heterogeneity parameter; the Supplemental
Online Appendix (Section S2.3) shows that our results are robust to their inclusion.

24Specifically, we regularized näıve LASSO decision rules with λ = max(λcv, λ3var), where λcv is
the cross-validated penalty parameter and λ3var is the smallest that resulted in a 3-variable model.
We set the regularization hyperparameter λ with cross validation in the unmanipulated baseline
sample, and use the same λ to penalize our strategy-robust decision rule.
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during the evaluation.25

Main Experimental Treatments

Participants were randomly assigned into different target outcomes (y), decision rules

(standard βLASSO, or strategy-robust βSR), and whether the decision rule was opaque

or transparent to the user. Under the opaque treatment, users were told only the target

outcome and the reward (e.g., Figure 2b without the Hint). Under the transparent

treatment, users saw the coefficients of the decision rule, which revealed how much

they would be rewarded for each behavior, and an interactive earnings calculator (e.g.,

all of Figure 2b and c). Because the transparent treatment revealed information about

potential decision rules, after a person had seen a transparent challenge for a given

outcome, we did not assign them to an opaque challenge for the same outcome.

Table 5 provides suggestive evidence of how decision rules affect behavior. The

first panel simply indicates the näıve estimated decision rule: high-income people

make more outgoing calls, send fewer texts, and receive more texts. In the second

panel, we see that if people are rewarded when they ‘act like a high-income earner’

but are not told the decision rule, the response is not statistically significant and

often in the wrong direction on average (i.e., participants place fewer calls and send

more texts). However, participants assigned the transparent treatment change their

behavior broadly in the direction rewarded by the algorithm, though the response is

measured with noise.

Performance of decision rules

Our main empirical results, shown in Table 6, compare the performance of näıve

and strategy-robust decision rules. The first two columns (under ‘Income’) show

results for the challenge that rewarded participants for using their phones like a

high-income earner; the last two columns show the performance averaged across both

the income challenge and an intelligence challenge (measured using Raven’s matrices).

25One could be concerned that despite this, performance assessed in our final stage may be
artificially high because it uses average costs estimated based on the responses to incentives of a
sample that includes some of the same individuals. In a robustness test, we evaluate the performance
of our decision rules on a sample that excludes individuals who received a decision rule during the
first stage that provided incentives to change a behavior that was selected in the second state decision
rule. Results are similar; see Supplemental Online Appendix Table S1, columns 3-4.
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Table 5: Agents Game Algorithms

Calls Texts Texts Calls w con-contacts Avg call length
(outgoing) (outgoing) (incoming) (incoming + outgoing) (evening, seconds)

Panel A: Incentives generated by algorithm (¢/action)

βLASSO 0.625 -0.395 0.065 0 0

Panel B: Regression of xit (column label) on treatment assignment (row label)

Opaque challenge -4.7 12.5 11.1 0.8 -4.3

(8.6) (17.2) (20.7) (3.4) (7.1)

Transparent challenge 13.7 -17.5 -6.5 0.3 -2.1

(7.9)* (15.7) (19.0) (3.1) (6.5)

N (Person-weeks) 1651 1651 1651 1651 1651

Notes: Panel A reports the decision rule associated with the challenge, ‘Earn up to 1000 Ksh. if
the Sensing app guesses you are a high-income earner!’. Panel B reports how behaviors (indicated
by columns) changed when participants were randomly assigned to the opaque challenge (which
provided no information about the decision rule) or the transparent challenge (which revealed the
details of the decision rule).The sample includes all people who were assigned the income challenge
(either opaque, or the transparent LASSO model), in control weeks and the week they were assigned
that challenge. Standard errors in parentheses. * p < 0.1.

The decision rules and associated manipulation costs are shown in the top panel

(“Decision Rules”); the relative performance of the different decision rules is shown

below (under “Prediction Error”). We note several results.

First, in Panel A, we observe important differences in the decision rules. LASSO

places weight on the behaviors that were most correlated at baseline: outgoing calls,

outgoing texts, and incoming texts. However, some of these behaviors, particularly

text messaging, are quite manipulable (as shown in the ‘Costs’ column) and subject to

manipulation noise. Although in general the adjustments made by the strategy-robust

approach can be subtle depending on how gaming ability correlates with the outcome,

here the decision rule attenuates or drops behaviors that are more manipulable (i.e.,

it drops incoming texts in favor of evening texts).

We evaluate predictive performance using root mean squared error (RMSE), in

units of US dollars, in Panel B. This measures how far off the payments we gave to

people (based on the model and their behavior that week) were from what we desired

to give to them (based on their fixed characteristic that was targeted). The first pair
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Table 6: Strategy-Robust vs. Standard Decision Rules

Pooled: Income

Income Costs & Intelligence

βLASSO βSR cjj βLASSO βSR

Panel A: Decision Rule ¢/action ¢/action
2

# Texts (outgoing) -0.395 -0.107 0.035 . .

# Texts (incoming) 0.065 0 0.037 . .

# Texts (6pm-10pm) 0 -0.121 0.057 . .

# Calls (outgoing) 0.625 0.542 0.480 . .

Intercept (α) 301.071 304.622 . .

Panel B: Prediction Error RMSE ($) RMSE ($)

Baseline Data: Control 3.574 3.583 4.273 4.278

Baseline Data: Predicted Transparent 3.672 3.585 4.328 4.279

Implemented: Opaque 3.549 3.525 4.224 4.216

Implemented: Transparent 3.675 3.484 4.356 4.189

Average Payout ($) 3.34 3.25 4.21 4.18

N (Control Individuals) 1376 1376 1391 1391

N (Treatment Person-Weeks, Opaque) 75 75 156 156

N (Treatment Person-Weeks, Trans.) 90 74 166 154

Notes: Panel A reports the decision rule associated with the challenge, and the costs associated
with manipulating these behaviors. Panel B reports the performance of each decision rule by
outcome, root mean squared error (RMSE) at the week-model level. Pooled metrics present the
mean RMSE across models. Predicted Transparent represents the average expected performance
of models given the theoretical model, behavior incentives, and estimated costs. Implemented
Transparent/Opaque represents the average performance of models when assigned with/without
transparency hints. Average payout represents the average payout to recipients based on model
coefficients, given observed behavior. SR model estimated using preliminary costs estimates. Full
results reported in Supplemental Online Appendix Table S1.
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of rows report the prediction error that would be expected ex ante if behavior were

the same as the control weeks. The first row shows that if there were no manipulation,

LASSO would be expected to perform marginally better than our strategy-robust

estimator (by $0.01 for income; $0.005 for income and intelligence pooled). The second

row shows the error predicted by our model if the rule were made transparent and

people were manipulating behavior: here, the strategy-robust method is expected to

perform better (by $0.09 for income; $0.05 pooled).

The next pair of rows report the prediction error that we actually obtained when the

decision rules were implemented experimentally. These may differ from the expected

prediction error either if people respond differently than anticipated by our model,

or because of noise from week to week. Here, we find that the strategy-robust (SR)

method performs better than LASSO when participants are given full information

about the decision rule (by $0.19 / 5% for income; $0.17 / 4% pooled). The strategy-

robust method also performs slightly better when the decision rule is opaque (by $0.02

/ 0.6% for income; $0.01 / 0.2% pooled) — possibly because of increased shrinkage

relative to standard LASSO. Table A2 shows detailed results for both the income

and intelligence outcomes, and the Supplemental Online Appendix shows that the

performance improvements are even larger when all outcomes are considered: under

full information, SR outperforms LASSO by 12%; under opacity, SR outperforms

LASSO by 1% (see Supplementary Online Appendix Table S1).

Overall, the strategy-robust adjustment provides two benefits. When applied

during training, it produces models that perform better when implemented and made

transparent. And when applied during evaluation, it better anticipates the performance

a model will achieve in the real world. Even if a policymaker intended to keep the

decision rule opaque, using the strategy-robust method can reduce systematic risk

in the chance that agents discover the decision rule. In practical implementations,

policymakers could adaptively tweak the level of robustness to match the level of

manipulation.
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Figure 3: Manipulation Costs vs. Baseline Predictive Power
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Each dot is a feature (i.e., a behavior recorded in the smartphone app). The x-axis indicates the
highest R2 across income and intelligence; the y-axis indicates the estimated manipulation cost. A
subset of illustrative features are labeled in gray.

4 Discussion

4.1 Contrast to standard approaches

The standard approach to evaluating machine learning estimators evaluates each

predictor based on its correlation with the outcome within a training dataset. However,

as can be seen in Figure 3, features that appear equally predictive in a training dataset

can have wildly different manipulability. The figure compares the average estimated

cost of manipulation (y-axis) to the baseline predictive power (x-axis) of several dozen

features from our experiment. We observe that some of the most predictive features

(like the average battery level on the person’s phone) are also very easy to manipulate:

a standard model that selects those features could perform very poorly when people

manipulate behavior.

We also compare our method to two common approaches to manipulation, simu-

lating performance using our experimentally estimated model of behavior.
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Contrast with the ‘intuitive’ approach

An alternate intuitive approach would be to train a standard estimator but simply omit

behaviors that are most manipulable (e.g., by only considering features above some

y-axis threshold on Figure 3). We assess this approach in the Supplemental Online

Appendix (section S4.3). This ‘intuitive’ approach reduces the predicted manipulability

of models, but – as suggested by Figure 3 – also removes from consideration useful

predictors, in some cases by so much that it decreases the predicted performance.

In extreme cases, regularized models such as LASSO can be left with no behaviors

that are predictive enough to include in the regression. In contrast, our approach

can extract signal even from manipulable behaviors, and performs better in these

simulations.

Contrast with the iterative ‘industry’ approach

A second approach involves iteratively re-training a näıve machine learning estimator

after people have responded to the previous decision rule. With both income and

intelligence, we observe that the simulated performance of this method approaches

the strategy-robust method after approximately 4 iterations of consumers being made

aware of a new rule, adapting behavior, and then the policymaker retraining the

algorithm (see Supplemental Online Appendix, Section S4.3). However, simulated

performance of this iterative approach then begins to deteriorate. When predicting

income this deterioration is small, but for intelligence, performance eventually falls

below the performance obtained before any retraining.26

4.2 Performance cost of transparency

While society increasingly demands transparency in machine decisions, transparency

can facilitate manipulation, which may reduce the quality of those decisions.

Our setting allows us to estimate this performance cost of transparency by compar-

ing the performance of the näıve rule under opacity to the strategy-robust transparent

rule. The latter approximates the optimal performance that can be attained under

26This is foreshadowed by the difference in moment conditions between the methods (equation (4)):
even when trained on data from a strategy-robust equilibrium, standard methods may leave the
committed optimal decision rule, because they do not anticipate that agents will respond.
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transparency when resulting equilibrium manipulation is anticipated; the former ap-

proximates the optimal if opacity prevents all manipulation. Because the opaque rule

also faces the threat of manipulation, this difference represents an upper bound of

the true performance cost. Crucially, with our model, this quantity can be estimated

without revealing the decision rule: it only requires the estimation of the primitives

from the first part of our experiment.27

We estimate this cost of transparency in two ways: with our model and with our

experiment, shown in the final rows of Panel B of Table 6. Our model predicts that

transparency will reduce the performance of naive models by $4.328− $4.273 = $0.055

(1.2%) on average across income and intelligence, but that strategy-robust models will

perform similarly whether transparent or opaque. These predictions are similar to

the actual change in performance due to transparency that we find in our experiment:

$4.356− $4.224 = $0.132 (3%) for naive models, and negligible for our strategy-robust

models.28 The income and intelligence outcomes had a lower cost of transparency, on

average, than the other outcomes tested in our experiment; when we pool all outcomes

together we find that transparency reduced performance of naive models by 17% and

strategy-robust models by only 6%.

4.3 Alternate methods to estimate manipulation costs

Estimating a strategy-robust decision rule requires beliefs about the costs of manip-

ulating different behaviors. This paper demonstrates an experimental approach to

eliciting those costs, but alternative approaches may be better suited to other settings:

Expert elicitations. We evaluate how well experts can predict the costs of manipu-

lating different behaviors, in the spirit of DellaVigna and Pope (2016). We surveyed

experts with different backgrounds (PhDs from different fields, research assistants,

Busara staff who had not worked on the experiment, and Mechanical Turk workers in

the U.S.) to predict how Kenyans would manipulate different phone behaviors when

incentivized. We then infer the structural cost parameters implied by the predictions

of the 171 respondents. Results are shown in Figure 4.

27Our method of estimating costs does requires revealing the existence of features to users, but
does not require specifying whether those features are included in the model, or with what weights.

28Our results suggest that the cost of transparency is actually negative when the decision rule
targets high-income individuals, which is theoretically possible.
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Figure 4: Costs Elicited from Experts and Costs Measured in Experiment
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Notes: Each dot represents a behavior captured by the Sensing App. Y-axis indicates the cost of
manipulating that behavior, estimated through our experiment (Table 4). X-axis indicates costs

elicited from expert surveys, inferred as ĉjj = 1
Nsurvey

∑
i

βj

max(0.001,∆jji)
for each i surveyed.

Although experts generally predict that costs are too low, the correlation is 0.30.

If we use expert predictions of manipulation costs to train our model, and then assess

predicted performance with the experimentally estimated model, even these noisy

estimates improve simulated performance substantially for one outcome, and have an

inconsequential negative effect on the other, as shown in Table A3. This suggests that

expert elicitations show promise as a low-cost way to estimate manipulation costs.

See Supplemental Online Appendix Section S3.

First principles/structural approach. In some cases, it may be possible to estimate

the cost of underlying manipulations from market prices and first principles.29 A

structural model of costs would allow an implementer to account for changes in these

underlying parameters, suggesting how manipulation will change if, for example, the

price of calls changed, or a service emerged that made it easy to send automatic

29For example, the dark net price index (Gomez, 2020) reports the going price for online manipula-
tions from an investigation on web forums: the average rate for 1,000 Instagram likes is $6; 1,000
Twitter retweets go for $25, suggesting they are more costly to manipulate. One can also cost out
manipulation strategies: one can increase the number of non-contacts spoken with by randomly
dialing 10 digit numbers and hanging up after the recipient picks up. That costs the call price of
$0.04/minute plus the value of the time to dial a 10 digit number, divided by the fraction of such
numbers that are valid and pick up, which can be valued at the going wage.
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messages.

4.4 Social costs of manipulation

Our main specifications consider a narrow-minded policymaker who seeks only to

maximize predictive accuracy, such that M(·) ≡ 0 in equation (3). A socially-

minded policymaker may also weigh the costs that agents incur manipulating behavior.

Appendix Table A4 shows that as the loss function places more weight on the welfare

costs that agents incur manipulating, our method adjusts models, typically towards

even less manipulable behaviors.

4.5 Learning

While our main results compare performance when individuals have full knowledge

or no knowledge of the decision rule, in many settings the individual will have noisy

beliefs about how decisions are made. Here, we generalize to the case where individual

i believes the prediction function will be ˜̂yi ∼ Gi(ŷ) when the actual decision rule is

ŷ(·). Behavior follows the generalization of equation (1),

x∗i (ŷ(·)) = arg max
xi

[
E˜̂yi∼Gi(ŷ)

[
vi

(
˜̂yi(xi)

)]
− c(xi,xi)

]
. (5)

That is, agents balance the cost of manipulation against its expected utility gain.

Our main model is linear, which has no risk aversion (vi(ŷ) = ŷ), so that uncertainty

would not affect expected behavior. However, if individuals were risk averse (∂
2vi
∂y2

< 0),

then uncertainty about ŷ would reduce the incentive to manipulate (the first term).

A designer could then reduce manipulation by either obfuscating or by introducing

randomness into the decision rule. Although these approaches may be appropriate

in some settings (as with the drunk driving checkpoints described in Banerjee et al.

(2019)), they undermine a major goal of transparency: that people know how they are

evaluated.

In settings where risk aversion and uncertainty are important, one could explicitly

model these two objects with equation (5). Alternatively, the estimates of the linear

model may represent reasonable local approximations of the distribution of beliefs

and risk aversion in the sample. In particular, individuals often have difficulty
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understanding the complex functional forms that arise from modern machine learning

(Du et al., 2019; Poursabzi-Sangdeh et al., 2021), and commonly respond to linear

heuristics when facing nonlinear functions (Liebman and Zeckhauser, 2004; Rees-Jones

and Taubinsky, 2020). To make a decision rule robust to manipulation, it may be

sufficient to make it robust to these heuristic responses. In that sense, our linear

model may be viewed as an approximation of these beliefs.

5 Extension to Other Machine Learning Algorithms

This paper focuses on linear decision rules to sharpen intuition, but the core insight is

also relevant in nonlinear settings. Here we show how it could apply to a decision tree,

a class of model that can capture nonlinearities and high-dimensional interactions

that are also common in other machine learning models.

5.1 Strategy-Robust Decision Tree

We derive a model that generates data well described by a tree, develop an estimation

procedure, and then demonstrate in a simple example.

Model

Each individual i has some baseline behavior xi, and a true binary classification

yi = ei · (xi ∈ R) + (1− ei) · (xi /∈ R)

for some region R defined by interactions of xi, and noise ei ∼ Bernoulli(p). For

simplicity, assume vi(ŷ) ≡ ŷ.

We seek to classify individuals using some rule ŷ(xi) where observed behavior xi

may be manipulated at cost ci(xi,xi) =
∑

k cik1{xik 6= xik}. There is a fixed cost

cik to change each behavior k at all; if that cost is incurred, xik can be changed to

anything. Then observed behavior x∗i (ŷ(·)) will be consistent with

x∗ik(ŷ(·)) =

xik if ∆ik ≤ cik

arg maxxik ŷ([x∗i,−k, xik]) if ∆ik > cik
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where [x∗i,−k, xik] represents the vector given by x∗i with the kth position replaced by xik,

and the returns to manipulating dimension k are given by ∆ik = maxxik(ŷ([x∗i,−k, xik]))−
ŷ([x∗i,−k, xik]).

Estimation

Given this model of behavior, how should predictions be formed? We demonstrate

adding strategy-robustness to a textbook greedy tree algorithm (cf. Hastie et al., 2016,

section 9.2). This algorithm recursively applies binary partitions to x to obtain a

prediction rule of the form ŷ(xi) =
∑

m ymI(xi ∈ Rm), such that each region Rm has

an associated prediction ym.

To start, consider a candidate splitting variable k and split point s, and define

the half-planes R1(k, s) = {x|xik ≤ s} and R2(k, s) = {x|xik > s}. Then we seek the

splitting variable k and split point s that solve

min
k,s

[Qm(R1(k, s)) +Qm(R2(k, s))]

given a Gini index measure of error

Qm(R) =
2 · ||{yi ∈ Y ∗(R) : yi = 1}|| · ||{yi ∈ Y ∗(R) : yi = 0}||

||Y ∗(R)||2

where Y ∗(R) = {yi|x∗i (ŷk,s(·)) ∈ R} is the set of associated true labels for region R.

ŷk,s(·) represents the decision boundary that would result from holding all earlier splits

constant and adding a split at (k, s). Note that this anticipates that individual i may

manipulate xi to alter which region they are assigned to. In contrast, a näıve tree

would be identical but would replace Y ∗(R) with Y (R) = {yi|xi ∈ R}, i.e., it assumes

behavior is fixed.

After the first split is determined, one can recursively apply this rule in each of

the resulting regions, until a stopping condition applies. The associated prediction

for each region is given by ym = mode(Y ∗(Rm)) (or ym = mode(Y (Rm)) for the näıve

tree).
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Example

Figure 5 compares strategy-robust trees to standard decision trees, in examples with

two features.

In Figure 5a, both features x1 and x2 appear to be predictive of the binary label in

baseline data. But x1 is manipulable at low cost and differentiates only a small part of

the population.30 If we train a standard decision tree, as shown in Figure 5a (i), it will

split on both variables. However, given this tree, agents who would receive a negative

outcome (i.e., the red circles) will manipulate x1. This standard decision tree is not

stable: everyone will be classified as positive. In contrast, in Figure 5a (ii) we see

that after the strategy-robust tree splits on x2, it anticipates that if it were to split on

x1, that behavior would be manipulated and would not be predictive. It results in a

simpler tree. In particular, the original tree adds interactions that improves decisions

for a small group of people, but makes the entire algorithm vulnerable to manipulation

from a much larger part of the population. In this case, strategy-robustness attenuates

the tree, reducing the number of feature interactions and thus the model variance.

In Figure 5b, we provide an example where neither x1 nor x2 appear to be very

predictive of the binary label in the baseline data, but are differentially manipulable

by different types. A näıve tree as shown in Figure 5b (i) will try to split on x1, which

will then be severely manipulated. It performs worse than a random guess. In contrast,

in Figure 5b (ii) we see that the strategy-robust tree instead splits on behavior x2:

even though it is not informative in baseline data, when it is incentivized, the desired

types will manipulate it to differentiate themselves. Thus, strategy-robustness does

not attenuate the tree but rather expresses different variation, using manipulation as

a signal of type.

5.2 Discussion

Manipulated data generating processes

Manipulation can impact not only the parameters for a given function class, but

also which function class is appropriate. A class of function that describes y well

30For example, this setup could apply to a hiring problem like in Li et al. (2020) (where ŷ is the
decision to interview a candidate, and x2 is hard evidence such as GPA and x1 is soft evidence like
including a keyword such as ‘leadership’ on a resume).
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Figure 5: Standard vs. Strategy-Robust Decision Tree

(a) Example demonstrating attenuation

Notes: We seek a classification rule that will benefit the desired targets (denoted by stars). In baseline data, the
first behavior appears to help classify a small part of the population, but it is easily manipulable (c1i � c2i). (a) A
standard tree adds an interaction with x1, and as a result incorrectly classifies the circles when the rule is implemented
and their behavior is manipulated. (b) The strategy-robust tree anticipates that x1 will be manipulated, and never
adds the vulnerability to the model, resulting in better accuracy.

(b) Example demonstrating signaling

Notes: The first behavior (x1) appears to help classify a small number of stars in baseline data, but is easily manipula-
ble by the circles. The second behavior does not appear to be helpful in baseline data but is manipulable by stars. (a)
A standard tree attempts to exploit the variation in x1 in the baseline data, but as soon as the rule is implemented,
the circles manipulate and only 18% of individuals are classified correctly. (b) Our method anticipates that circles
will manipulate x1, so does not add the vulnerability to the model. It also anticipates that stars will manipulate x2,
and exploits that to separate the types, resulting in 100% correct classification.
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when there is no manipulation will continue to describe it well under manipulation

only in special cases. In our linear model, since manipulation under quadratic costs

induces linear shifts throughout the distribution, the manipulated data are still well

described by a linear model. Likewise, our tree example admits fixed manipulation

costs, so that manipulated data are still well described by a tree with adjusted

cutoffs and levels. However, if manipulation costs were continuous or continuously

heterogeneous, agents near the discontinuities of a tree would have strong incentives

to manipulate behavior. In that case, a tree no longer would describe the data well,

because optimal classification boundaries will no longer be sharp. This suggests that

some of the extreme nonlinearities and discontinuities common in machine learning

models may not be desirable in the presence of manipulation.31 In general, to develop

strategy-robust versions of other methods (e.g., random forests or neural nets), it

may be necessary to either ensure that the functional form of manipulation cost

does not shift the function class (as with our linear model and classification tree), or

otherwise construct new variants that account for the shifts and smoothness arising

from manipulation.32

The shape of manipulation costs

Experiments can reveal the shape of manipulation costs, and thus suggest appropriate

functional forms. In the Supplemental Online Appendix (section S2.1), we use our

experimental data to analyze how behavior responds to random variation in incentives.

We find that linearity is a reasonable first approximation, though there is some evidence

of diminishing returns to manipulation, and less response for negative incentives. In

general, manipulation costs might include fixed costs, asymmetries (e.g., for some

behaviors, increases are differentially costly than decreases), and dynamic elements

(such as seasonality).33 In cases where manipulation costs are changing, one could

31The mechanism design literature has noted that linear decision rules can be more robust
(Holmstrom and Milgrom, 1987; Carroll, 2015).

32Nonlinear environments may also have many more equilibria. In such settings, if iterative learning
converges, it may converge to an undesirable equilibrium, whereas an approach like ours could be
used to select a global optimum.

33As suggested by Ball (2019), there may also be particular features that have more heterogeneity
in cost between individuals. We treat these two dimensions of heterogeneity as independent. If our
approach were extended to allow for this interdependence, it would down-weight indicators that have
a particular spread in manipulability.
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either view static estimates as an approximation, or model the process by which they

change (see Section 4.3), such as might arise from changes in prices or social learning.34

6 Conclusion

This paper considers the possibility that machine decisions change the world in

which they are deployed. We focus on the case where individuals manipulate their

behavior in order to game decision rules. We derive decision rules that anticipate this

manipulation, by embedding a behavioral model of how individuals will respond. This

structural approach makes it possible to decompose decision rules into constituent

components, and to gather data on how those components can be manipulated. From

these components, our structural model allows us to understand how any proposed

decision rule of a given form would be manipulated. This allows us to compute decision

rules that are optimal in equilibrium.

We demonstrate our method in a field experiment in Kenya by deploying a tailor-

made smartphone app that mimics the ‘digital credit’ loan products that are now

commonplace in sub-Saharan Africa. We find that even some of the world’s poorest

users of technology – who are relatively recent adopters of smartphones and to whom

whom the concept of an ‘algorithm’ is quite foreign (Musya and Kamau, 2018) – are

savvy enough to change their behavior to game machine decisions. In this setting, we

show that our strategy-robust approach outperforms standard estimators on average

by 12% when individuals are given information about the scoring rule. This framework

also allows us to quantify the “cost of transparency”, i.e., the loss in predictive

performance associated with moving from “security through obscurity” (with a näıve

decision rule) to a regime of full algorithmic transparency (with our strategy-robust

rule). We estimate this loss to be roughly 6% in equilibrium — substantially less than

the 17% loss associated with making the näıve rule transparent.

34Our experiment was designed specifically to limit organic social learning. For instance, intake
sessions were designed to educate users about how the Sensing app’s decisions were made, so that
most ‘learning’ would occur prior to the experimental assignment of challenges. Subsequently,
individuals were randomly assigned different outcomes and decision rules on different weeks, to
reduce the potential gains from communication. In practice, we observe very little communication
between participants: Analyzing data collected by the app, we find that only 3% of phone-based
communication was between study participants.
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We focus on the simple case of linear models with a small number of predictor

variables, where subjects have either no information or full information about the

decision rule. We envision useful extensions to more complex models and more nuanced

beliefs.

More generally, our approach that combines machine learning estimators with

models of human behavior may be relevant to a wide range of contexts where machine

learning systems face changing human environments. This structural approach is

different from the prevailing approach to machine learning, which relies on large

amounts of data and flexible functions that impose few assumptions about how the

data are generated. A deep problem with the status quo approach is that these

methods often perform much better in the lab than they do when implemented (cf.

Lazer et al., 2014; Andrews et al., 2023). We study a particular implementation issue —

strategic manipulation. Because the distribution of data changes upon implementation,

the most näıve, fully unstructured approach would require implementing every possible

decision rule ŷ(·) to evaluate performance on its resulting data xi(ŷ(·)) in order to

find a global optimum. We make the observation that the counterfactual world that

occurs after implementing ŷ(·) has a predictable structure: including a particular

variable in a model tends to induce manipulation and spread in that variable, of a

magnitude related to its costs and benefits. These benefits can be inferred for free,

because they’re a direct function of the estimand itself: ŷ(·). This structure makes it

possible to predict counterfactual fit, and more efficiently identify the models that

will perform well when implemented. In simulations and in our experiment, we show

that using this structure can improve reliability.

In this sense, our paper offers a machine learning interpretation of Lucas (1976),

where algorithmic decisions change the context of the systems they model. In settings

like ours, β determines not just predictive performance within a given world, but also

which counterfactual world occurs.
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Appendices

A1 Estimation Details

In our experiment, each individual i was randomly assigned a decision rule in time

period t, which provided rewards based on their behavior: ŷit(xit) = αit+β
′
itxit. Their

resulting behavior, x∗it(βit) = xi+C−1
i βit+µt+εit, could have deviated from the bliss

level (xi) due to manipulation, or shocks that were common (µt) or individual-specific

(εit).
35 Shocks are mean zero: Eµt = 0 and Eεit = 0.

We use the control and simple challenges to estimate types x, cost parameters

related to Ciq, and the distribution of unobserved gaming ability V . To estimate types,

we use an ordinary least squares regression,

xit = xi + µt + εit, (6)

including only time periods where β = 0 (in which people act as their types). We

include week fixed effects (µ) to improve precision.

When estimating manipulation costs, we impose x and µ from above. We limit

the potential to overfit by constraining behaviors to move in the direction they are

incentivized (cjj > 0).36 We recover the distribution of unobserved gaming ability V

by shrinking and then shuffling the gaming ability residuals.

Moment Conditions

The following moment conditions jointly identify C and ω.

Implemented decision rules are orthogonal to idiosyncratic behavior shocks (E[βitkεitj ] =

35This arises from the utility function uit = ŷit(xit)− ci(xit,xi) + (µt + εit)
′Ci(xit − xi).

36We use LASSO penalization on the ease of manipulation (penalizing costs to infinity), allowing
separate hyperparameters for diagonal and off-diagonal costs (λcosts = {λcostsdiagonal, λ

costs
offdiagonal}). We

use three-fold cross validation to select λcostsdiagonaland let λcostsoffdiagonal →∞.
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0). For each pair of behaviors jk (including j = k) this yields sample moment condition

1

N

N∑
i=1

∑
t∈Ti

βitk

[
xijt − xij − µjt − e−ω

′zi · [C−1βit]j

]
= 0 (7)

where [a]k indicates the kth element of a.

Implied unobserved heterogeneity ṽi is given by

ṽi =
1∑

t∈Ttreatmenti
|Keval

it |
∑

t∈Ttreatmenti

∑
k∈Keval

it

[
xikt − xik − µkt

[C−1βit]k
− e−ω′zi

]
, (8)

where Keval
it is the set of behaviors to be evaluated for i in period t.37 Unobserved

heterogeneity is mean zero, yielding moment condition, 1
N

∑
i ṽi = 0, and orthogonal

to each heterogeneity characteristic zl, yielding moment condition(s) 1
N

∑
i zli · ṽi = 0.

Additional Moment Conditions for Brownfield Case

In greenfield settings where the base model β0 = 0, during training it is possible to

infer individual types directly from baseline data (equation (6)), prior to estimating

costs. Our method can also be applied in brownfield settings, where a decision rule

has already been implemented and baseline behavior is already manipulated.

In such a setting, one would want to append the following moment conditions to

estimate x and µ. Both are based on the condition E[εitk] = 0. For each individual i

and behavior k, we have

xik =
1

|Ti|
∑
t∈Ti

[
xikt − µkt − e−ω

′zi · [C−1βit]k

]
(9)

For each time period t and behavior k we have

µkt =
1

|{i|Ti 3 t}|
∑
i|Ti3t

[
xikt − xik − e−ω

′zi · [C−1βit]k

]
(10)

Identification still requires observing random variation along each behavior in the

37We set Keval
it = {k s.t. βitk 6= 0}, so that ṽi is evaluated only off shifts in the incentivized

behavior. One could alternately evaluate how each incentive shifts all behaviors.
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decision rule (and ensuing manipulation).38

Manipulation Cost Regularization

We add to our GMM loss function the regularization term:

Rλ
costs

costs (·) =

[
λcostsdiagonal

∑
k

θkk + λcostsoffdiagonal

∑
j 6=k

θjk

][
1

N

∑
i

e−2ω′zi

]

where θjk represents the elements of inverse costs C−1.

Unobserved Gaming Ability

We recover the distribution of unobserved gaming ability V in two steps. We compute

gaming ability residuals ṽi as in equation (8), which capture whether each individual

manipulates more or less than predicted during incentivized periods. Then, to reduce

the impact of noise and outliers, we shrink and winsorize these inferred shocks.

We form the empirical distribution V = {max(φ · ṽi, v)}i, where v is the lowest

value of ṽ that leads to a nonnegative implied gaming ability, and φ is a shrinkage

parameter calibrated to minimize overall error in observed incentivized periods (that

is, v = mini(ṽi|φ · ṽi ≥ −minj(e
−ω′zj))).

We calibrated φ to 1e-6; For details, see Supplemental Online Appendix S2.3.2.

One-Shot Estimation

Our experiment observes each individual over multiple time periods, which allowed

us additional statistical power given our limited budget. Our approach can also be

applied if each individual i is observed only over one period t.

C and ω can be recovered by adjusting the brownfield moment conditions to

remove individual and time fixed effects. This entails replacing the moment condition

38This inversion will be more sensitive to the specification of the model than when unincentivized
behavior can be observed directly in training. Because there are limits on how much you can change
a model that is in production and still maintain good performance, the brownfield approach may
require more data to obtain precise estimates.
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in equation (7) with

1

N

N∑
i=1

βitk

[
xijt − χj − e−ω

′zi · [C−1βit]j

]
= 0,

Equation (8) with

ṽi =
xikit − χki
[C−1βit]ki

− e−ω′zi ,

Equation (9) with

χk =
1

N

N∑
i=1

[
xikt − e−ω

′zi · [C−1βit]k

]
,

and dropping equation (10), where individual types are replaced with a term repre-

senting common behavior χ of dimension K, and where ki is the behavior incentivized

for individual i in week t.

An estimate of each person’s bliss behavior can then be obtained by undoing any

predicted manipulation:

xik = xikt − e−ω
′zi · [C−1βit]k

though with just one observation this will be more affected by idiosyncratic noise.

We demonstrate that this approach obtains similar results by mimicking the data

that would result if our experiment had observed each individual for only one period.

Because this will drastically reduce our sample size, we simulate this over multiple

replication draws. For replication draw r, for each individual i we restrict the sample to

include only one randomly selected incentivized week tir ∈ Ttreatmenti , and consider the

average over replications r ∈ {1...R}. Figure A1 shows that the one shot estimates are

similar to the full sample estimates (we report the average ĉ−1
kirkir

= 1
R

∑
r

1
ĉkirkir

); the

Pearson correlation coefficient between the two measures is 0.9987. The corresponding

estimate for ω̂ = 1
R

∑
r ω̂r = 0.22 (standard deviation 0.98), with roughly 30% of

single-draw estimates below or equal to the full-sample estimate of -0.083 and roughly

70% of estimates above.
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Figure A1: Manipulation Costs Estimated with only One Observation per Person
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Notes: Our main estimates (with multiple observations per person) are shown on the x-axis. The
average estimate obtained when each individual is observed only once is shown on the y-axis; the
standard deviation across replications is shown as a whisker in either direction.
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Table A1: Estimated Manipulation Costs for All Behaviors

Heterogeneity by Behavior (C diagonal; all incentivized behaviors)

text you send
text you receive
text you send on a weekday
each text message you send in the evening hours (after 6pm)
text you send or receive in the evening (6pm−10pm)
time you call someone
call with a number not in your contacts during the workday (9am−5pm
second of your shortest weekend call
call with a number not in your contacts on the weekend
each different person you text or are texted by
person you text during the early morning hours (12am − 5am)
time you receive a call
each person you text in the evening (after 6pm)
person you text on the weekday that you send the most texts
call between 12am and 5am
each different person you text or are texted by on the weekend
text you send on the day that you send the most texts
person you call during the workday
call you make that's missed
call with someone not in your contacts
person you receive a text from during the evening (5pm − 10pm)
text you send on the day you send the least texts
text you receive on the day you receive the most texts
if you keep it at 100%.
person you text
outgoing call on the day with the least outgoing calls
person who texts you
person who calls you during the workday
each person you call for over 30 minutes
person you text on the workday that you text the most people
time you plug in your phone and it charges
if the number of texts you send varies a lot weekday to weekday
person you receive a text from during the early morning hours (12am − 5am)
day you use a whatsapp−related app
if the number of texts you send and receive varies a lot day to day
missed call on the day you have the least missed calls
tools−type app you use
if the number of texts you receive varies a lot weekday to weekday
5−minute−or−more call with a non−contact
day you use the gmail app
day you use the app
if you use a whatsapp−related app.
if you use a tools−type app.
if you use any document− or report−related app.
productivity−type app you use
if you use the gmail app.
if you use a productivity−type app.
second of your average evening (6pm−10pm) call
if you use any twitter−brand app.
text you receive on the day you receive the least texts
missed call
text you receive on the evening (6pm−10pm) that you receive the least texts
if you use the app
second of your average workday call (monday−friday
if you use the twitter app at least once
call that lasts at least an hour
second of your average call duration
day you use any instagram−brand app
day that you use a productivity−type app
instagram−brand app used
social−type app you use
document or report−related app you use
times the average day−to−day variation in your texts
percentage point of your time that you spend within .5 kilometers of the busara office

              0.03
              0.04
              0.05
              0.05
              0.06
              0.48
              0.59
              0.64
              0.81
              1.02
              1.04
              1.11
              1.38
              1.55
              1.67
              1.68
              1.68
              1.70
              1.91
              1.93
              1.98
              3.03
              3.47
              3.87
              5.45
              5.77
              6.04
              6.67
              7.12
              7.57
              9.39

             28.15
             35.06
             35.44
             92.37

            112.94
            194.41
            217.33
            426.58
            431.59
            519.97
            594.14

          1,055.35
          1,194.08
          1,383.08

         10,349.72
         17,087.82
         19,761.46
         20,775.27
         25,618.26
         26,820.04
         39,063.42

        111,824.80
        346,246.83
        370,683.79
        395,022.17

      3,108,632.19
      7,505,847.37
      8,462,705.30

     28,377,875.40
     61,264,134.39
     75,097,239.06

  1,282,497,178.36
184,130,822,787.78
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Notes: Parameters estimated using GMM. Red dot indicates used in a LASSO model; blue indicates

used in SR model. In cost matrix, off diagonal elements cjk; j6= k regularized to zero (λcostsoffdiagonal →
∞), diagonal elements regularized with λcostsdiagonal = 1.0, set via 3-fold cross validation.
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Table A2: Performance of Decision Rules

Costs Income & Intelligence Income Intelligence

(Pooled) (Ravens above median)

cjj βLASSO βSR βLASSO βSR βLASSO βSR

¢/action2 ¢/action ¢/action

Panel A: Decision Rule

text count out 0.035 - - -0.395 -0.107

text count incoming 0.037 - - 0.065 0.278 0.145

text count evening 0.057 - - -0.121

call count out 0.480 - - 0.625 0.542

call count outgoing missed 1.91 - - -0.208

calls noncontacts 1.929 - - -0.606 -0.575

max daily texts incoming 3.471 - - 0.324

intercept . - - 301.071 304.622 490.727 488.441

Panel B: Prediction Error RMSE ($) RMSE ($) RMSE ($)

Baseline Data: Control 4.273 (0.024) 4.278 (0.028) 3.574 (0.050) 3.583 (0.057) 4.971 (0.010) 4.973 (0.009)

Baseline Data: Predicted Transparent 4.328 (0.030) 4.279 (0.031) 3.672 (0.062) 3.585 (0.058) 4.984 (0.012) 4.974 (0.009)

Implemented: Opaque 4.224 (0.135) 4.216 (0.115) 3.549 (0.250) 3.525 (0.215) 4.898 (0.066) 4.906 (0.049)

Implemented: Transparent 4.356 (0.091) 4.189 (0.122) 3.675 (0.179) 3.484 (0.239) 5.037 (0.042) 4.894 (0.052)

Average Payout ($) 4.21 4.18 3.34 3.25 5.07 5.11

N (Control Individuals) 1391 1391 1376 1376 1391 1391

N (Treatment person-weeks, Opaque) 156 156 75 75 81 81

N (Treatment person-weeks, Transparent) 166 154 90 74 76 80

Notes: Panel A reports the decision rule associated with the challenge, and the costs associated with manipulating these behaviors. Panel B reports the performance of
each decision rule by outcome, root mean squared error (RMSE) at the week-model level. Pooled metrics present the mean RMSE across models. Predicted Transparent
represents the average expected performance of models given the theoretical model, behavior incentives, and estimated costs. Implemented Transparent/Opaque
represents the average performance of models when assigned with/without transparency hints. SR model estimated using preliminary cost estimates. Bootstrapped
standard errors in parentheses, which hold fixed the decision rule and resample individuals with replacement.
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Table A3: SR Models Based on Expert-Estimated Costs

Costs Costs Income Intelligence (above median Ravens)

(Actual) (From Experts) βLASSOfinal β
SRfinal

ExpertCost βSRfinal βLASSOfinal β
SRfinal

ExpertCosts βSRfinal

Panel A: Decision Rule

text count out 0.035 3.804 -0.499 -0.329 -0.093

text count incoming 0.037 5.645 0.141 0.014 0.270 0.223 0.114

text count evening 0.057 3.805 -0.115

call count out 0.480 5.4 0.657 0.591 0.501 -0.058

call count outgoing missed 1.914 5.4 -0.156

calls noncontacts 1.929 5.891 -0.547 -0.518

max daily texts incoming 3.471 5.155 0.421

Intercept 296.342 305.309 303.456 489.686 483.529 487.049

λdecision 759.295 759.295 759.296 1032.37 1032.37 1032.37

Panel B: Prediction Error RMSE ($) RMSE ($)

Predicted Opaque 3.572 3.577 3.586 4.972 4.982 4.973

Predicted Transparent 3.831 3.64 3.586 4.983 4.989 4.973

Notes: Panel A reports the decision rules derived from naive LASSO and our strategy-robust model, as well as strategy-robust models that
use only control weeks and costs estimated from expert surveys. It also reports the costs associated with these behaviors. Panel B reports the
predicted performance of these decision rules, using the experimentally estimated model. βLASSOfinal presented in this table differs slightly from
the βLASSO which was implemented. The regularization protocol was updated to select penalization closer to the boundary of 3 coefficients
and the sample was changed to coincide with that used for the SR model (it includes only individuals with nonmissing tech skills, dropping
approximately 1.5 percent of the sample). For expert survey costs, we infer heterogeneity in gaming ability using variation in participant responses
(see Supplemental Appendix).
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Table A4: Models Adjusted for Welfare Costs of Manipulation

Costs Income Intelligence (above median Ravens)

cjj βLASSOfinal β
SRfinal

w=0 β
SRfinal

w=0.1 β
SRfinal

w=0.5 β
SRfinal

w=1 βLASSOfinal β
SRfinal

w=0 β
SRfinal

w=0.1 β
SRfinal

w=0.5 β
SRfinal

w=1

Panel A: Decision Rule

text count out 0.035 -0.499 -0.093 -0.092

text count incoming 0.037 0.141 0.270 0.114 0.067 0.030 0.019

text count out evening 0.054

text count evening 0.057 -0.115 -0.115 -0.055 -0.037 0.023

call count out 0.480 0.657 0.501 0.494 0.278 0.179

max daily texts out 1.683 -0.294 -0.222

call count outgoing missed 1.914 -0.156

calls noncontacts 1.929 -0.547 -0.518 -0.422 -0.204

max daily texts in 3.471 0.421 0.541 0.518 0.387

call count over 1 minute 395022

Intercept 296.342 303.456 303.669 312.514 314.717 489.686 487.049 489.071 488.921 489.317

λdecision 759.296 759.296 759.296 759.296 759.296 1032.37 1032.37 1032.37 1032.37 1032.37

Panel B: Prediction Error RMSE ($) RMSE ($)

Predicted Opaque 3.572 3.586 3.586 3.599 3.607 4.972 4.973 4.974 4.979 4.984

Predicted Transparent 3.831 3.586 3.586 3.598 3.607 4.983 4.973 4.974 4.979 4.984

Notes: Panel A reports the decision rules derived from naive LASSO and our strategy-robust model, with varying social welfare weight w placed on the costs
agents incur manipulating. Panel B reports performance, measured as root mean squared error (RMSE). βLASSOfinal presented in this table differs slightly from
the βLASSO which was implemented. The regularization protocol was updated to select penalization closer to the boundary of 3 coefficients and the sample was
changed to coincide with that used for the SR model (it includes only individuals with nonmissing tech skills, dropping approximately 1.5 percent of the sample).

Manipulation costs included in policymaker’s objective as M(·) = w · Ei [ci(x
∗
i (β), xi)] = w · Ei,q

[
1
2β
′C−1′

iq β
]
, for a weight w on consumer welfare.
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