Long-Term Effects of Teacher Performance Pay: Experimental Evidence from India

Karthik Muralidharan ${ }^{\dagger}$

26 September 2011*

Abstract

We present results from a five-year long randomized evaluation of group and individual teacher performance pay programs implemented across a large representative sample of government-run rural primary schools in the Indian state of Andhra Pradesh. We find consistently positive and significant impacts of the individual teacher incentive program on student learning outcomes across all durations of program exposure. Students who completed their full five years of primary school under the program performed significantly better than those in control schools by 0.54 and 0.35 standard deviations in math and language tests respectively. These students also scored 0.52 and 0.3 standard deviations higher in science and social studies tests even though there were no incentives on these subjects. The group teacher incentive program also had positive (and mostly significant) effects on student test scores, but the effect sizes were always smaller than that of the individual incentive program, and were not significant at the end of primary school for the cohort exposed to the program for five years.

JEL Classification: C93, I21, M52, O15
Keywords: teacher performance pay, teacher incentives, education, education policy, field experiments, compensation, India

[^0]
1. Introduction

The combination of increasing spending on school education over time and relatively flat trends in learning achievement has led education policy makers around the world to increasingly consider reforms for improving the effectiveness of public spending on education. Among the menu of policy reforms being considered, the idea of linking a component of teacher compensation to measures of student performance or gains has received growing attention from policy makers and several countries as well as states in the US have attempted to implement reforms to teacher compensation structure to do this. ${ }^{1}$

While the idea of teacher performance-pay is increasingly making its way into policy, the evidence on the effectiveness of such programs is both limited and mixed (see details later in this section). In particular, while there is a growing body of high-quality empirical studies on the impact of teacher performance pay on education quality, most of these evaluations stop after two or three years, and so there is no good evidence on longer-term impacts (both positive and negative) of teacher performance pay on students who have completed most of their education under such a system.

In this paper, we contribute towards filling this gap with results from a five-year long randomized evaluation of group and individual teacher performance pay programs implemented across a large representative sample of government-run rural primary schools in the Indian state of Andhra Pradesh (AP). Results at the end of two years of this experiment were presented in Muralidharan and Sundararaman (2011) and half of the schools originally assigned to each of the group and individual incentive programs (50 out of 100) were chosen by lottery to continue being eligible for the performance-linked bonuses for a total of five years. Since primary school in AP consists of five grades (1-5), the five-year long experiment allows us to measure the impact of these programs on a cohort of students who complete their entire primary school education in a setting where their teachers are paid on the basis of improvements in student learning outcomes.

[^1]There are three main results in this paper. First, the individual teacher performance pay program had a large and significant impact on student learning outcomes over all durations of student exposure to the program. Students who had completed their entire five years of primary school education under the program scored 0.54 and 0.35 standard deviations (SD) higher than those in control schools in math and language tests respectively. These are large effects corresponding to approximately 20 and 14 percentile point improvements at the median of a normal distribution, and are larger than the effects found in most other education interventions in developing countries (see Dhaliwal et al. 2011).

Second, the results suggest that these test score gains represent genuine additions to human capital as opposed to reflecting only 'teaching to the test'. Students in individual teacher incentive schools score significantly better on both non-repeat as well as repeat questions; on both multiple-choice and free-response questions; and on questions designed to test conceptual understanding as well as questions that could be answered through rote learning. Most importantly, these students also perform significantly better on subjects for which there were no incentives - scoring 0.52 SD and 0.30 SD higher than students in control schools on tests in science and social studies (though the bonuses were paid only for gains in math and language). There was also no differential attrition of students across treatment and control groups and no evidence to suggest any adverse consequences of the programs.

Third, we find that individual teacher incentives significantly outperform group teacher incentives over the longer time horizon though they were equally effective in the first year of the experiment. Students in group incentive schools score better than those in control schools over most durations of exposure, but these are not always significant and students who complete five years of primary school under the program do not score significantly higher than those in control schools. However, the variance of student outcomes is lower in the group incentive schools than in the individual incentive schools.

We measure changes in teacher behavior and the results suggest that the main mechanism for the improved outcomes in incentive schools is not reduced teacher absence, but increased teaching activity conditional on presence. Finally, we also measure household responses to the program - for the cohort that was exposed to five years of the program, at the end of five years and find that there is no significant difference across treatment and control groups in either household spending on education or on time spent studying at home, suggesting that the
estimated effects are unlikely to be confounded by differential household responses across treatment and control groups over time.

The central questions in the literature on teacher performance pay to date have been whether teacher performance pay based on test scores can improve student achievement, and whether there are negative consequences of teacher incentives based on student test scores? On the first question, two recent sets of experimental studies in the US have found no impact of teacher incentive programs on student achievement (see Fryer 2011, and Goodman and Turner 2010 for evidence based on an experiment in New York City, and Springer et al 2010 for evidence based on an experiment in Tennessee). However, other well-identified studies in developing countries have found positive effects of teacher incentives on student test scores (see Lavy 2002 and 2009 in Israel; Glewwe et al. 2010 in Kenya; and Muralidharan and Sundararaman 2011 in India). Also, Rau and Contreras (2011) conduct a non-experimental evaluation of a nationally scaled up teacher incentive program in Chile (called SNED) and find positive effects on student learning.

On the second question, there is a large literature showing strategic behavior on the part of teachers in response to features of incentive programs, which may have led to unintended (and sometimes negative) consequences. Examples include 'teaching to the test' and neglecting higher-order skills (Koretz 2002, 2008), manipulating performance by short-term strategies like boosting the caloric content of meals on the day of the test (Figlio and Winicki, 2005), excluding weak students from testing (Jacob, 2005), re-classifying more students as special needs to alter the test-taking population (Cullen and Reback 2006), focusing only on some students in response to "threshold effects" embodied in the structure of the incentives (Neal and Schanzenbach, 2010) or even outright cheating (Jacob and Levitt, 2003). The literature on both of these questions highlight the importance of not just evaluating teacher incentive programs that are designed by administrators, but of using economic theory to design systems of teacher performance pay that are likely to induce higher effort from teachers towards improving human capital and less likely to be susceptible to gaming (see Neal 2011).

The program analyzed in this paper takes incentive theory seriously and the incentives are designed to reward gains at all points in the student achievement distribution, and to penalize attempts to strategically alter the test-taking population. The study design also allows us to test for a wide range of possible negative outcomes, and to carefully examine whether increases in test scores are likely to represent increases in human capital. This experiment is also the first one
that studies both group and individual teacher incentives in the same context and time period. ${ }^{2}$
Finally, to our knowledge, five years is the longest time horizon over which an experimental evaluation of a teacher performance pay program has been carried out and this is the first paper that is able to study the impact on a cohort of students of completing their entire primary education under a system of teacher performance pay.

While set in the context of schools and teachers, this paper also contributes to the broader literature on performance pay in organizations in general and public organizations in particular. ${ }^{3}$ There has been a recent increase in compensation experiments in firms (see Bandiera et al. 2011 for a review), but these are also typically short-term studies (often lasting just a few months). ${ }^{4}$ The results in this paper are based (to our knowledge) on the longest running experimental evaluation of group and individual-level performance pay in any sector.

The rest of this paper is organized as follows: section 2 describes the experimental design; section 3 discusses data and attrition; section 4 presents the main results of the paper; section 5 discusses changes in teacher and household behavior in response to the programs, and section 6 concludes.

2. Experimental Design

2.1 Theoretical Considerations

Standard agency theory suggests that having employee compensation depend on measures of output will increase the marginal return to effort and therefore increase effort and output.

However, two broad sets of concerns have been raised about introducing performance-linked pay for teachers. First, there is the possibility that external incentives can crowd out intrinsic motivation and reduce effort - especially in jobs such as teaching that attract intrinsically motivated workers (Deci and Ryan 1985; Fehr and Falk 2002). The second set of concerns is

[^2]based on multi-tasking theory which cautions that rewarding agents on measurable aspects of their efforts may divert effort away from non-measured outputs, leading to inferior outcomes relative to a scenario with no performance-pay at all (Holmstrom and Milgrom 1991; Baker 1992).

Muralidharan and Sundararaman (2009) discuss the first concern and suggest that a transparently administered performance-linked pay program for teachers may actually increase intrinsic motivation in contexts (like India) where there is no differentiation of career prospects based on effort. Muralidharan and Sundararaman (2011) discuss the second concern in detail and show that the social costs of the potential diversion of teacher effort from 'curricular best practice' to 'maximizing test scores' may be limited in contexts like India where (a) 'best practice teaching' is typically not very different from teaching to maximize scores on high-stakes tests (which are ubiquitous in India), and (b) norms of teacher effort in the public sector are quite low (which is also true in India, with 25% of public school teachers being absent on any given day - see Kremer et al. 2005).

So, it is possible that linking teacher pay to improvements in student test scores will not only increase test scores, but also increase underlying human capital of students, especially in contexts such as India. Whether or not this is true is an empirical question and is the focus of our research design and empirical analysis.

2.2 Background

The details of the experimental design (sampling, randomization, incentive program design, and data collected) are discussed in detail in Muralidharan and Sundararaman (2011) - hereafter referred to as MS 2011, and are only summarized briefly here. The original experiment was conducted across a representative sample of 300 government-run primary schools in the Indian state of Andhra Pradesh (AP), with 100 schools each being randomly assigned to an "individual teacher incentive program", a "group teacher incentive program", and a control group. The study universe was spread across 5 districts, with 10 mandals (sub-districts) being randomly sampled from each of the 5 study districts, and 6 schools being randomly sampled from each of the 50 mandals. The randomization was stratified at the mandal level and so 2 of the 6 schools in each mandal were assigned to each treatment and to the control group.

The bonus formula provided teachers with Rs. 500 for every percentage point of mean improvement in test scores of their students. The teachers in group incentive (GI) schools received the same bonus based on average school-level improvement in test scores, while the bonus for teachers in individual incentive (II) schools was based on the average test score improvement of students taught by the specific teacher. Teachers/schools with negative improvements did not get a bonus (there was no negative bonus). The main features of the incentive design were: (i) the bonus was based on a linear piece-rate - which provided a continuous incentive for effort, since a larger test score gain led to a larger bonus; (ii) there were limited threshold effects, since all students contributed to the bonus calculation; (iii) the incentive amounts were not large, with the expected value of the bonus being around 3% of annual teacher pay. See MS 2011 for further details of the incentive formula and the rationale for each of the design features.

2.3 Changes in Experimental Design

The design details were unchanged for the first two years of the experiment (up to the point reported in MS 2011), and the experiment was initially only expected to last for two years. Renewed funding for the project allowed the experiment to continue for a third year, at which point, a small change was made to the bonus formula. In the first two years, student gains were calculated using their previous test score as a baseline. While this was an intuitive way of communicating the details of the system to teachers, it had an important limitation. Since there is substantial mean reversion in student scores, the formula unfairly penalized teachers who had an incoming cohort of high-scoring students and rewarded those who had an incoming cohort of low-scoring students. Once we had two years of data in control schools, we were able to calculate a 'predicted' score for each student using lagged scores and use this predicted score (predicted using only the control schools) as the 'target' for each student in the incentive school to cross to be eligible for the bonus. The final bonus was calculated at the student level and then aggregated across students for the teacher/school. The formula used to calculate the bonus at the individual student level was:

$$
\begin{equation*}
\text { Student level bonus }=\text { Rs. } 20 \times \text { (Actual Score }- \text { Target Score) }{ }^{5} \tag{1}
\end{equation*}
$$

[^3]In cases where the actual score was below the target score, a student could contribute a 'negative amount' to the teachers’ bonus, but this was capped at -5% or - Rs. 100 (even if the actual score was more than 5% below the target score). Cases of drop-outs (or non-test taking of students who should have taken the test) were automatically assigned a score of -5% and contributed to a reduction of the bonus by Rs. 100. Thus, a student could never hurt a teacher/school's bonus more than by not taking the test, and it was therefore not possible to increase the 'average' score by having weak students drop out. While it was possible for an individual student to contribute a negative amount to a teacher's bonus, the final bonus received by teachers was zero and not negative in cases where the total bonus was negative after aggregating (1) across all the students taught by the teacher/school.

At the end of the third year, uncertainty regarding funding required a reduction in the sample size of the project. It was decided that it would be valuable to continue the experiment for at least a subset of the original treatment group for five years, to study the impact of the programs on a cohort of students who had completed their entire primary school education (grades 1-5) under the teacher incentive programs. Hence, both group and individual incentive programs were continued in 50 of the 100 schools where they started, and discontinued in the other 50 . The selection of schools to continue or discontinue was done by lottery stratified at the mandal level and so each of the 50 mandals in the project had 1 school that continued with each treatment for 5 years, 1 school that had each treatment for 3 years and was then discontinued from the treatment, and 2 schools that served as control schools throughout the 5 years of the project (see Figure 1). Since the focus of this paper is on the effects of extended exposure to the teacher incentive treatments, most of the analysis will be based on the schools that continued with the treatments for 5 years (when treatment effects over 3 years or more are being considered).

2.4 Cohort and Grade Composition of Students in Estimation Sample

Primary school in AP covers grades 1 through 5 and the project lasted 5 years, which meant that a total of 9 cohorts of students spent some portion of their primary school experience under the teacher incentive treatments. We refer to the oldest cohort as "cohort 1 " (this is the cohort that was in grade 5 in the first year of the project and graduated from primary school after the bonuses.
first year) and the youngest cohort as "cohort 9" (this is the cohort that entered grade 1 in the fifth year of the project). Figure 2 shows the passage of various cohorts through the program and the duration of exposure they had to the treatments, and the grades in which each cohort was exposed. Cohort 5 is the one that spent its entire time in primary school under the incentive treatments. Cohorts 4 and 6 spent 4 years in the project, cohorts 3 and 7 spent 3 years, cohorts 2 and 8 spent 2 years, and finally cohorts 1 and 9 spent only 1 year in the project.

2.5 Validity of Randomization

The validity of the initial randomization between treatment and control groups was shown in MS 2011. Table 1 (Panel A) shows the equality on key variables between the schools that were continued and discontinued in each of the individual and group teacher incentive programs. We first show balance on school-level variables (infrastructure, proximity), and then show balance on student test scores at the end of the third year (which is the time when the randomization was done). We show this in two ways: first, we include all the students in cohorts 4, 5, 6, and 7 these are the cohorts in the project at the end of the third year that will be included in subsequent analysis (see Figure 2); second, we only include students in cohort 5 since this is the only cohort with which we can estimate the five-year treatment effects. Table 1 (Panel B) shows that the existence of the treatments did not change the size or socio-economic characteristics composition of new incoming cohorts of students in years 2 to 5 , suggesting that cohorts 6-9 also constitute valid cohorts for the experimental analysis of the impact of the teacher incentive programs.

3. Data, Estimating Equations, and Attrition

3.1 Data

Data on learning outcomes is generated from annual assessments administered by the Azim Premji Foundation to all schools in the study. Students were tested on math and language (which the incentives were based on) in all grades, and also tested on science and social studies (for which there were never any incentives) in grades 3-5. ${ }^{6}$ The school year runs from mid-June to mid-April, and the baseline test in the first year of the project was conducted in June-July

[^4]2005. Five subsequent rounds of tests were conducted at the end of each academic year, starting March-April 2006 and ending in March-April 2010. ${ }^{7}$ For the rest of this paper, Year 0 (Y0) refers to the baseline tests in June-July 2005; Year 1 (Y1) refers to the tests conducted at the end of the first year of the program in March-April, 2006, and so on with Year 5 (Y5) referring to the tests conducted at the end of the fifth year of the program in March-April, 2010. Scores in Y0 are normalized relative to the distribution of scores across all schools for the same test (pretreatment), while scores in subsequent years are normalized with respect to the score distribution in the control schools for the same test. ${ }^{8}$

Enumerators also made several unannounced visits to all treatment and control schools in each year of the project and collected data on teacher attendance and activity during these visits. In addition, detailed interviews were conducted with teachers at the start of each school year to collect data on teaching practices during the previous school year (these interviews were conducted prior to the bonuses being announced to ensure that responses are not affected by the actual bonus received). Finally, a set of household interviews was conducted in August 2010 (after the end of the program) across treatment and control group students in cohort 5 who had spent the full five years in the study. Data was collected on household expenditure, student time allocation, the use of private tuitions, and on parental perceptions of school quality.

3.2 Estimating Equations

Our main estimating equation takes the form:

$$
\begin{equation*}
T_{i j k m}\left(Y_{n}\right)=\alpha+\gamma_{j\left(Y_{0}\right)} \cdot T_{i j k m}\left(Y_{0}\right)+\delta_{I I} \cdot I I+\delta_{G I} \cdot G I+\beta \cdot Z_{m}+\varepsilon_{k}+\varepsilon_{j k}+\varepsilon_{i j k} \tag{2}
\end{equation*}
$$

The dependent variable of interest is $T_{i j k m}\left(Y_{n}\right)$, which is the normalized test score on the specific subject at the end of n years of the program (i,j,k,m denote the student, grade, school, and mandal respectively). Including the normalized baseline test score (Y_{0}) improves efficiency

[^5]due to the autocorrelation between test-scores across multiple periods. ${ }^{9}$ All regressions include a set of mandal-level dummies $\left(Z_{m}\right)$ and the standard errors are clustered at the school level. II and GI are dummy variables at the school level corresponding to "Individual Incentive" and "Group Incentive" treatments respectively, and the parameters of interest are $\delta_{I I}$ and $\delta_{G I}$, which estimate the effect on test scores of being in an individual or group incentive school.

We first estimate treatment effects over durations ranging from 1 to 5 years using the cohorts that were present in our sample from the start of the project (cohorts 1 to 5) using progressively fewer cohorts (all 5 cohorts were exposed to the first year of the program, while only one cohort was exposed to all 5 years - the estimation sample for the n-year treatment effect can be visualized by considering the lower triangular matrix in Figure 2 and moving across the columns as n increases). Also, note that the specification in (2) can be used to consistently estimate the n year effect of the programs, but not the ' n 'th' year effect (with the ' n 'th' year test scores as the dependent variable controlling for ' $n-1$ 'th' year scores) because the ' $n-1$ 'th' year scores are a post-treatment outcome that will be correlated with the treatment dummies.

We can also use the incoming cohorts after the start of the project (cohorts 6-9) to estimate treatment effects because there is no systematic difference in these cohorts across treatment and control schools (Table 1 - Panel B). Thus, we can estimate average treatment effects at the end of first grade using 5 cohorts (cohorts 5-9); average treatment effects at the end of second grade using 4 cohorts (cohorts 5-8) and so on (the estimation sample for the n-year treatment effect starting from grade 1, can be visualized by considering the upper triangular matrix in Figure 2 and moving down the rows as n increases). These are estimated using:

$$
\begin{equation*}
T_{i j k m}\left(Y_{n}\right)=\alpha+\delta_{I I} \cdot I I+\delta_{G I} \cdot G I+\beta \cdot Z_{m}+\varepsilon_{k}+\varepsilon_{j k}+\varepsilon_{i j k} \tag{3}
\end{equation*}
$$

with the only difference with (2) being the lack of a baseline score to control for in cohorts 5-9.
Finally, a key advantage of estimating treatment effects over 5 years and 9 cohorts of students is that the estimated effects are more robust to fluctuations due to cohort or year effects. We therefore also estimate n-year treatment effects by pooling all cohorts for whom an experimental n-year effect can be estimated. Thus, we estimate 1-year effects using all 9 cohorts

[^6](cohorts 1-5 in Y1, and cohorts 6-9 in Y2-Y5; i.e. - using the first column and first row of Figure 2); 2-year effects using 7 cohorts (cohorts 2-5 in Y2, and cohorts 6-8 in Y3-Y5); 3-year effects using 5 cohorts (cohorts 3-5 in Y3, and cohorts 6-7 in Y4-Y5); 4-year effects using 3 cohorts (cohorts 4-5 in Y4, and cohort 6 in Y5); and 5-year effects using 1 cohort. In other words, we pool the samples used for (2) and (3), with cohort 5 getting removed once to avoid double counting. This is the largest sample we can use for estimating n-year treatment effects experimentally and we refer to it as the "full sample".

3.3 Attrition

While randomization ensures that treatment and control groups are balanced on observables at the start of the experiment (Table 1), the validity of the experiment can still be compromised if there is differential attrition of students or teachers across the treatment and control groups. The average student attrition rate in the control group (defined as the fraction of students in the baseline tests who did not take a test at the end of each year) was 14.0% in $\mathrm{Y} 1,29.3 \%$ in Y 2 , 40.6\% in Y3, and 47.4\% in Y4, and 55.6\% in Y5 (Table 2 - Panel A). This reflects a combination of students dropping out of school, switching schools in the same village (including moving to private schools), migrating away from the village over time, and being absent on the day of the test. ${ }^{10}$ Attrition rates were slightly lower in the incentive schools, but there was no significant difference in student attrition rates across treatment and control groups. There was also no significant difference in the baseline test score across treatment categories among the students who drop out from the test-taking sample (though attrition is higher among students with lower baseline scores). Similarly, we see that while attrition rates are high among the cohorts used to estimate (3), there is no significant difference in the attrition rates across treatment and control groups in these cohorts as well (Table 2 - Panel B). Note that no baseline scores exist for cohorts 5-9 and so we only show attrition rates here and not test scores. ${ }^{11}$ Finally, we estimate a model of attrition using all observable characteristics of students in our data set (including baseline scores, household affluence, and parental education) and cannot

[^7]reject the null hypothesis that the same model predicts attrition in both treatment and control groups over the five years. ${ }^{12}$

The other challenge to experimental validity is the fact that teachers get transferred across schools every few years. As described in MS 2011, around a third of the teachers were transferred in the few first months of the project, but there was no significant difference in teacher transfers across treatment and control schools (Table 2 - Panel C - Column 1). The annual rate of teachers being transferred was much lower in Y2, Y3, and Y4 (averaging under 5\% per year, with no significant difference across treatment groups). Since the teacher transfers in the first year took place within a few months of the start of the school year (and were scheduled to take place before any news of the interventions was communicated to schools), the teacher composition in the studied schools was quite stable between Y1 and Y4 - with less than 10% teacher attrition in this period. However, there was a substantial round of teacher transfers in Y5, with nearly 70% of teachers being transferred out of study schools. While there was no significant difference in transfer rates across treatment and control schools, the transfers imply that a vast majority of teachers in treatment schools in Y 5 had no prior experience of the incentive programs. It is therefore likely that our estimates of 5-year effects are a lower bound on the true effect, since the effects may have been higher if teachers with 4 years of experience of the incentive program had continued in Y5 (we discuss this further in the next section).

4. Results

4.1 Impact of Incentives on Test Scores

Table 3 presents the results from estimating equation (2) for cohorts 1-5 for each year of exposure to the treatments (panel A combines math and language, while Panels B and C show the results separated out by subject). The table also indicates the estimation sample (cohorts, year, and grades) corresponding to each column (common across panels) and includes tests for equality of group and individual incentive treatments.

We find that students in individual incentive schools score significantly more than students in control schools in math and language tests over all durations of program exposure. The cohort of

[^8]students exposed to the program for 5 years scored 0.54 SD and 0.35 SD higher in math and language tests respectively (corresponding to approximately 20 and 14 percentile point improvements at the median of a normal distribution). Turning to the group incentive program, we see that students in these schools also attained higher test scores than those in control schools and that this difference is significant in the first 4 years, though it is not so for cohort 5 at the end of 5 years of the program. The point estimates of the impact of the individual incentive program are always higher than those of the group incentive programs (for both subjects), and the difference is significant at the end of Y2, Y4, and Y5 (when combined across math and language as in Panel A). The addition of school and household controls does not significantly change the estimated treatment effects in any of the regressions, as would be expected in an experimental setting (results available on request).

Table 4 presents results from estimating equation (3) for cohorts 5-9 and shows the mean treatment effects at the end of each grade for students who start primary school under the teacher incentive programs (note that column 5 is identical to that in Table 3 since they are both based on cohort 5 at the end of 5 years). Again, the impact of the individual incentive program is positive and significant for all durations of exposure for math as well as language. However, the group incentive program is less effective and test scores are not significantly different from those in the control schools for either math or for language for any duration of exposure. The effects of the individual incentive program are significantly greater for all durations of exposure greater than 1 year. The key difference between the samples used to estimate (2) and (3) is that the former is weighted towards the early years of the project, while the latter is weighted towards the later years (see Figure 2 and the discussion in 3.2 to see this clearly). The differences between Table 3 and 4 thus point towards declining effectiveness of the group incentive treatments over time.

Finally, table 5 presents results using all the cohorts and years of data that we can use to construct an experimental estimate of $\delta_{I I}$ and $\delta_{G I}$ and is based on the "full sample" as discussed in section 3.2. Each column also indicates the cohort/year/grade of the students in the estimation sample. The broad patterns of the results are the same as in the previous tables - the effects of individual teacher incentives are positive and significant at all lengths of program exposure; while the effects of the group teacher incentives are positive but not always significant, and mostly significantly below those of the individual incentives. The rest of the paper uses the "full sample" of data for further analysis, unless mentioned otherwise.

We check for robustness of the results to teacher transfers, and estimate the results in Tables 3-5 by restricting the sample to teachers who had remained in the project from the beginning and find that there is no significant difference in the estimates relative to those in Tables 3-5. ${ }^{13}$ The testing process was externally proctored at all stages and we had no reason to believe that cheating was a problem. ${ }^{14}$

4.2 Test Scores Versus Broader Measures of Human Capital

A key concern in the interpretation of the above results is whether these test score gains represent real improvements in children's human capital or merely reflect drilling on past exams and better test-taking skills. We probe this issue deeper below using data at the individual question level.

First, we consider differences in student performance in incentive schools on repeat versus non-repeat questions. ${ }^{15}$ Table 6 - Panel A shows the breakdown of scores by treatment status and by whether the question was repeated (using raw percentage scores on the tests as opposed to normalized scores). We see (as may be expected) that performance on repeated questions is typically higher in the control schools. Individual incentive schools perform significantly better on both repeat as well as non-repeat questions than control schools, whereas group incentive schools only do better on repeat questions and don't do better on non-repeat questions at any point after the first year. This table also lets us see the treatment effects in raw (as opposed to normalized) scores, and we see that at the end of 5 years, students in individual incentive schools score 9.2 percentage points higher than control schools on non-repeat questions (on a base on base on 27.4\%) and 10.3 percentage points higher on repeat questions (on a base of 32.2%) in math; and 7.3 and 5.4 percentage points higher on non-repeat and repeat questions in language (on a base of 42.7% and 45.1% respectively).

Next, we look at differential performance on multiple-choice questions (MCQ) and nonMCQ items on the test since the former are presumably more susceptible to improvements due to test-taking skills such as not leaving items blank. These results are presented in Table 6 - Panel

[^9]B, and the results are quite similar to Panel A. Student performance is higher on MCQ's; students in individual incentive schools score significantly higher than those in control schools on both MCQ's and non-MCQ's (though typically more so on MCQ's); group incentive schools are more likely to do better on MCQ's and typically don't do any better on non-MCQ's than control schools (after the first year). We adjust for these two considerations and recalculate the treatment effects shown in Tables 3-5 using only non-repeat and non-MCQ questions, but find that there is hardly any change in the estimated treatment effects. ${ }^{16}$

Next, as discussed in detail in Muralidharan and Sundararaman (2009), the tests were designed to include both 'mechanical' and 'conceptual' questions, where the former questions resembled those in the textbook, while the latter tested the same underlying idea in unfamiliar ways. We analyze the impact of the incentive programs by whether the questions were 'mechanical' or 'conceptual' and find that the main results of Tables 3-5 hold regardless of the component of the test on this dimension (tables available on request).

Finally, Table 7 shows the impact of the teacher incentive programs on Science and Social Studies, which were subjects on which there were no incentives paid to teachers in any of the five years. ${ }^{17}$ Students in schools with the individual teacher incentive program scored significantly higher on both science as well as social studies at all durations of program exposure, and students in cohort 5 scored 0.52 SD higher in science and 0.30 SD higher in social studies at the end of primary school after spending their entire schooling experience under the program. However, while students in group incentive schools also score better on science and social studies than students in control schools, the treatment effect is not significant for cohort 5 after five years, and is significantly lower than that of the individual incentive program.

4.3 Heterogeneity and Distribution of Treatment Effects

We conduct extensive analysis of differential impacts of the teacher incentive programs along several school, student, and teacher characteristics. The default analysis uses a linear functional form as follows:

[^10]$T_{i j k m}\left(Y_{n}\right)=\alpha+\gamma \cdot T_{i j k m}\left(Y_{0}\right)+\delta_{1} \cdot I I+\delta_{2} \cdot$ Char $+\delta_{3} \cdot(I I \times$ Char $)+\beta \cdot Z_{m}+\varepsilon_{k}+\varepsilon_{j k}+\varepsilon_{i j k}$,
where II (or GI) represent the treatment dummy, Char is a particular school or student characteristic, and (II \times Char) is an interaction term, with $\delta_{3}(I I) / \delta_{3}(G I)$ being the term of interest indicating whether there are differential treatment effects (for II/GI) as a function of the characteristic. Table 8 (Panel A) shows the results of these regressions on several school and household characteristics - the columns represent increasing durations of treatment exposure, the rows indicate the characteristic, and the entries in the table correspond to the estimates of $\delta_{3}(I I)$ and $\delta_{3}(G I)$-columns 1-5 show $\delta_{3}(I I)$, while columns 6-10 show $\delta_{3}(G I)$.

Given sampling variation in these estimates, we are cautious to not claim evidence of heterogeneous treatment effects unless the result is consistent across several time horizons. Overall, we find limited evidence of consistently differential treatment effects by school and student characteristics. The main heterogeneity worth highlighting is that teacher incentives appear to be more effective in schools with larger enrolments and for students with lower levels of parental literacy.

Since the linear functional form for heterogeneity may be restrictive, we also show nonparametric estimates of treatment effects to better understand the distributional effects of the teacher incentive programs. Figures 3A-3D plot the quantile treatment effects of the performance pay program on student test scores (averaged across math and language) for cohort 5 at the end of 5 years. Figure 3A plots the test score distribution by treatment as a function of the percentile of the test score distribution at the end of Y5, while Figures 3B-3D show the pairwise comparisons (II vs. control; GI vs. control; II vs. GI) with bootstrapped 95% confidence intervals.

We see that students in II schools do better than those in control schools at almost every percentile of the Y 5 test score distribution. However, the variance of student outcomes is also higher in these schools, with much larger treatment effects at the higher end of the Y5 distribution (in fact, while mean treatment effects are positive and significant in Table 3 Column 5, the non-parametric plot suggests that II schools do significantly better only above the $40^{\text {th }}$ percentile of the Y 5 outcome distribution). Students in GI schools do better throughout the Y5 distribution, but these differences are typically not significant (as would be expected from Table 3 - column 5). However, there is no noticeable increase in variance in GI schools relative
to the control schools. Finally, directly comparing GI and II schools suggests that the GI schools may have been marginally more effective at increasing scores at the lowest end of the Y5 distribution (though not significantly so), while the II schools did much better at raising scores at the high end of the Y5 distribution.

While Figure 3 shows the treatment effect at different quantiles of the Y5 distribution, it does not plot the treatment effect at different quantiles of initial student scores (since student rank order is not preserved over time within a treatment group). The cohort with the longest exposure to treatment that also has a baseline test is cohort 4 (which starts the project in grade 2 in Y1), and which received 4 years of exposure to the treatments at the end of grade 5 (in Y4). Figure 4A-4D plot the same set of comparisons as in Figure 3, but this time as a function of the percentile of baseline score (for cohort 4 at the end of Y4 and grade 5). The figures suggest a sharp contrast between the GI and II schools. The GI schools do as well as the II schools in improving performance of students at the low end of the baseline score distribution, but the II schools do substantially better for students at the high end of the distribution. Overall, students in II schools do better at all parts of the learning distribution, while those in GI schools only do better at the lower end. ${ }^{18}$

Finally, we test for differential responsiveness by observable teacher characteristics (Table 8 - Panel B). The main result we find is that the interaction of teacher training with incentives is positive and significant (for both II and GI schools), while training by itself is not a significant predictor of value addition, suggesting that teaching credentials by themselves may not add much value under the status quo but may do so if teachers had incentives to exert more effort (see Hanushek (2006)).

4.4 Group versus Individual Incentives

A key feature of our experimental design is the ability to compare group and individual teacher incentives over time and the results discussed above highlight a few broad patterns. First, II and GI schools did equally well in the first year, but the II schools typically did better over time, with the GI schools often not doing significantly better than control schools. Second, outcomes in GI schools appear to have lower variance than those in II schools, with II schools being especially effective for students at the high end of the learning distribution.

[^11]The low impact of group incentives over time is quite striking given that the typical schools has 3 teachers and peer monitoring of effort should have been relatively easy. We test whether the effectiveness of GI declines with school size, and do not find any significant effect of either school enrollment or number of teachers on the relative impact of GI versus II. These results suggest that there may be (a) limited complementarity across teachers in teaching, and (b) that it may be difficult even for teachers in the same school to effectively observe and enforce intensity of effort. ${ }^{19}$

5. Teacher Behavior and Household Responses

5.1 Teacher Behavior

Our results on the impact of the programs on teacher behavior are mostly unchanged from those reported in MS 2011. Particularly, over 5 years of measurement through unannounced visits to schools, we find no difference in teacher attendance between control and incentive schools (Table 9). We also find no significant difference between incentive and control schools on any of the various indicators of classroom processes as measured by direct observation. However, the teacher interviews, where teachers in both incentive and control schools were asked unprompted questions about what they did differently during the school year, indicate that teachers in incentive schools are significantly more likely to have assigned more homework and class work, conducted extra classes beyond regular school hours, given practice tests, and paid special attention to weaker children (Table 9).

Teachers in both GI and II schools report significantly higher levels of these activities than teachers in control schools (Table 9 - columns 4 and 5). Teachers in II schools report higher levels of each of these activities than those in GI schools as well, but these differences are not always significant (column 6). While self-reported measures of teacher activity might be considered less credible than observations, we find a positive (and mostly significant) correlation between the reported activities of teachers and the performance of their students (column 7) suggesting that these self-reports were credible (especially since less than 40% of teachers in the incentive schools report doing any one of the activities described in Table 9). In summary, it appears that the incentive program based on end of year test scores did not change the teachers'

[^12]cost-benefit calculations on the attendance margin during the school year, but that it probably made them exert more effort when present.

5.2 Household Responses

A key consideration in evaluating the impact of education policy interventions over a longer time horizon is the extent to which the effect of the intervention is attenuated or amplified by changes in behavior of other agents (especially households) reflecting re-optimization in light of the intervention (see Das et al. 2011 for a theoretical treatment of this issue combined with empirical evidence from Zambia and India, and Pop-Eleches and Urquiola 2011 for an application in Romania).

We therefore conduct household surveys at the end of Y5 of the program and collect data on household expenditure on education, student time allocation, and household perceptions of school quality across both treatment and control groups for students in cohort 5 . We find no significant differences on any of these measures across the II, GI, and control schools. Point estimates suggest lower rates of household expenditure, and greater time spent on studying at home for children in incentive schools, but none of these are significant. Overall, the results suggest that improvements in school quality resulting from greater teacher effort do not appear to be salient enough to parents for them to adjust their own inputs into their child's education (unlike say in the case of books and materials provided through the school - see Das et al. 2011).

6. Conclusion

We present evidence from the longest-running experimental evaluation of a teacher performance pay program in the world, and find that students who completed their entire primary school education under a system where their teachers received individual-level bonuses based on the performance of their students, scored 0.54 and 0.35 standard deviations higher on math and language tests respectively. We find no evidence to suggest that these gains represent only narrow gains in test scores as opposed to broader gains in human capital. In particular, we find that students in these schools also scored 0.52 and 0.30 SD higher on science and social studies even though there were no incentives paid to teachers on the basis of performance on these subjects.

An important concern among skeptics of performance-linked pay for teachers based on student test scores is that improvements in performance on highly tested components of a
curriculum (as would be likely if a teacher were 'teaching to the test') do not typically translate into improvements in less tested components of the same underlying class of skills/knowledge (Koretz 2002, 2008). Our findings of positive effects on non-incentive subjects suggest substantial positive spillovers between improvements in math and reading and performance on other subjects (whose content is beyond the domain that the incentive was provided on), and help to negate this concern in the context of Indian primary education.

The long-term results also highlight that group and individual based performance pay for teachers may have significantly different outcomes - especially over time. The low (and often indistinguishable from zero) impact of group incentives is quite striking given that the typical schools has 3 teachers and peer monitoring of effort should have been relatively easy. One possible interpretation of this result is that it is difficult for teachers even in small groups to effectively monitor the intensity of effort of their peers. The results also suggest that it may be challenging for group-based incentive programs with much larger groups of teachers (as are being tried in many states in the US) to deliver increases in student learning.

While our specific findings (and point estimates of program impact) are likely to be contextspecific, many features of the Indian education system (like low average levels of learning, low norms for teacher effort in government-run schools, and an academic and pedagogic culture that highly values performance on high-stakes tests), are found in other developing countries as well. Our results therefore suggest that performance pay for teachers could be an effective policy tool in India and perhaps in other similar contexts as well.

The impact of performance pay estimated in this paper has been restricted to the gains in student test scores attributable to greater effort from teachers currently in schools. However, in the long run, the benefits to performance pay include not only greater teacher effort, but also potentially attracting more effective teachers into the profession (Lazear 2000, 2003; Hoxby and Leigh 2005). In this case, the estimates presented in this paper are likely to be a lower bound on the long-term impact of introducing systems of individual teacher performance pay. Finally, Muralidharan and Sundararaman (2011a) report high levels of teacher support for the idea of performance linked pay, with 85% of teachers reporting a favorable opinion about the idea and 68% mentioning that the government should try to scale up programs of the sort implemented under this project.

The main challenge to scaling up teacher performance pay programs of the type studied in this paper is likely to be administrative capacity to maintain the integrity of the testing procedures. However, the results reported in this paper over five years, suggest that it may be worth investing in the administrative capacity (perhaps using technology for testing) to implement such a program at a local scale (such as a district or comparably sized jurisdiction in India) and learn if such implementation is feasible. Combining scale ups with credible evaluation strategies will help answer whether teacher performance pay programs can continue to deliver benefits when administered at scale.

References:

Baker, G. (1992): "Incentive Contracts and Performance Measurement," Journal of Political Economy, 100, 598-614.
Cullen, J. B., and R. Reback (2006): "Tinkering Towards Accolades: School Gaming under a Performance Accountability System," in Advances in Applied Microeconomics, Volume 14: Elsiever, 1-34.
Das, J., S. Dercon, J. Habyarimana, P. Krishnan, K. Muralidharan, and V. Sundararaman (2011): "School Inputs, Household Substitution, and Test Scores," National Bureau of Economic Research Working Paper 16830.
Deci, E. L., and R. M. Ryan (1985): Intrinsic Motivation and Self-Determination in Human Behavior. New York: Plenum.
Dhaliwal, I., E. Duflo, R. Glennerster, and C. Tulloch (2011): "Comparative CostEffectiveness Analysis to Inform Policy in Developing Countries: A General Framework with Applications for Education," MIT.
Dixit, A. (2002): "Incentives and Organizations in the Public Sector: An Interpretative Review," Journal of Human Resources, 37, 696-727.
Fehr, E., and A. Falk (2002): "Psychological Foundations of Incentives," European Economic Review, 46, 687-724.
Figlio, D. N., and J. Winicki (2005): "Food for Thought: The Effects of School Accountability Plans on School Nutrition," Journal of Public Economics, 89, 381-94.
Fryer, R. G. (2011): "Teacher Incentives and Student Achievement: Evidence from New York City Public Schools," National Bureau of Economic Research Working Paper 16850.
Glewwe, P., N. Ilias, and M. Kremer (2010): "Teacher Incentives," American Economic Journal: Applied Economics, 2, 205-227.
Goodman, S., and L. Turner (2010): "Teacher Incentive Pay and Educational Outcomes: Evidence from the Nyc Bonus Program," Columbia University.
Hamilton, B. H., J. A. Nickerson, and H. Owan (2003): "Team Incentives and Worker Heterogeneity: An Empirical Analysis of the Impact of Teams on Productivity and Participation," Journal of Political Economy 111, 465-97.
Holmstrom, B., and P. Milgrom (1991): "Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership, and Job Design," Journal of Law, Economics, and Organization, 7, 24-52.
Hoxby, C. M., and A. Leigh (2005): "Pulled Away or Pushed Out? Explaining the Decline of Teacher Aptitude in the United States," American Economic Review, 94, 236-40.
Ітон, Н. (1991): "Incentives to Help in Multi-Agent Situations," Econometrica, 59, 611-36.
Jacob, B. A. (2005): "Accountability, Incentives and Behavior: The Impact of High-Stakes Testing in the Chicago Public Schools," Journal of Public Economics, 89, 761-96.
Jacob, B. A., and S. D. Levitt (2003): "Rotten Apples: An Investigation of the Prevalence and Predictors of Teacher Cheating," Quarterly Journal of Economics 118, 843-77.
Kandel, E., and E. Lazear (1992): "Peer Pressure and Partnerships," Journal of Political Economy, 100, 801-17.
Koretz, D. M. (2002): "Limitations in the Use of Achievement Tests as Measures of Educators' Productivity," Journal of Human Resources, 37, 752-77.

- (2008): Measuring Up: What Educational Testing Really Tells Us. Harvard University Press.

Kremer, M., K. Muralidharan, N. Chaudhury, F. H. Rogers, and J. Hammer (2005): "Teacher Absence in India: A Snapshot," Journal of the European Economic Association, 3, 658-67.
Lavy, V. (2002): "Evaluating the Effect of Teachers' Group Performance Incentives on Pupil Achievement," Journal of Political Economy, 110, 1286-1317.

- (2009): "Performance Pay and Teachers' Effort, Productivity, and Grading Ethics," American Economic Review, 99, 1979-2011.
Lazear, E. (2000): "Performance Pay and Productivity," American Economic Review, 90, 134661.
- (2003): "Teacher Incentives," Swedish Economic Policy Review, 10, 179-214.

Muralidharan, K., and V. Sundararaman (2009): "Teacher Performance Pay: Experimental Evidence from India," National Bureau of Economic Research Working Paper 15323.

- (2011): "Teacher Opinions on Performance Pay: Evidence from India," Economics of Education Review, 30, 394-403.
- (2011): "Teacher Performance Pay: Experimental Evidence from India," Journal of Political Economy, 119, 39-77.
Neal, D. (2011): "The Design of Performance Pay in Education," University of Chicago.
Neal, D., and D. Schanzenbach (2010): "Left Behind by Design: Proficiency Counts and TestBased Accountability," The Review of Economics and Statistics, 92, 263-283.
Pop-Eleches, C., and M. Urquiola (2011): "Going to a Better School: Effects and Behavioral Responses," Columbia University.
RaU, T. B., and D. G. Contreras (2011): "Tournaments Incentives for Teachers: The Case of Chile," University of Chile, Department of Economics, 42.
Springer, M. G., D. Ballou, L. Hamilton, V.-N. Le, J. R. Lockwood, D. McCaffrey, M. Pepper, and B. Stecher (2010): "Teacher Pay for Performance: Experimental Evidence from the Project on Incentives in Teaching," Nashville, TN: National Center for Performance Incentives at Vanderbilt University.

Figure 1: Experiment Design over 5 Years

Treatment	Year 1	Year 2	Year 3	Year 4	Year 5
Control	100	100	100	100	100
Individual Incentive	100	100	100	50	50
Group Incentive	100	100	100	50	50
Individual Incentive Discontinued	0	0	0	50	50
Group Incentive Discontinued	0	0	0	50	50

Notes:

1. Number of schools in the overall project indicated in each treatment/year cell
2. Randomization was stratified by mandal - and so dividing each cell by 50 corresponds to the number of schools in each mandal in each treatment/year cell

Figure 2 : Nine Distinct Cohorts Exposed to the Interventions

		Year	Year 2	Year 3	Year 4	Year 5
One Cohort exposed for five years : 5	Grade 1	5	6	7	8	9
Two Cohorts exposed for four years : 4,6	Grade 2	4	5	6	7	8
Two Cohorts exposed for three years : 3,7	Grade 3	3	4	5	6	7
Two Cohorts exposed for two years : 2,8	Grade 4	2	3	4	5	6
Two Cohorts exposed for one year: 1,9	Grade 5	1	2	3	4	5

Table 1 : Sample Balance Across Treatments

	Panel A : Validity of Randomization for Continuation/Discontinuation of Treatments					
	[1]	[2]		[3]	[4]	
	II Discontinued	II continued	$\begin{gathered} p \text {-value } \\ (\mathrm{HO}:[1]=[2]) \end{gathered}$	GI Discontinued	GI continued	$\begin{gathered} p \text {-value } \\ (\mathrm{HO}:[3]=[4]) \end{gathered}$
Infrastructure	2.780	3.000	0.68	2.720	2.640	0.88
Proximity	13.920	13.694	0.93	14.500	13.680	0.73
Cohorts 4-7 Maths	0.048	0.166	0.42	0.036	-0.068	0.34
Cohorts 4-7 Telugu	0.039	0.120	0.53	0.051	-0.077	0.28
Cohort 5 Maths	-0.017	0.100	0.47	-0.063	0.051	0.40
Cohort 5 Telugu	0.036	0.027	0.95	-0.070	-0.028	0.75

Panel B : Balance of Incoming Cohorts (6-9) across treatment/control groups

	[1]	[2]	$[3]$	
	Control	II	GI	P-value (H0: [1] [[2] $=[3]))$
Class Enrollment	29.039	27.676	26.566	0.364
Household Affluence	3.342	3.334	3.265	0.794
Parent Literacy	1.336	1.295	1.250	0.539
Class Enrollment	22.763	21.868	19.719	0.433
Household Affluence	3.308	3.227	3.173	0.678
Parent Literacy	1.164	1.133	1.205	0.687
Class Enrollment	21.119	21.075	19.118	0.604
Household Affluence	3.658	3.407	3.470	0.536
Parent Literacy	1.128	1.208	1.243	0.155
Class Enrollment	19.659	18.979	18.356	0.804
Household Affluence	3.844	3.626	3.627	0.165
Parent Literacy	1.241	1.143	1.315	0.414

Notes:

1. The infrastructure index is the sum of six binary variables showing the existence of a brick building, a playground, a compound wall, a functioning source of water, a functional toilet, and functioning electricity.
2. The proximity index is the sum of 8 variables (each coded from 1-3) indicating proximity to a paved road, a bus stop, a public health clinic, a private health clinic, public telephone, bank, post office, and the mandal educational resource center.
3. The p-values for the student-level variables are computed by treating each student as one observation and clustering the standard errors at the school level. The p-values for school-level variables are computed treating each school as an observation.

Table 2 : Student and Teacher Attrition
Panel A : Student Attrition Cohorts 1 - 5 (Corresponds to Table 3)

	Panel B : Student Attrition Cohorts 5 - 9 (Corresponds to Table 4)			
Grade 1	0.154	0.143	0.153	0.38
Grade 2	0.36	0.32	0.323	0.14
Grade 3	0.443	0.421	0.403	0.23
Grade 4	0.507	0.457	0.435	0.06
Grade 5	0.556	0.511	0.504	0.28

Panel C : Teacher Attrition				
Y1/Y0	0.335	0.372	0.304	0.21
Y2/Y0	0.349	0.375	0.321	0.40
Y3/Y0	0.371	0.375	0.324	0.35
Y4/Y0	0.385	0.431	0.371	0.31
Y5/YO	0.842	0.840	0.783	0.17

Notes:

1. Panel A shows student attrition relative to the population that started in the sample in the baseline (YO). This is the relevant attrition table to look at in conjunction with the results in Table 3 (cohorts 1-5)
2. Panel B shows student attrition relative to initial enrollment for cohorts 5-9. The grade 1 attrition is the average attrition of all 5 cohorts by the end of grade 1; grade 2 attrition is the average attrition for cohorts $5-8$ at the end of grade 2; and so on. This is the relevant attrition table to look at in conjunction with the results in Table 4 (each row here represents the attrition associated with the estimation in each column of Table 4).
3. Panel C shows teacher attrition (due to transfers) relative to the initial sample of teachers who started in the project in Y0. Teacher headcount stayed roughly constant through th 5 years, and so (1-attrition) would correspond to the number of new teachers in the schools relative to YO.

Table 3: Impact of teacher performance pay by years of exposure to program for cohorts starting in YO (Cohorts 1-5)

	Panel A: Combined				
	One Year	Two Years	Three Years	Four Years	Five Years
Individual Incentive	0.156	0.273	0.203	0.448	0.444
	(0.050)***	(0.058)***	$(0.064)^{* * *}$	(0.092)***	$(0.101)^{* * *}$
Group Incentive	0.142		0.140	0.185	0.129
	(0.050)***	(0.057)***	(0.057)**	(0.084)**	(0.085)
Observations	42145	26936	16765	6915	3456
R-squared	0.312	0.265	0.229	0.268	0.323
Pvalue II = GI	0.78	0.10	0.35	0.02	0.00
	Panel B: Maths				
	One Year	Two Years	Three Years	Four Years	Five Years
Individual Incentive	0.184	0.319	0.252	0.573	0.538
	(0.059)***	(0.067)***	$(0.075)^{* * *}$	(0.117)***	(0.129)***
Group Incentive	0.175	0.224	0.176	0.197	0.119
	(0.057)***	(0.069)***	$(0.066)^{* * *}$	(0.098)**	(0.106)
Observations	20946	13385	8343	3442	1728
R-squared	0.300	0.268	0.238	0.316	0.370
Pvalue II = Gl	0.90	0.25	0.35	0.00	0.00
	Panel C: Telugu				
	One Year	Two Years	Three Years	Four Years	Five Years
Individual Incentive	0.129	0.229	0.155	0.325	0.350
	(0.045)***	(0.053)***	(0.057)***	(0.077)***	(0.087)***
Group Incentive	0.108	0.095	0.106	0.173	0.139
	(0.047)**	(0.052)*	(0.055)*	(0.079)**	(0.080)*
Observations	21199	13551	8422	3473	1728
R-squared	0.336	0.283	0.234	0.244	0.298
Pvalue II = Gl	0.64	0.03	0.42	0.10	0.02
Estimation Sample					
Cohort	12345	2345	345	45	5
Year	1	2	3	4	5
Grade	12345	2345	345	45	5

Notes:

1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
2. The "Estimation Sample" of Cohort/Year/Grade should be seen in conjunction with Figure 2 to clearly see the cohorts, years, and grades used in the estimation of treatment effects

* significant at 10%; $^{* *}$ significant at 5%; *** significant at 1%

Table 4: Impact of teacher performance pay by years of exposure to program for cohorts starting in Grade 1 (Cohorts 5-9)

	Panel A : Combined				
	One Year	Two Years	Three Years	Four Years	Five Years
	(1)	(2)	(3)	(4)	(5)
Individual Incentive	0.130	0.118	0.135	0.279	0.444
	$(0.055)^{* *}$	$(0.058)^{* *}$	$(0.058)^{* *}$	$(0.068)^{* * *}$	$(0.101)^{* * *}$
Group Incentive	0.061	-0.066	-0.000	0.088	0.129
	(0.053)	(0.057)	(0.057)	(0.070)	(0.085)
Observations	36903	22197	13876	7811	3456
R-squared	0.076	0.128	0.188	0.261	0.323
Pvalue II $=$ GI	0.21	0.00	0.03	0.02	0.00

	Panel B : Maths				
	One Year	Two Years	Three Years	Four Years	Five Years
	(1)	(2)	(3)	(4)	(5)
Individual Incentive	0.133	0.116	0.157	0.356	0.538
Group Incentive	$(0.059)^{* *}$	$(0.061)^{*}$	$(0.061)^{* *}$	$(0.085)^{* * *}$	$(0.129)^{* * *}$
	0.062	-0.064	0.013	0.099	0.119
Observations	(0.055)	(0.058)	(0.056)	(0.081)	(0.106)
R-squared	18345	11092	6941	3906	1728
Pvalue II = GI	0.078	0.132	0.194	0.290	0.370
	0.220	0.00967	0.0296	0.0106	0.00473

Panel C : Telugu				
One Year	Two Years	Three Years	Four Years	Five Years
(1)	(2)	(3)	(4)	(5)
0.126	0.121	0.114	0.203	0.350
$(0.056)^{* *}$	$(0.057)^{* *}$	$(0.060)^{*}$	$(0.062)^{* * *}$	$(0.087)^{* * *}$
0.060	-0.067	-0.014	0.077	0.139
(0.056)	(0.059)	(0.064)	(0.067)	$(0.080)^{*}$
18558	11105	6935	3905	1728
0.081	0.130	0.191	0.247	0.298
0.243	0.00354	0.0552	0.0779	0.0199

Estimation Sample

Cohort	56789	5678	567	56	5
Year	12345	2345	345	45	5
Grade	1	2	3	4	5

Notes:

1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
2. The "Estimation Sample" of Cohort/Year/Grade should be seen in conjunction with Figure 2 to clearly see the cohorts, years, and grades used in the estimation of treatment effects

* significant at 10%; $^{* *}$ significant at $5 \% ;{ }^{* * *}$ significant at 1%

Table 5 : Mean treatment effect after ' N ' years of exposure Using the "Full Sample" (9, 7,5,3, and 1 cohorts for 1, 2, 3, 4, 5 years of exposure)

	Panel A : Combined				
	One Year (1)	Two Years (2)	Three Years (3)	Four Years (4)	Five Years (5)
Individual Incentive	$\begin{gathered} 0.154 \\ (0.045)^{* * *} \end{gathered}$	$\begin{gathered} 0.204 \\ (0.050)^{* * *} \end{gathered}$	$\begin{gathered} 0.191 \\ (0.056)^{* * *} \end{gathered}$	$\begin{gathered} 0.331 \\ (0.072)^{* * *} \end{gathered}$	$\begin{gathered} 0.444 \\ (0.101)^{* * *} \end{gathered}$
Group Incentive	$\begin{gathered} 0.106 \\ (0.044)^{* *} \end{gathered}$	$\begin{gathered} 0.061 \\ (0.049) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.051)^{*} \end{gathered}$	$\begin{gathered} 0.123 \\ (0.067)^{*} \end{gathered}$	$\begin{gathered} 0.129 \\ (0.085) \end{gathered}$
Observations	70030	42201	24774	10961	3456
R-squared	0.183	0.197	0.209	0.246	0.323
Pvalue II = GI	0.29	0.02	0.09	0.01	0.00
			Panel B : Math		
	One Year (1)	Two Years (2)	Three Years (3)	Four Years (4)	Five Years (5)
Individual Incentive	$\begin{gathered} 0.175 \\ (0.051)^{* * *} \end{gathered}$	$\begin{gathered} 0.229 \\ (0.055)^{* * *} \end{gathered}$	$\begin{gathered} 0.227 \\ (0.062)^{* * *} \end{gathered}$	$\begin{gathered} 0.425 \\ (0.089)^{* * *} \end{gathered}$	$\begin{gathered} 0.538 \\ (0.129)^{* * *} \end{gathered}$
Group Incentive	$\begin{gathered} 0.127 \\ (0.048)^{* * *} \end{gathered}$	$\begin{gathered} 0.098 \\ (0.055)^{*} \end{gathered}$	$\begin{gathered} 0.109 \\ (0.055)^{* *} \end{gathered}$	$\begin{gathered} 0.137 \\ (0.077)^{*} \end{gathered}$	$\begin{gathered} 0.119 \\ (0.106) \end{gathered}$
Observations	34796	21014	12349	5465	1728
R-squared	0.177	0.192	0.213	0.28	0.37
Pvalue II = Gl	0.35	0.05	0.08	0.01	0.00

	Panel C : Telugu				
	One Year	Two Years	Three Years	Four Years	Five Years
	(1)	(2)	(3)	(4)	(5)
Individual Incentive	0.133	0.180	0.155	0.237	0.350
	$(0.043)^{* * *}$	$(0.047)^{* * *}$	$(0.053)^{* * *}$	$(0.062)^{* * *}$	$(0.087)^{* * *}$
Group Incentive	0.085	0.024	0.069	0.108	0.139
	$(0.044)^{*}$	(0.048)	(0.052)	$(0.063)^{*}$	$(0.080)^{*}$
Observations	35234	21187	12425	5496	1728
R-squared	0.20	0.21	0.22	0.23	0.30
Pvalue II = GI	0.26	0.00	0.13	0.07	0.02
Cohort/Year/Grade	115214313412	225324423522	335434533643		
(CYG) Indicator	511621731841	632742852	753		
	951				5545654

Notes:

1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
2. The "Estimation Sample" of Cohort/Year/Grade should be seen in conjunction with Figure 2 to clearly see the cohorts, years, and grades used in the estimation of treatment effects

* significant at 10%; ${ }^{* *}$ significant at $5 \% ;{ }^{* * *}$ significant at 1%

Table 6A : "N" Year Impact of Performance Pay by Repeat and Non-Repeat Questions										
	Dependent Variable : Percentage Test Score									
	Maths					Telugu				
	One Year	Two Years	Three Years	Four Years	Five Years	One Year	Two Years	Three Years	Four Years	Five Years
Percentage Score on Non-repeats	$\begin{gathered} 0.201 \\ (0.006)^{* * *} \end{gathered}$	$\begin{gathered} 0.285 \\ (0.006)^{* * *} \end{gathered}$	$\begin{gathered} 0.247 \\ (0.006)^{* * *} \end{gathered}$	$\begin{gathered} 0.257 \\ (0.008)^{* * *} \end{gathered}$	$\begin{gathered} 0.274 \\ (0.011)^{* * *} \end{gathered}$	$\begin{gathered} 0.342 \\ (0.008)^{* * *} \end{gathered}$	$\begin{gathered} 0.413 \\ (0.007)^{* * *} \end{gathered}$	$\begin{gathered} 0.412 \\ (0.008)^{* * *} \end{gathered}$	$\begin{gathered} 0.388 \\ (0.009)^{* * *} \end{gathered}$	$\begin{gathered} 0.427 \\ (0.011)^{* * *} \end{gathered}$
Incremental Score on Repeats	$\begin{gathered} 0.031 \\ (0.004)^{* * *} \end{gathered}$	$\begin{gathered} 0.071 \\ (0.004)^{* * *} \end{gathered}$	$\begin{gathered} -0.002 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.011 \\ (0.005)^{* *} \end{gathered}$	$\begin{gathered} 0.048 \\ (0.010)^{* * *} \end{gathered}$	$\begin{gathered} -0.017 \\ (0.005)^{* * *} \end{gathered}$	$\begin{gathered} 0.040 \\ (0.005)^{* * *} \end{gathered}$	$\begin{gathered} -0.033 \\ (0.005)^{* * *} \end{gathered}$	$\begin{gathered} -0.147 \\ (0.006)^{* * *} \end{gathered}$	$\begin{gathered} 0.024 \\ (0.012)^{* *} \end{gathered}$
Incremental Score on non-repeats II schools	$\begin{gathered} 0.035 \\ (0.010)^{* * *} \end{gathered}$	$\begin{gathered} 0.029 \\ (0.011)^{* * *} \end{gathered}$	$\begin{gathered} 0.031 \\ (0.010)^{* * *} \end{gathered}$	$\begin{gathered} 0.063 \\ (0.014)^{* * *} \end{gathered}$	$\begin{gathered} 0.092 \\ (0.023)^{* * *} \end{gathered}$	$\begin{gathered} 0.035 \\ (0.010)^{* * *} \end{gathered}$	$\begin{gathered} 0.030 \\ (0.011)^{* * *} \end{gathered}$	$\begin{gathered} 0.033 \\ (0.011)^{* * *} \end{gathered}$	$\begin{gathered} 0.043 \\ (0.013)^{* * *} \end{gathered}$	$\begin{gathered} 0.073 \\ (0.020)^{* * *} \end{gathered}$
Incremental Score on repeats II schools	$\begin{gathered} 0.047 \\ (0.012)^{* * *} \end{gathered}$	$\begin{gathered} 0.046 \\ (0.013)^{* * *} \end{gathered}$	$\begin{gathered} 0.049 \\ (0.013)^{* * *} \end{gathered}$	$\begin{gathered} 0.089 \\ (0.018)^{* * *} \end{gathered}$	$\begin{gathered} 0.103 \\ (0.024)^{* * *} \end{gathered}$	$\begin{gathered} 0.060 \\ (0.012)^{* * *} \end{gathered}$	$\begin{gathered} 0.048 \\ (0.013)^{* * *} \end{gathered}$	$\begin{gathered} 0.038 \\ (0.013)^{* * *} \end{gathered}$	$\begin{gathered} 0.058 \\ (0.018)^{* * *} \end{gathered}$	$\begin{gathered} 0.054 \\ (0.021)^{* *} \end{gathered}$
Incremental Score on non-repeats GI schools	$\begin{gathered} 0.028 \\ (0.009)^{* * *} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.011)^{* *} \end{gathered}$	$\begin{gathered} -0.006 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.017) \end{gathered}$
Incremental Score on repeats Gl schools	$\begin{gathered} 0.029 \\ (0.012)^{* *} \end{gathered}$	$\begin{gathered} 0.014 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.011)^{* *} \end{gathered}$	$\begin{gathered} 0.026 \\ (0.014)^{*} \end{gathered}$	$\begin{gathered} 0.034 \\ (0.020)^{*} \end{gathered}$	$\begin{gathered} 0.055 \\ (0.012)^{* * *} \end{gathered}$	$\begin{gathered} 0.009 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.012)^{*} \end{gathered}$	$\begin{gathered} 0.016 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.020) \end{gathered}$
Observations	56828	38058	22584	10178	3166	57555	34486	22747	10178	3176
R-squared	0.144	0.167	0.132	0.214	0.289	0.142	0.142	0.151	0.242	0.185
Fraction of Repeat Questions	15.41\%	19.67\%	16.37\%	16.67\%	12.00\%	13.95\%	12.84\%	10.36\%	6.52\%	6.25\%
Test For Equality of Treatment Effect for Repeat and Non-repeat Questions in II Schools (F-stat p-value)	0.14	0.01	0.01	0.01	0.59	0.00	0.02	0.42	0.31	0.39
Test For Equality of Treatment Effect for Repeat and Non-repeat Questions in GI Schools (F-stat p-value)	0.89	0.07	0.02	0.38	0.41	0.00	0.02	0.43	0.61	0.82

Table 6B : "N" Year Impact of Performance Pay by multiple choice and Non-multiple choice questions

Dependent Variable : Percentage Test Score									
Maths					Telugu				
One Year	Two Years	Three Years	Four Years	Five Years	One Year	Two Years	Three Years	Four Years	Five Years
0.201	0.292	0.233	0.241	0.295	0.308	0.371	0.348	0.325	0.424
(0.007)***	(0.007)***	(0.006)***	(0.008)***	(0.010)***	(0.007)***	(0.007)***	(0.008)***	(0.009)***	(0.012)***
0.028	0.021	0.020	0.057	-0.049	0.107	0.121	0.151	0.119	0.008
(0.005)***	(0.005)***	(0.006)***	(0.008)***	(0.007)***	(0.005)***	(0.005)***	(0.007)***	(0.008)***	(0.008)
0.037	0.031	0.031	0.068	0.087	0.032	0.028	0.031	0.053	0.075
(0.010)***	(0.012)***	(0.011)***	(0.016)***	(0.020)***	(0.010)***	(0.012)**	(0.012)**	(0.015)***	(0.018)***
0.037	0.034	0.052	0.095	0.118	0.052	0.044	0.045	0.052	0.079
(0.011)***	(0.012)***	(0.012)***	(0.019)***	(0.023)***	(0.012)***	(0.010)***	(0.013)***	(0.016)***	(0.021)***
0.027	0.003	0.009	0.016	0.021	0.024	-0.013	0.013	0.010	0.036
(0.010)***	(0.011)	(0.010)	(0.013)	(0.018)	(0.010)**	(0.012)	(0.013)	(0.014)	(0.017)**
0.027	0.012	0.029	0.037	0.025	0.037	0.012	0.029	0.041	0.015
(0.010)***	(0.011)	(0.010)***	(0.017)**	(0.018)	(0.012)***	(0.011)	(0.013)**	(0.016)**	(0.018)
63763	36110	21037	8279	3153	64686	36313	21176	8330	3168
0.137	0.141	0.165	0.270	0.338	0.192	0.232	0.269	0.260	0.256
22.62\%	24.33\%	26.99\%	27.08\%	28\%	39.20\%	39.19\%	37.84\%	38.41\%	37.50\%
0.96	0.66	0.01	0.06	0.01	0.00	0.03	0.17	0.95	0.82
0.96	0.27	0.01	0.12	0.84	0.08	0.00	0.12	0.02	0.14
115214313	225324423				115214313	225324423			
412511621	522632742	643753	445544654	555	412511621	522632742	643753	445544654	555
731841951	852				731841951	852			

[^13]| Table 7: "N" Year Impact of Performance Pay on Non-Incentive Subjects | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Science | | | | | Social Science | | | | |
| | One year | Two Year | Three Year | Four Year | Five Year | One year | Two Year | Three Year | Four Year | Five Year |
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| baseline maths | 0.215 | 0.155 | 0.213 | 0.087 | | 0.225 | 0.165 | 0.150 | 0.130 | |
| | (0.019)*** | (0.022)*** | (0.031)*** | (0.051)* | | (0.018)*** | (0.023)*** | (0.033)*** | (0.040)*** | |
| baseline telugu | 0.209 | 0.220 | 0.178 | 0.164 | | 0.288 | 0.191 | 0.222 | 0.139 | |
| | (0.019)*** | (0.023)*** | (0.035)*** | (0.055)*** | | (0.019)*** | (0.024)*** | (0.036)*** | (0.049)*** | |
| Individual Incentives | 0.108 | 0.186 | 0.114 | 0.232 | 0.520 | 0.126 | 0.223 | 0.159 | 0.198 | 0.299 |
| | (0.063)* | (0.057)*** | (0.056)** | (0.068)*** | (0.125)*** | (0.057)** | (0.061)*** | (0.057)*** | (0.066)*** | (0.113)*** |
| Group Incentives | 0.114 | 0.035 | 0.076 | 0.168 | 0.156 | 0.155 | 0.131 | 0.085 | 0.139 | 0.086 |
| | (0.061)* | (0.055) | (0.054) | (0.067)** | (0.099) | (0.059)*** | (0.061)** | (0.057) | (0.065)** | (0.095) |
| Observations | 11765 | 9081 | 11133 | 4997 | 1592 | 11765 | 9081 | 11133 | 4997 | 1592 |
| R-squared | 0.259 | 0.189 | 0.127 | 0.160 | 0.306 | 0.308 | 0.181 | 0.134 | 0.148 | 0.211 |
| Pvalue II = GI | 0.93 | 0.03 | 0.48 | 0.41 | 0.01 | 0.67 | 0.20 | 0.19 | 0.44 | 0.08 |
| Cohort/Year/Grade (CYG) Indicator | 115214313 | 225324423 | $\begin{gathered} 335434533 \\ 643753 \end{gathered}$ | 445544654 | 555 | 115214313 | 225324423 | $\begin{gathered} 335434533 \\ 643753 \end{gathered}$ | 445544654 | 555 |

1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level. * significant at 10%; ${ }^{* *}$ significant at 5%; ${ }^{* * *}$ significant at 1%

Table 9: Teacher Behavior (Observation and Interviews)

Teacher Behavior		Incentive versus Control Schools (All figures in \%)					
	Control Schools [1]	Individual Incentive Schools [2]	Group Incentive Schols [3]	P-value (H0: II = Control) [4]	P-value (H0: GI = control) [5]	P-value (H0: II = GI) [6]	Correlation with student test score qains [7]
Based on School Observation							
Teacher Absence (\%)	0.28	0.27	0.28	0.15	0.55	0.47	-0.109***
Actively Teaching at Point of Observation (\%)	0.39	0.42	0.40	0.18	0.42	0.58	0.114***
Based on Teacher Interviews							
Did you do any special preparation for the end of year tests? (\% Yes)	0.22	0.61	0.56	0.00	0.00	0.06	0.108***
What kind of preparation did you do? (UNPROMPTED) (\% Mentioning)							
Extra Homework	0.12	0.35	0.32	0.00	0.00	0.12	0.066**
Extra Classwork	0.15	0.39	0.34	0.00	0.00	0.04	0.108***
Extra Classes/Teaching Beyond School Hours	0.03	0.12	0.11	0.00	0.00	0.65	0.153***
Gave Practice Tests	0.10	0.29	0.25	0.00	0.00	0.04	0.118***
Paid Special Attention to Weaker Children	0.06	0.18	0.15	0.00	0.00	0.20	-0.004

1. Each "teacher-year" is treated as one observation with t-tests clustered at the school level.
2. Teacher absence and active teaching are coded as means over the year (and then averaged across the 5 years)
3. All teacher response variables from the teacher interviews are binary and column 5 reports the correlation between a teacher's stated response and the value added by the teacher that year. * significant at 10%; ** significant at 5%; *** significant at 1%

[^0]: ${ }^{\dagger}$ UC San Diego, NBER, BREAD, and J-PAL; E-mail: kamurali@ucsd.edu

 * I am especially grateful to Venkatesh Sundararaman for the long-term collaboration that has enabled this paper and to the World Bank for the long-term support that has enabled the research program that this paper is based on. Thanks to Jim Andreoni, Prashant Bharadwaj, Julie Cullen, Gordon Dahl, and Andres Santos for comments. This paper is based on a project known as the Andhra Pradesh Randomized Evaluation Study (AP RESt), which is a partnership between the Government of Andhra Pradesh, the Azim Premji Foundation, and the World Bank. Financial assistance for the project has been provided by the Government of Andhra Pradesh, the UK Department for International Development (DFID), the Azim Premji Foundation, the Spanish Impact Evaluation Fund (SIEF), and the World Bank. We thank Dileep Ranjekar, Amit Dar, and officials of the Department of School Education in Andhra Pradesh for their continuous support and long-term vision for this research. We are especially grateful to DD Karopady, M Srinivasa Rao, and staff of the Azim Premji Foundation for their leadership and meticulous work in implementing this project. Sridhar Rajagopalan, Vyjyanthi Shankar, and staff of Education Initiatives led the test design. We thank Vinayak Alladi and Ketki Sheth for outstanding research assistance.

[^1]: ${ }^{1}$ Countries that have attempted teacher performance pay programs include Australia, Israel, Mexico, the United Kingdom and Chile (which has a fully scaled up national teacher performance pay program called SNED). In the US, states that have implemented state-wide programs to link teacher pay to measures of student achievement and/or gains include Colorado, Florida, Michigan, Minnesota, Texas, and Tennessee. In addition, the US Federal Government has encouraged states to adopt performance-linked pay for teachers through the "Race to the Top" fund that provides states that innovate in these areas with additional funding.

[^2]: ${ }^{2}$ There is a vast theoretical literature on optimal incentive design in teams (Holmstrom 1982 and Itoh 1992 provide a good starting point). Kandel and Lazear (1992) show how peer pressure can sustain first best effort in group incentive situations. Hamilton, Nickerson, and Owan (2003) present empirical evidence showing that group incentives for workers improved productivity relative to individual incentives (over the 2 year study period). Lavy (2002 and 2009) studies group and individual teacher incentives in Israel but over different time periods and with different non-experimental identification strategies.
 ${ }^{3}$ See Lazear and Oyer (2009) for a recent review of the literature in personnel economics, which includes a detailed discussion of worker incentives in organizations. Dixit (2002) provides a discussion of these themes as they apply to public organizations.
 ${ }^{4}$ One limitation of short-term compensation experiments is the inter-temporal substitutability of leisure, which may cause the impact of a temporary change in wage structure to be different from the impact of a permanent/long-term change.

[^3]: ${ }^{5}$ The scores are defined in terms of "\% age score on the test". A typical teacher taught around 25 students and so a bonus of Rs. 500 per percentage point improvement in average scores in the class was equivalent to a bonus of Rs. 20 per student per percentage point improvement in student-level scores. Thus, the change in formula was not

[^4]: ${ }^{6}$ Science and social studies are tested only from grade 3 onwards because they are introduced in the curriculum only in the third grade. In the first year of the project, these tests were surprise tests that the schools did not know would take place till a few days prior to the test. In the subsequent years, schools knew these tests would take place - but also knew from the official communications and previous year's bonus calculations that these subjects were not included in the bonus calculations.

[^5]: ${ }^{7}$ Each of these rounds of testing featured 2 days of testing typically 2 weeks apart. Math and language were tested on both days, and the first test (called the "lower end line" or LEL) covered competencies up to that of the previous school year, while the second test (called the "higher end line" or HEL) covered materials from the current school year's syllabus. Doing two rounds of testing at the end of each year allows for the inclusion of more materials across years of testing, reduces the impact of measurement errors specific to the day of the test, and also reduces sample attrition due to student absence on the day of the test.
 ${ }^{8}$ Student test scores on each round (LEL and HEL), which are conducted two weeks apart, are first normalized relative to the score distribution in the control schools on that test, and then averaged across the 2 rounds to create the normalized test score for each student at each point in time. So a student can be absent on one testing day and still be included in the analysis without bias because the included score would have been normalized relative to the distribution of all control school students on the same test that the student took.

[^6]: ${ }^{9}$ Since cohorts 5-9 (those that enter the project in grade 1 in years 1 through 5 respectively) did not have a baseline test, we set the normalized baseline score to zero for the students in these cohorts. Note that the coefficient on the baseline test score is allowed to be flexible by grade, to ensure that including a normalized baseline test of zero does not influence the estimate of the $\gamma_{j\left(Y_{0}\right)}$ for the cohorts where we have a baseline score.

[^7]: ${ }^{10}$ Note that the estimation sample does not include students who transferred into the school during the 5 years of the project, since the aim is to show the treatment effects on students who have been exposed to the program for n years. The attrition numbers are presented relative to the initial set of students in the project, who are the only ones we use in our estimation of treatment effects.
 ${ }^{11}$ Since the only test scores available for cohorts 5-9 are after they have spent a year in the treatment schools, it is not meaningful to compare the test scores of attritors in this sample. However, we compare the average score percentiles (based on scores after completing $1^{\text {st }}$ grade) of attritors in treatment and control groups and find no difference in this either over time.

[^8]: ${ }^{12}$ We estimate this model separately at the end of each year, and for group and individual incentive schools relative to the control group. We reject the null of equality only once out of ten tests (five years each for GI and II schools respectively).

[^9]: ${ }^{13}$ The point estimates of the impact of the individual incentive program on cohort 5 at the end of Y5 are larger in this restricted sample, but they are (a) not significantly different from the estimates in Table 3 (column 5), and (b) estimated with just 16% of the teachers who started the program.
 ${ }^{14}$ As reported in MS 2011, there were 2 cases of cheating discovered in Y2. These schools were disqualified from receiving bonuses that year (and dropped from the 2-year analysis), but were not disqualified from the program in subsequent years
 ${ }^{15}$ Around 16% of questions in math 10% of questions in language are repeated across years to enable verticallinking of items over time

[^10]: ${ }^{16}$ There are two likely reasons for this. First MCQ and repeat questions constitute a small component of the test. Second, even though the performance of incentive schools is higher on MCQ and repeat questions in percentage point terms, the standard deviations of scores on those components of the test are also larger, which reduces the impact of removing these questions from the calculation of normalized test scores (which is the unit of analysis for Tables 3-5).
 ${ }^{17}$ Since these tests were only conducted in grades 3-5, we have fewer cohorts of students to estimate treatment effects on. Table 7 clearly indicates the cohort/year/grade combination of students who are in the estimation sample.

[^11]: ${ }^{18}$ The bootstrapped 95\% confidence intervals are quite wide, and suggest that neither the GI nor II effects are significant but note that this graph uses only 1 of the 3 cohorts in Table 5 - Column 4, since only 1 of the 3 cohorts with 4-years of exposure to the program had a baseline score at the start of the experiment.

[^12]: ${ }^{19}$ This section will be developed further in future drafts of the paper.

[^13]: Notes:

 1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level,

 * significant at 10%; ${ }^{* *}$ significant at 5%; *** significant at 1%

