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Abstract: Aiken et al. (2014b) draw the conclusion that the evidence for a 

relationship between deworming and school attendance is “weak” based on two 

fundamental errors in their data analysis. First, the authors redefine treatment to 

include pre-treatment control periods. Second, while the original research design was 

based on a stepped-wedge analysis that was adequately powered, the re-analysis 

authors undertake a clearly under-powered alternative analysis which ignores the 

time series element of the data, and then splits the cross-sectional analysis into two 

separate components, each of which has inadequate power. Examining the fully 

powered analysis, they report: “In a fully-adjusted logistic regression model making 

maximum use of the data available, there appeared to be strong evidence of an 

improvement in school attendance”. If either error is corrected, deworming 

significantly increases school attendance under the full range of statistical analyses 

considered by Aiken et al. Their analysis also underestimates the impact of 

deworming on school attendance by neglecting violations of the SUTVA assumption 

generated by transmission of worm infection to nearby schools (Miguel and Kremer 

2004).  We also respond to concerns raised by Aiken et al. regarding data collection 

processes and blinding. 
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1 Executive Summary 

Miguel and Kremer (2004) evaluates a deworming program in 75 Kenyan primary 

schools using a stepped-wedge research design, in which groups of schools were phased 

into treatment over time. Methodologically, it showed that deworming treatment lowered 

worm counts not only among treated pupils, but also among untreated pupils within the 

same school, and among pupils in nearby schools – consistent with the hypothesis that 

deworming interrupts the chain of disease transmission, what economists would term an 

epidemiological externality or spillover. The paper shows that in these circumstances, 

“naïve” estimators of the impact of the program based on examining the simple difference 

between treatment and comparison schools will be biased downwards, and the paper 

introduces an estimator of program impact that takes into account effects on neighboring 

schools. Miguel and Kremer (2004) also shows that the Kenya deworming program 

increased school participation and did so very cost effectively relative to other known 

approaches. No effect was detected on academic test scores during the time period 

examined. 

Aiken et al. (2014a, b) re-analyze the data from Miguel and Kremer (2004) through 

the new replication process established by the International Initiative for Impact Evaluation 

(henceforth, 3ie). In a separate paper that composes the first part of their replication 

exercise, Aiken et al. (2014a) utilize the statistical methods of the original paper. In that 

study, the re-analysis authors obtain results consistent with the key claims of Miguel and 

Kremer (2004); they report substantial, positive impacts of deworming on treated pupils, 

untreated pupils in treatment schools, and pupils in schools near treatment schools (within 

3 km) for both worm infection and for school attendance outcomes. We discuss this “pure 

replication” re-analysis in a previous note (Hicks, Kremer, and Miguel, 2014) and an earlier 

paper (Miguel and Kremer, 2014). 

This note is a response to Aiken et al. (2014b), which re-analyzes the original data 

after changing the definition of treatments splitting the data into subsamples, re-weighting, 

and various other adjustments. The re-analysis authors argue that evidence for school 

participation impacts is weak, but this conclusion is based on a series of errors in their 

analysis of the data. One error is recoding of the treatment measure to include pre-

treatment “control” periods in both years of the study (1998 and 1999). To illustrate, Group 

2 schools began receiving deworming in March 1999. The correct coding of “treatment” for 

Group 2 begins after March 1999, and this is the coding discussed and employed in Miguel 

and Kremer (2004) as well as in the re-analysis presented in Aiken et al. (2014a); however, 

Aiken et al. (2014b) incorrectly consider the Group 2 school attendance observations from 

the pre-treatment period in the first months of 1999 as “treatment” observations, leading to 

the incorrect classification of a sizeable 20% of control observations in Year 2 of the study.  

Beyond the miscoding of the treatment variable, the analytic approach taken by 

Aiken et al. (2014b) has a number of other important flaws. First, since all of their 

estimators are based on the “naïve” estimation approach of comparing treatment and 

control schools in a context where the stable unit treatment value assumptions (SUTVA) are 

violated by positive disease transmission externalities, their estimates are all downward 

biased (in the statistical sense of the term).  

Second, many of the estimators in Aiken et al. (2014b) ignore the study’s stepped 

wedge design, in which some schools change treatment status during the course of the 

study. They instead focus on cross-sectional estimates, completely neglecting the time 
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series aspect of the data, and moreover, split the data into year subsets and report results 

separately for the subsets, sacrificing statistical precision and unnecessarily introducing 

additional noise. The re-analysis authors’ own power calculations imply that such 

approaches are extremely underpowered (Aiken et al., 2013, p. 7; Aiken et al., 2014b, 

Appendix 1). Confirming a key result in Miguel and Kremer (2004), they find a large, 

statistically significant effect of deworming on school attendance when they pool the data 

(Aiken et al., 2014b, Table 4).  

Aiken et al. also raise a number of concerns about the data and analysis (which we 

argue below are spurious) and adopt other changes in statistical procedures to address 

them, most importantly, re-weighting the data. One central finding of the current note is 

that this central empirical finding of Miguel and Kremer (2004), namely, that deworming 

increased school participation rates, is robust across a range of statistical estimators once 

the treatment term is correctly coded and the research design is appropriately utilized.1 In 

particular, we show that when treatment is correctly defined to include only periods when 

deworming treatment had actually occurred, there is a statistically significant impact of 

deworming on school attendance even in the statistical models which Aiken et al. (2014b) 

argue contain the “weakest” evidence. Moreover, in the two pieces of analysis that employ 

both years of data and use the original study’s stepped-wedge research design – the 

specification which represents the culmination of their pre-specified analysis (Aiken et al., 

2013) – the re-analysis authors estimate the same finding as the original paper, namely, a 

large, positive and statistically significant impact of deworming on school participation. They 

write: “In a fully adjusted logistic regression model making maximum use of the data 

available, there appeared to be strong evidence of an improvement in school attendance.” 

(Aiken et al., 2014b, p. 26). 

Nonetheless, it is worth noting and responding to some of the concerns raised by 

Aiken et al. (2014b). In particular, they raise concerns about the cross-sectional correlation 

between the number of attendance observations per school and average school participation 

rates, in the treatment versus control schools, which they apparently observe by 

“eyeballing” a plot of the relationship; we present statistical evidence that this correlation 

does not bias treatment effect estimates. Aiken et al. also base part of their conclusion on a 

cluster-level analysis making use of a non-standard approach to “weighting” observations, 

which is contrary to the approach described in their pre-analysis plan (Aiken et al., 2013). 

We show that deworming has a robust, positive effect on school participation even when 

considering each year separately (1998 and 1999) using this cluster summary approach 

once a standard weighting approach (i.e., either weighting each individual equally or each 

attendance observation equally) is applied. 

 The bottom line assessment reached by Aiken et al. (2014b) is that the results in 

Miguel and Kremer (2004) are not robust to different analytical approaches; they write: “We 

found that the evidence that the intervention improved school attendance differed according 

to how we analysed the data.” (Aiken et al., 2014b, p. iv). We strongly disagree with this 

conclusion.  

                                                 
1 The findings in Miguel and Kremer (2004) that receive by far the most attention in Aiken et al. 

(2014b) are the impacts of deworming on school participation. This note focuses almost entirely on 
this issue, although we also discuss the evidence regarding other deworming impacts at several 
points.  
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In order to assess the purported “sensitivity” of the school participation results to 

different analytical assumptions, in Table 1 (below) we present the results in 32 different 

ways that are common in both the economics and medical literatures (and all of which 

relate to analytical choices mentioned in the re-analysis authors’ pre-analysis plan, Aiken et 

al., 2013). The key takeaway is that in all 32 specifications the coefficient estimate on the 

deworming treatment indicator variable is large, positive, and statistically significant at 99% 

confidence. The specifications: (i) use different statistical models (the linear regression 

model preferred by Miguel and Kremer (2004) and the random effects logistics regression 

preferred by Aiken et al. (2014b)); (ii) different samples of pupils (the full sample preferred 

by Miguel and Kremer (2004) and the sample eligible for deworming treatment as preferred 

by Aiken et al. (2014b)); (iii) regression models unadjusted for covariates and adjusted for 

covariates (the latter of which is preferred by Aiken et al. (2014b)); (iv) use two different 

approaches to weighting observations (weighting each attendance observation equally, as in 

Aiken et al. (2014b) and in Miguel and Kremer (2004), as well as weighting each pupil 

equally to obtain the population average); and finally, (v) use the final dataset that Aiken et 

al. (2014a, b) employ in their analysis, even though it incorrectly defines treatment (as 

described above) and despite the fact that we disagree with some of the assumptions made 

regarding missing observations (as we detail in Section 4 below), versus using the correct 

definition of treatment and our version of the data. The one thing we keep fixed across all of 

the results in Table 1 is that we use both years of data (1998 and 1999) throughout, as 

envisioned in the project’s original prospective stepped wedge research design, emphasized 

as the culmination of analysis in the replication authors’ own pre-analysis plan (Aiken et al., 

2013), and which is the appropriate way to analyze these data. 

In all, Table 1 contains 32 different coefficient estimates allowing the five factors 

mentioned above to vary across the cases. This produces a striking set of results that 

demonstrate just how remarkably robust the positive impact of deworming on school 

participation is in this data. In all 32 specifications, the point estimate is positive and large 

in magnitude, with point estimates in the linear regressions ranging from 5.6 to 7.2 

percentage point gains. Furthermore, in all 32 specifications the point estimate is 

statistically significant at 99% confidence (P-value < 0.01). Note that the coefficient 

estimates are generally somewhat smaller in specifications using the Aiken et al. (2014b) 

version of the data that miscodes treatment, as expected given the measurement error that 

this induces. A coefficient of particular interest is the culmination of the proposed primary 

analysis in Aiken et al.’s (2013) pre-analysis plan, which is highlighted with a dark “box” (in 

column 1 of Panel A). This coefficient estimate is large, positive, and statistically significant 

with P-value < 0.001. These results presented in Table 1 run strongly counter to the 

unfounded claim in Aiken et al. (2014b) that the relationship shows “sensitivity” depending 

on how the data is analyzed.  

Section 2 of this note explores these key points in detail, and addresses the main 

claims raised in Aiken et al. (2014b). Section 3 summarizes, and discusses the current state 

of evidence on the educational and economic impact of deworming. A point-by-point 

treatment of Aiken et al. (2014b) is contained in the final section.  

The 3ie replication process differs in important ways from the standard research 

community-led peer-review process in academic journals. We have been explicitly instructed 

by 3ie staff not to discuss our experiences with the replication process at any length in this 

note, including our views on the weaknesses of their current system and the review 
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standards they employ. We do have a number of observations based on our experience, as 

well as suggestions for how the process could be improved, and we look forward to sharing 

these insights with 3ie staff and with the broader research community in the future.
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Table 1: Deworming impacts on school participation (1998-1999)  

Analytical approach: Random-effects 

logistic regression  

Random-effects 

logistic regression 

Linear regression Linear regression 

Data and variable construction: Aiken et al. (2014b) 

(1) 

Original 

(2) 

Aiken et al. (2014b) 

(3) 

Original 

(4) 

Panel A: Eligible pupils, adjusted     

     - weight by attendance observations 1.82*** [p<0.001] 1.88*** [p<0.001] 0.059*** [p=0.002] 0.060*** [p=0.001] 

     - weight all pupils equally 1.84*** [p<0.001] 1.86*** [p<0.001] 0.059*** [p=0.003] 0.064*** [p<0.001] 

Panel B: Eligible pupils, unadjusted     

     - weight by attendance observations 1.78*** [p<0.001] 1.84*** [p<0.001] 0.065*** [p=0.005] 0.070*** [p=0.003] 

     - weight all pupils equally 1.80*** [p<0.001] 1.82*** [p<0.001] 0.069*** [p=0.008] 0.072*** [p=0.003] 

Panel C: All pupils, adjusted     

     - weight by attendance observations 1.81*** [p<0.001] 1.81*** [p<0.001] 0.056*** [p=0.001] 0.056*** [p=0.001] 

     - weight all pupils equally 1.83*** [p<0.001] 1.80*** [p<0.001] 0.057*** [p=0.002] 0.061*** [p<0.001] 

Panel D: All pupils, unadjusted     

     - weight by attendance observations 1.74*** [p<0.001] 1.76*** [p<0.001] 0.063*** [p=0.005] 0.067*** [p=0.004] 

     - weight all pupils equally 1.76*** [p<0.001] 1.75*** [p<0.001] 0.067*** [p=0.008] 0.070*** [p=0.005] 

Notes: These analyses all use both 1998 and 1999 data, finalized and updated, reflecting our own replication documentation (Miguel and 

Kremer 2014) as well as comments in Aiken et al. (2014a). The Aiken et al. (2014b) data contains several additional modifications regarding 
the inclusion of transfer students, and assumptions on missing data, which are described in Aiken et al. (2014b), as well as erroneously  
defining treatment to include pre-treatment “control” periods in each year of the deworming program. The original version of the data is as 
employed by Miguel and Kremer (2004), with the exception that missing age data is imputed using average age within 1998 grade, as 
detailed in Aiken et al. (2014b); this is done in order to maintain the same sample while controlling for age in the “adjusted” estimates. All 
analyses contain covariates for school pupil population size and geographic zone. “Adjusted” estimates follow Aiken et al. (2014b) in also 
including covariates for pupil age and SAP program. “Eligible pupils” are those potentially eligible for deworming treatment, as described in 

Miguel and Kremer (2004). Logistic analyses in columns 1 and 2 present odds ratios and employ school random effects, following Aiken et al. 
(2014b); in the linear regression analyses in columns 3 and 4, disturbance terms are clustered by school, following Miguel and Kremer 

(2004). P-values are in square brackets and stars reflect: “***” P-value < 0.01, “**” P-value < 0.05, “*” P-value < 0.10. 
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2 Technical Response to Aiken et al. (2014b) 

Aiken et al. (2013)’s pre-analysis plan culminates in the analysis of the combined 

1998 and 1999 data using individual-level random effect logistic regression, either with or 

without adjustment (i.e., additional covariates), and these results are presented in the top 

right panel of Table 4 of their report. The two main results are the finding of an odds ratio of 

1.78 (P-value<0.001) and an adjusted odds ratio of 1.82 (P-value<0.001), and we 

reproduce these in our Table 1 (column 1) above. Both are positive and statistically 

significant, and they are also very large in magnitude. 

It is worth noting up front that Aiken et al. (2014b) focus entirely on the simple 

difference between treatment and control schools, and ignore the important issue of 

deworming externalities. We disagree with this approach. In the presence of positive 

deworming treatment externalities such as those estimated in Miguel and Kremer (2004) 

and Aiken et al. (2014a), all of the estimators used in Aiken et al. (2014b) are downward 

biased, yielding lower bounds on true deworming treatment effects. 

 In this section, we explore key aspects of the analysis presented in Aiken et al. 

(2014b) in detail, and address the main concerns raised by the re-analysis authors.  

 

2.1 Miscoding of the treatment measure in Aiken et al. (2014b)  

In the process of studying the school participation analysis presented in Aiken et al. 

(2014b) after it had been initially submitted to 3ie for publication, we discovered what we 

assumed to be a coding error in the definition of the treatment indicator. Specifically, the 

replication authors define Group 1 individuals to be “treated” for the entire calendar year for 

both 1998 and 1999, even though the first attendance visit in 1998 was conducted prior to 

any Group 1 school receiving deworming treatment or health education (treatment took 

place between March and April 1998); and they define Group 2 individuals to be “treated” 

for the entire 1999 calendar year, even though the first two attendance visits in 1999 were 

conducted prior to any Group 2 schools receiving deworming or health education (treatment 

took place between March and June 1999). We thought this to be a coding error, as the re-

analysis authors had made no mention whatsoever of this important recoding of the 

treatment variable in their report (the version of Aiken et al., 20014b that was originally 

submitted to 3ie for publication) or in their pre-analysis plan (Aiken et al., 2013), and they 

did not object to the original coding in Miguel and Kremer (2004) as it was employed in 

their “pure replication” report (Aiken et al., 2014a). However, subsequent to our bringing 

this important issue to the attention of the authors, they added text to their report justifying 

this coding choice (the last two paragraphs of Section 2.3 of their report, and the second 

paragraph of Section 2.5), and added a new table of results (their Appendix 7) with 

associated discussion. 

The re-analysis authors purport to justify this choice using an “intention-to-treat” 

statistical framework. Such a framework is typically utilized in situations where a population 

was assigned to treatment, but in practice only some individuals within that population 

actually received treatment (compliers) while others did not (non-compliers). Aiken et al. 

(2014b) incorrectly apply this framework to a different situation – one in which no 

individuals were actually treated (i.e., Group 2 prior to March 1999) and none were 

supposed to be treated, but it is claimed (by the re-analysis authors themselves) that 

individuals could have or should have been treated. This entire argument rests on the 

assumption that there was some intention to provide deworming treatment at the exact 
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start of the calendar year to each group of schools assigned to treatment later that year. 

However, as we detail in Section 4 below, there was never any such intention, and in fact 

the study’s core research design necessitated treatment not starting immediately at the 

start of each calendar year. The replication authors’ decision to impose their own notion of 

what the “planned” timeline of data collection and deworming treatment should have been, 

which runs counter to reality as described in the published paper (Miguel and Kremer, 

2004), is extremely puzzling to us. 

In fact, if we follow the re-analysis authors’ assumption on what constitutes a 

treatment observation to its logical conclusion, then any analysis on the worm infection and 

health outcomes needs to be discarded, since according to them, Group 2 schools are all 

already “treatment schools” in early 1999, and thus the comparison between Group 1 and 

Group 2 using data collected in early 1999 is meaningless. Yet this is nonsensical since no 

Group 2 schools were treated, nor was there ever any intention of treating them, in the 

early months of 1999. Rather, extensive data collection was carried out in all schools in the 

early months of 1999 precisely because Group 2 had not yet been phased into treatment, 

allowing for analysis of health impacts. 

We show that when treatment is correctly defined to include only periods when 

deworming treatment had actually started, there is a statistically significant impact of 

deworming on school attendance even in the statistical models which Aiken et al. (2014b) 

argue contain the “weakest” evidence. In particular, we show this for both the cluster 

summary and individual-level analyses. The individual-level results presented above in 

Table 1, columns (2) and (4), already correct this miscoding of the treatment term, as we 

mention above. Table 3, Panel B (below) explores the implications of the miscoding of the 

treatment term in the cluster summary analyses. The results in this panel utilize exactly the 

same data and weighting methodology as in Panel A (which we go through in more detail in 

Section 2.3), but we have redefined treatment appropriately. Specifically, Group 1 

individuals are considered “treated” starting at attendance check visit #2 in 1998 

(attendance check visit #1 is dropped from the analysis for simplicity, although it could also 

be included without changing the results), and for the rest of 1998 and 1999; Group 2 

individuals are considered “treated” starting at attendance check visit #3 in 1999, and for 

the rest of 1999. Making only this change, the cluster summary results weighted by either 

pupil population or number of attendance observations remain large and highly statistically 

significant (P-value < 0.05) in all cases, as before. But interestingly, even in the Aiken et al. 

(2014b) analysis that weights each school equally, the impact of deworming on school 

participation in 1998 alone result is marginally significant (P-value=0.056) and the pooled 

1998 and 1999 year results are highly significant (P-value < 0.05). 

The bottom line is that the re-analysis authors make an unfounded and incorrect 

decision to recode the treatment variable in their analysis, despite the lack of any evidence 

to suggest that deworming treatment was supposed to have been introduced at the start of 

each calendar year. Once this blatant error is corrected, the estimated impact of deworming 

on school participation using the correctly coded treatment variable but otherwise using 

their analytical methods is large, positive and statistically significant, as detailed below. 

 

2.2 Aiken et al. (2014b) concern #1: possible relationship between number of 

observations and attendance  
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The main concerns raised by the re-analysis authors in Aiken et al. (2014b) appear 

to revolve around data collection and data quality, and these are summarized in their 

sections 4.2 and 4.3 and their Figure 3. Their basic claim is that they believe there are some 

unusual correlations between the number of school attendance observations per school and 

the average school participation rate. However, the existence of a simple correlation of this 

kind is not sufficient to introduce bias into the study. It is easy to show in our data that the 

key driver of the total number of school participation observations is the school population, 

i.e., large schools have many more pupil-level observations than small schools, as expected. 

School participation rates could correlate with school population (or with any of a number of 

other demographic and social characteristics) for many different reasons, and the existence 

of such a correlation alone is not a source of bias, as the re-analysis authors recognize. For 

instance, larger schools could be located in more densely populated areas, have a different 

disease environment, or be located closer to (or farther from) Lake Victoria; better schools 

may attract more pupils and also have lower attendance rates; and in denser areas, schools 

may be larger but closer together, affecting the average walking distance to school, etc.  

So the re-analysis authors’ argument is more subtle. For there to be bias in the 

analysis, the correlation between school participation observations and the average school 

participation rate would have to differ systematically between treatment and control 

schools. They are particularly focused on the case of the Group 2 schools, which start out in 

the control group in 1998 and “phase in” to deworming treatment in 1999. In the case of 

the Group 2 schools, their concern is that there is a time-varying difference (between 1998 

and 1999) in how the correlation between the number of school participation observations 

and the average school participation rate differs between treatment and control schools. In 

their own words: 

 

“The Group 2 comparison across years also reduces the level of between-cluster 

variation and may therefore have greater statistical power. The increase in power 

ordinarily represents an advantage of the stepped-wedge design. We are concerned 

about the reliability of this combined estimate of effect across the two study years, 

because it depends strongly on the ‘horizontal’ comparison of outcomes between 

year 1 (1998) and year 2 (1999) in Group 2. Figure 3 shows that there was probably 

a bias towards more pupil observations in schools with low attendance in year 1 

(1998) (control condition), while we saw the opposite bias in year 2 (1999) 

(intervention condition). This would potentially lead to overestimation of the effect of 

the intervention on attendance, particularly in an analysis weighted, in part, by the 

number of observations.” (p. 27) 

 

This is the central critique of the Miguel and Kremer (2004) data and analysis in the 

Aiken et al. (2014b) report, as we read it. This potential for “bias” in the estimation of 

deworming treatment effects would be due to “excessive” data collection in “high” school 

participation treatment schools relative to “low” school participation treatment schools. 

We were surprised by this assertion for two reasons. First, we were involved in the 

data collection and know that approximately equal numbers of visits were made to all types 

of schools, with the data collection protocol explicitly “balanced” across the treatment and 

control groups at all times. There was absolutely no explicit or implicit “bias” towards 

visiting schools that would help support an ex ante research hypothesis.  
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Second, we were surprised that this assertion was made when no statistical test was 

provided by the replication authors about whether there actually is “excessive” data 

collection in certain types of schools than in others. Rather, the assertion is apparently 

based on “eye-balling” Figure 3, and the visual evidence does not look compelling to us: all 

three groups of schools have a downward sloping (negative) relationship in 1998, and the 

relationships in 1999 appear flatter, with some upward sloping. Yet the test that Aiken et al. 

allude to is straightforward to run with the data in hand: one simply needs to test (using 

data at the school-year level) if there is a significant difference in the correlation between 

school participation and the number of school participation observations between treatment 

and control schools, and moreover, if this correlation changes over time (which is critical to 

the replication authors’ claim that they cannot reliably exploit the study’s stepped wedge 

research design, which includes the incorporation of the Group 2 schools into the treatment 

group in 1999). 

We run this test in Table 2 (below). We first note that we find no statistically 

significant correlation between school participation and the number of school-year 

attendance observations overall pooling both years of data (column 1). The point estimate 

is very close to zero, at -0.024, with a P-value of 0.14. The test alluded to by Aiken et al. 

(2014b) is presented in column 2, and further includes indicators for year 2 (1999) and 

treatment schools (= Group 1 in 1998 and Groups 1 and 2 in 1999), as well as interactions 

between these two terms and the measure of attendance observations. In the table, we 

bold the two key interaction terms that they allude to, namely, the interaction between the 

treatment indicator and the number of observations, and then the triple interaction of these 

terms with the 1999 indicator. We find that there are no significant interaction effects of 

treatment with the number of observations, and once again the point estimate is very close 

to zero with a large P-value (P-value = 0.71), nor does this correlation change over time, in 

the triple interaction term (P-value = 0.14). We then investigate whether this relationship 

differs between the Group 1 and Group 2 schools in column 3, but once again find no 

statistically significant interaction effects between these deworming group indicators and the 

number of attendance observations, nor do these effects differ across years (once again P-

value > 0.10 in all cases). The coefficient estimate that Aiken et al. (2014b) focus on is the 

triple interaction of the Group 2 indicator with the Number of observations and the 1999 

indicator (to capture whether the nature of data collection these schools that “switched” 

treatment status due to the stepped wedge design changed over time) and this estimate is 

very close to zero (0.045) with a large P-value of 0.56. 

The bottom line is that there is no statistically significant – or even suggestive – 

evidence that there is any differential correlation between the number of observations and 

school participation rates across treatment and control schools, nor that this relationship 

changes significantly over time. We are not surprised by this pattern, since we were 

involved in the original data collection and know that approximately equal numbers of visits 

were made to schools in treatment and control schools throughout. In the absence of this 

evidence, the re-analysis authors’ assertion that it is inappropriate to pool data from 1998 

and 1999 and utilize the project’s research design appears entirely unfounded. 
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Table 2: Relationship between school attendance and observations 

Dep var: School attendance (1) (2) (3) 

Number of attendance observations (by school-year) 

-0.024 

[0.144] 

-0.061*** 

[0.003] 

-0.115*** 

[0.007] 

Indicator for 1999 

 

-0.132** 

[0.050] 

-0.204** 

[0.014] 

Indicator for treatment school (col 3 = G1 only) 

 

0.067 

[0.398] 

-0.005 

[0.955] 

Indicator for Group 2 school 

  

-0.106 

[0.142] 

Treatment indicator * Number attendance obs 

 

-0.023 

[0.713] 

0.030 

[0.680] 

G2 indicator * Number attendance obs 

  

0.071 

[0.137] 

Treatment indicator * 1999 indicator 

 

-0.163 

[0.123] 

-0.065 

[0.597] 

G2 indicator * 1999 indicator 

  

-0.013 

[0.899] 

Number attendance obs * 1999 indicator 

 

0.027 

[0.581] 

0.080 

[0.189] 

Treatment * Number attendance obs * 1999 indicator 

 

0.122 

[0.138] 

0.051 

[0.592] 

G2 indicator * Number of attendance obs * 1999 indicator     

0.045 

[0.557] 

Note: The dependent variable is average school attendance in a school-year. Controls are as shown. 
Number of attendance observations is presented in thousands. P-values are in square brackets and 
stars reflect: “***” P-value < 0.01, “**” P-value < 0.05, “*” P-value < 0.10. 

 

2.3 Aiken et al. (2014b) concern #2: Appropriate weighting 

Even if one were to accept their assertions about potential bias (based on the broad visual 

patterns the re-analysis authors claim to discern in Figure 3, but which are not apparent to 

us), the suggested remedy proposed by Aiken et al. (2014b) – namely, using an approach 

that weights each school equally in their (not pre-specified) cluster-level analysis – is 

inappropriate in our view. The correct way to address this issue would be to weight each 

pupil equally. Doing so would maintain the analysis as the average impact in the sample 

population, a meaningful quantity. The school average impact is not standard in the health 

economics or public health literature, nor is it appropriate in a setting in which some schools 

only have 100 pupils and others have 700 pupils. Aiken et al. (2014b) do not provide any 

rationale for why they would arbitrarily over-weight pupils in the smaller schools up to 

seven times more than comparable pupils in larger schools, nor do we feel that there is a 

justifiable rationale for such a decision. It is worth noting that the approach of weighting 

each school equally was never mentioned in the replication authors’ pre-analysis plan (Aiken 

et al., 2013), where they consistently emphasize individual level analysis. 
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Given the importance that Aiken et al. (2014b) attach to their cluster summaries 

analysis (which was not pre-specified) in driving the implication that the results in Miguel 

and Kremer (2004) are sensitive to analytical choices, we decided to explore the analysis 

they present in the top left panel of their Table 4. Following that analysis, we focus on 

simple school average outcomes year-by-year but simply re-weight each of these 

observations by the school population at baseline in 1998. This “solves” the potential 

problem they point to about “excessive” school participation observations in some schools 

relative to others, but maintains the analysis in terms of population averages, which is 

attractive and standard.  

As we show in Panel A of Table 3, below, the cluster summaries analysis with this 

standard weighting approach generates results very similar to the replication team’s own 

individual-level random effects logistic analysis, namely large and statistically significant 

deworming treatment effects in 1998 alone (P-value < 0.05), in 1999 alone (P-value < 

0.05), and in 1998 and 1999 combined (P-value < 0.01). We also show these results 

weighting by the number of attendance observations (which we feel is appropriate given the 

lack of evidence above on the purported “excessive” observations in high participation 

treatment schools), and weighting each school equally, as in Aiken et al. (2014b).  

To take a step back and summarize the argument in Aiken et al. (2014b), they claim 

that there was excessive data being collected in “high school participation” treatment 

schools relative to lower attendance schools, and that this may have led to bias in the 

school participation estimates. They use this purported pattern to justify both: (i) weighting 

each school observation equally (rather than using population averages or weighting by the 

number of attendance observations), and (ii) to not pool data across 1998 and 1999 (a 

decision which greatly reduces the statistical power of the original study design). 
However, we showed in Table 2 that there is in fact no statistically significant 

difference between the correlation of school participation rates and school participation 

observations in treatment versus control schools, nor does this relationship change over 

time. So there is no evidence for the purported data “problem” that forms the centerpiece of 

the argument in Aiken et al. (2014b). Moreover, even if one were to accept their argument 

based on more informal evidence, such as broad visual inspection of their Figure 3, the 

solution they propose is inappropriate, since it seems preferable on all dimensions to weight 

each pupil equally and obtain the population average rather than weight each school 

equally, and arbitrarily weight some students seven times more than others. When one does 

so, the cluster summary results in Table 3 indicate that deworming led to large, positive and 

statistically significant impacts on school participation in 1998 alone, in 1999 alone, and in 

1998 and 1999 together. 

Taking Tables 1 and 3 together and considering all deworming treatment effect 

estimates that (i) pool both years of data (since we have shown there is no justification not 

to do so), and (ii) correct the replication authors’ incorrect recoding of the treatment 

indicator, to us it appears hard to avoid the conclusion that school-based deworming in this 

Kenyan sample has positive, large, and highly statistically significant impacts that are 

robust to a wide range of sensitivity analyses, including regression models (random effects, 

linear regression), weighting schemes (at the school-level, pupil-level, and attendance 

observation-level), covariates (adjusted and unadjusted), samples (all pupils and only those 

eligible for the deworming drug), and assumptions on the data (including the treatment of 

missing data as preferred by Aiken et al., 2014b or by Miguel and Kremer, 2004). 
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2.4 Aiken et al. (2014b) concern #3: data collection quality and blinding 

A leading concern for Aiken et al. (2014b) is the fact that the study was not “double-

blinded”, raising the possibility of both “performance bias” and “detection bias” in the 

terminology of biomedical trials. The re-analysis authors raise these concerns in their 

section 4.9 (p. 30), with a particular focus on wanting to verify that “fieldworker data-

collection practices were the same in all schools.” They go on to write that “In practice, this 

is hard to verify retrospectively, so it is a possibility that there were, consciously or 

unconsciously, variations in data collection between groups.”  

We were surprised to read this for two reasons. First, as we noted in the original 

Miguel and Kremer (2004) paper and discussed directly with the re-analysis authors during 

this replication process, there was emphasis on balanced data collection procedures and 

timing in all three groups of schools, and the professional field staff were extensively trained 

in appropriate and consistent data collection procedures. In fact, neither of the two key 

outcome measures – worm infection rates and school attendance – are subjectively 

measured questions that ask the respondent or the enumerator to make a judgment call. 

There is simply not much room for unconscious bias to enter into the collection of these 

variables. Rather there would have to be malfeasance in the data collection process, i.e., 

either manipulation of the parasitology lab results that generated the worm counts data, or 

enumerators who made a decision to mark a student “present” who was absent (or vice 

versa) in some systematic way across treatment groups. 

Second, we were again surprised that Aiken et al. (2014b) provide no statistical 

evidence to corroborate this assertion about possible problems in the data collection. If 

there were systematic discrepancies in the nature of data collection across treatment 

groups, the re-analysis authors could illuminate these patterns. In fact there are multiple 

pieces of evidence suggesting that data collection was in fact carried out in an even-handed 

and balanced way across the treatment and control groups. The finding shown above in 

Table 2 that the timing of visits across schools was the same across treatment groups is 

consistent with balanced data collection procedures. The fact that pupil school transfer 

rates, attrition rates, and baseline characteristics are all “balanced” across the three 

program groups (which the re-analysis authors confirm in Aiken et al., 2014a) is further 

evidence that data collection was carried out in an even-handed way for the entire sample.  

The finding of externality effects both within schools and across schools (as 

confirmed in Aiken et al., 2014a) is also incompatible with the re-analysis authors’ claims 

about potentially biased data collection by enumerators. The study of externalities was not 

central to the original research design of the Miguel and Kremer (2004) study, nor was it an 

issue that was ever discussed with the field data collection team during 1998 and 1999. It is 

simply inconceivable that biased data collection could have generated the results that there 

are positive externalities within 0-3 km of treatment schools, and the same holds for the 

measured health and school participation effects among untreated children within treatment 

schools. Thus the extensive evidence for positive deworming treatment externalities taken 

together provides further evidence against biased data collection procedures. 
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Table 3: Cluster summary results, with different weighting schemes 

  

Weight by  

Pupil Population 

 Weight by Num. of 

Attendance Obs. 

Weight each  

School equally 

 

Difference P-value Difference P-value Difference P-value 

Panel A: Treatment indicator and year defined as in Aiken et al. (2014b) 

1998 8.57** [0.011] 7.86** [0.019] 5.48 [0.121] 

1999 5.15** [0.028] 5.84** [0.011] 2.16 [0.483] 

1998+19991 6.87*** [0.001] 6.84*** [0.001] 3.81 [0.102] 

1998+19992 6.87*** [0.004] 6.84*** [0.004] 3.81 [0.105] 

Panel B: Treatment indicator and year defined as in Miguel and Kremer (2004) 

1998 9.25** [0.033] 8.86*** [0.004] 7.38* [0.056] 

1999 4.99** [0.046] 5.35** [0.037] 3.57 [0.150] 

1998+19991 7.15*** [<0.001] 7.46*** [<0.001] 5.48** [0.017] 

1998+19992 7.15*** [0.002] 7.46*** [0.002] 5.48** [0.017] 

Note: This analysis is based on the top left panel of Aiken et al. (2014b), Table 4, and in fact the first 
two rows of “unweighted” results (for 1998 and 1999 in Panel A) replicate those results. All analysis 
includes only eligible, non-transferring pupils. Panel B utilizes the same data as Panel A, but redefines 
the treatment indicator and year as described in the text. P-values are in square brackets and stars 
reflect: “***” P-value < 0.01, “**” P-value < 0.05, “*” P-value < 0.10. 
1 Includes a year 2 indicator. 2 Includes a year 2 indicator and clusters the standard errors by school.  

 

 A major reason that the school participation evidence from the Miguel and Kremer 

(2004) study is viewed as “low quality” by the re-analysis authors is because the deworming 

intervention was publicly revealed (i.e., non-blinded). The unsubstantiated (but impossible 

to disprove) assertion in Aiken et al. (2014b) – that data from non-blinded studies is 

inherently at risk of “bias” – has dramatic implications not just for this study but for the 

rapidly expanding body of new experimental evidence based on real-world programs, in 

which few if any studies are “blinded”. In fact, in their conclusion (p. 38), Aiken et al. 

(2014b) make it explicit that the lack of “blinding” is a major reason why they have doubts 

about the study, when they write: “Even if the result showing the strongest effect of the 

intervention on school attendance were accepted... [o]ne possible explanation is that 

behavioural changes unrelated to drug treatment occurred in this unblinded study that led 

to the observed changes in school attendance.” 

The deworming program may indeed have led to behavioral changes (i.e., changes in 

family or school practices) that in turn affected schooling outcomes. One would want to 

capture and understand these behavioral changes caused by the program. Improved health 

can affect life outcomes and choices in many ways, and the school participation effect is the 

combined effect across potentially multiple behavioral channels.  

Rather Aiken et al. (2014b) appear concerned that receiving drug treatment changes 

behavior due mainly to placebo effects. The re-analysis authors advance this claim once 

again without providing any statistical evidence that these effects are in fact meaningful. 

However, there are several ways to explore these issues in the data. First, there are 

sizeable numbers of students in treatment schools who did not receive deworming 

treatment either due to absence on the day of deworming or because they were adolescent 

girls (who were meant to be excluded from treatment due to potential drug side effects). If 

the effect were mainly driven by placebo effects, rather than real deworming impacts, then 
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there would be no meaningful effects on those students who did not themselves take the 

deworming pills. This would be true both for the untreated within treatment schools, and for 

control school students located within 3 km of a treatment school. Yet these populations, 

who we show benefit from reduced worm infection burden (due to epidemiological 

externalities) also show gains in school participation even though a placebo effect is not 

plausible for them. This discussion does not feature in Aiken et al.’s analysis. 

There is also a related possibility, namely that it was health education rather than 

the deworming drugs themselves that drove impacts. However, we show in both Miguel and 

Kremer (2004) and Kremer and Miguel (2007) that there are no significant differences in a 

range of worm prevention behaviors between the treatment and control schools, including 

wearing shoes, contact with fresh water, or observed cleanliness. Aiken et al (2014b) 

choose not to refer to these results. 

There is a final point regarding “blinding” in the context of a deworming study that is 

important to consider, namely the fact that it may be impossible to carry out such a study 

using a cluster randomized design. (Recall that a key point of Miguel and Kremer (2004) is 

that individually randomized studies will underestimate the impact of treatment in the 

presence of epidemiological externalities.)  One of the immediate consequences of taking 

deworming drugs for those with worm infections is that worms are expelled from the body, 

usually in stool (although more rarely also through vomiting). This is a highly visible 

outcome and one that is much commented upon in communities receiving mass deworming. 

While individual participants in a study that randomized treatment at the individual level to 

a subset of children in a school, say, may not know if they received deworming drugs or 

placebo (since many but not all those who are infected and treated will see worms 

expelled), participants in a study that randomizes treatment at the cluster level, as in 

Miguel and Kremer (2004), will immediately know if they are a “treatment” or “placebo” 

school: in treatment schools, a sizeable group of students (approximately 12% in our data) 

will immediately experience gastrointestinal discomfort, worms will be expelled in stool and 

some will vomit; in placebo schools, there will be no such outcomes. Similarly, it would be 

impossible for enumerators to avoid finding out the school’s treatment status, since 

enumerators interview and speak with hundreds of pupils, teachers and parents during a 

school visit, and side effects are a common topic of conversation. Thus a direct, but quite 

unattractive, implication of Aiken et al.’s concern with blinding would be that it is impossible 

to carry out a “high quality” deworming cluster randomized study. Since Miguel and Kremer 

(2004) demonstrate that the violations of SUTVA in an individually randomized study in the 

context we examine are real, while the concern that lack of blinding affected reporting or 

data collection not only among treated pupils but also among untreated classmates and 

students in nearby schools remains hypothetical, we believe that the use of cluster 

randomization is appropriate.  

There are also sharply different norms in social science and medical research on the 

appropriate way to report results, even conditional on the exact same research design. 

Indeed, Eble et al. (2013) review all randomized experiments in economics published since 

2000 against the biomedical CONSORT trial reporting standards and conclude that nearly all 

economics studies would be considered “low quality” and at “high risk of bias” under these 

reporting guidelines. The emphasis on blinding leads to the almost immediate conclusion 

that data from most real-world social science experiments provide “low quality” evidence 

that is at “high risk of bias”, since participants in real programs are typically aware of their 
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treatment status – and in fact social scientists are often very interested in the endogenous 

behavioral change that results from that knowledge. The existing criteria on both blinding 

and reporting have the unfortunate implication that Cochrane Reviews appear to 

systematically down-weight new evidence from the social science disciplines, where the 

most rigorous evidence on the socio-economic impacts of health interventions arguably lies. 

It also means that replication efforts (like the present one) that rely on medical researchers 

such as Aiken et al. to carry out the replication of social science studies are very likely to 

lead to conclusions that the evidence is “weak” or of “low quality” for similar reasons, 

essentially due to disciplinary differences.  

Beyond disciplinary differences, there are also issues of timing. Back in 1997 when 

this study was being set up, the state of pre-registration in public health and health fields 

was far less developed than today. To illustrate, the CONSORT guidelines were only 

conceived of in 1996 and did not become “standard” until a number of years later. The NIH 

“clinicaltrials.gov” website was only launched in 2000, after the data collection for the 

Miguel and Kremer (2004) study was completed. It was only after that point that pre-

registration of trials was widely required in the medical literature. Aiken et al. (2014b) are 

holding the Miguel and Kremer (2004) study to 2014 standards in public health, rather than 

1997 standards in public health, let alone to 1997 standards in economics. (As this paper 

was one of the first published field experiments in development economics, there was no 

“standard practice” around these issues within economics at the time.)  

A related point has to do with the 17 year (1997 to 2014) time lag between the 

setup of the Kenya deworming project and the Aiken et al. (2014a, b) replication reports. 

That is clearly a long time, and despite our best efforts, not all documentation has been 

easily accessible. We did not have access to Dropbox or scanners in 1997 when project 

planning for Miguel and Kremer (2004) was taking place; in fact, making an international 

phone call and getting basic email access was a challenge in the field. The Aiken et al. team 

have benefitted from extensive access to all of us; we have also shared numerous original 

documents, surveys, etc. with them when we have had them available (and they do refer to 

many of these in their reports). We believe readers should keep these issues in mind when 

the Aiken et al. team discuss data quality, as many of their concerns have to do with their 

inability to access detailed ex ante data collection plans, protocols and field notes, rather 

than any evidence of bias within the data itself (or in the field plans as we recall them). The 

lack of this documentation 17 years later does not constitute evidence of bias. In fact, a 

range of measures, tests, and statistical patterns discussed above demonstrate that the 

data in Miguel and Kremer (2004) was collected in an even-handed way for all treatment 

groups and over time. These patterns, our experience designing a valid and balanced field 

data collection procedure in Kenya, and the lack of any statistical evidence for biased data, 

together imply that the assertions in Aiken et al (2014b) are unfounded. 

 

2.5 Additional concerns noted in Aiken et al. (2014b) 

One concern the replication authors briefly mention is missing data, but they 

conclude (in section 4.6, p. 29) that: “As the extent of missingness in attendance data was 

similar in each of the groups, we believe that this risk [of bias] is low.” On average, roughly 

20% of attendance observations are missing, with nearly equal rates across the three 

treatment groups, and this level of attrition is reasonably low for multi-year panel 

(longitudinal) data collection in a rural low-income setting.  
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The re-analysis authors also reproduce the Miguel and Kremer (2004) finding that 

the three treatment groups are largely balanced on baseline observable characteristics, 

providing further confidence in the validity of the experimental design and the data 

collection procedures. 

 

3 Discussion and conclusion 

To summarize, we discuss the results in Aiken et al. (2014b), and argue that their 

statistical evidence is overwhelmingly consistent with the conclusions in Miguel and Kremer 

(2004). In particular, their statistical evidence provides strong evidence that mass school-

based deworming leads to higher school participation. This is true across a range of 

specifications, samples, adjustment, weighting and data choices (as shown in our Table 1 

and Table 3), when the full dataset is used (and a miscoding of the treatment term in the 

replication analysis is corrected), including the key specifications emphasized as the primary 

analysis in Aiken et al.’s 2013 pre-analysis plan. In Sections 2 and 4, we also respond in 

detail to a range of other concerns about the data and approach, and argue that these do 

not change the main conclusions of the Miguel and Kremer (2004) study, or its implications 

in terms of the cost-effectiveness of school-based deworming in the study setting. 

 In an overview of their own results related to school participation, the re-analysis 

authors write: 

 

“In a fully adjusted logistic regression model making maximum use of the data 

available, there appeared to be strong evidence of an improvement in school 

attendance. However, the size of the point estimates and the strength of the 

evidence were not consistent in the analytic steps progressively building up to this 

fully adjusted model. That is, we found no evidence of effect with cluster summaries, 

some evidence with individual analysis stratified by year and a larger point estimate 

of effect when both years were combined than we found in either individual year. 

This inconsistency, as well as other concerns related to the quality of data and an 

unexpected pattern of correlations in the observations, raises uncertainty about the 

reliability of the fully adjusted result.” (Aiken et al., 2014b, p. 26) 

  

Thus, in their own words, the full individual-level model provides strong evidence of 

an effect. Our Table 1 (above) shows that this full model can be specified any number of 

ways and the effect is still strong. It is only when the re-analysis authors slice the data into 

underpowered subsamples, mis-define the treatment measure, and perform incorrectly 

weighted analysis that they obtain results that do not suggest a strong impact of deworming 

on school participation. 

The central issue raised in Aiken et al. (2014b) in our view is the possibility that 

there is bias in the estimation of school participation treatment effects because of 

potentially “excessive” data collection (i.e., more observations collected) in high 

participation treatment schools relative to low participation treatment schools, and 

especially that this relationship changed over time. This purported relationship is the re-

analysis authors’ justification for not pooling both years of data in the analysis, and for 

using an alternative, non-standard and, we argue, inappropriate approach to weighting 

observations.  
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We first show that there is actually no statistical evidence for the purportedly 

“biased” data collection patterns in the data. Second, even if one were to accept this 

assertion, the appropriate solution would be to weight each pupil equally (rather than each 

school equally), and the school participation results in Miguel and Kremer (2004) are 

completely robust to doing so.  

The other main concerns raised in Aiken et al. (2014b) relate to the fact that the 

study was “non-blinded”, and that the study does not conform to current 2014 reporting 

standards in public health research. We discuss a range of patterns in the data that suggest 

data collection was not affected by enumerator biases or placebo effects, including the 

strong externality treatment effects among children who never received treatment. We also 

argue that cluster randomization is necessary to pick up epidemiological externalities and 

that it may actually be logistically impossible to carry out a truly double-blinded cluster 

randomized deworming study, given how the salient side effects of treatment (namely, the 

visible expulsion of worms from the body). It is also worth emphasizing that the critique 

that unblinded data is inherently “low quality” applies equally to nearly all recent economics 

and social science field experiments, not just to the Miguel and Kremer (2004) study, and 

we believe that researchers in these fields would join us in rejecting this simplistic 

characterization. 

The re-analysis authors also use their replication reports (Aiken et al., 2014a, b) as 

an opportunity to comment on the broader deworming literature and policy debate, and we 

briefly do so as well here.  

New evidence is rapidly accumulating on the educational and socio-economic impacts 

of child deworming. A key lesson of Miguel and Kremer (2004) is that traditional individual-

level randomized designs will miss any spillover benefits of deworming treatment, and this 

could contaminate estimated treatment effects. Thus cluster randomized designs provide 

better evidence. Three new working papers with such cluster randomized designs estimate 

long-run impacts of child deworming up to 10 years after treatment; these effects on long-

run life outcomes are arguably of greatest interest to public policymakers. 

Croke (2014) finds positive long-run educational effects of a program that dewormed 

a large sample of 1 to 7 year olds in Uganda, with statistically significant average test score 

gains of 0.2 to 0.4 standard deviation units on literacy and numeracy 7 to 8 years later. The 

Ugandan program is one of the few studies to employ a cluster randomized design, and 

earlier evaluations of the program had found large short-run impacts on child weight 

(Alderman et al., 2006; Alderman, 2007). Croke (2014, p. 16) also surveys the emerging 

deworming literature and concludes that “the majority of clustered trials show positive 

effects”.   

Two other new working papers explore the long-run impacts of the Kenya program 

we study. While the primary school children in the Miguel and Kremer (2004) sample were 

probably too old for deworming to have major impacts on brain development, and there was 

no evidence of such impacts, Ozier (2014) estimates cognitive gains 10 years later among 

children who were 0 to 2 years old when the deworming program was launched and who 

lived in the catchment area of a treatment school. These children were not directly treated 

themselves but could have benefited from the positive within-community externalities 

generated by mass school-based deworming. Ozier (2014) estimates average test score 

gains of 0.3 standard deviation units, which is equivalent to roughly half a year of schooling 

and similar to the effect magnitudes estimated by Croke (2014). This provides further 
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evidence for the existence of large, positive, and statistically significant deworming 

externality benefits within the communities that received mass treatment. 

Finally, Baird et al. (2014) followed up the Kenya deworming beneficiaries from the 

Miguel and Kremer (2004) study during 2007-2009 and find large improvements in their 

labor market outcomes. Ten years after the start of the deworming program, men who were 

eligible to participate as boys work 3.5 more hours each week, spend more time in 

entrepreneurship, are more likely to hold manufacturing jobs with higher wage earnings, 

and have higher living standards. Women who were eligible as girls have better educational 

outcomes (including higher rates of passing the primary school completion exam and 

enrolling in secondary school), are more likely to grow cash crops, and reallocate labor time 

from agriculture to entrepreneurship. The impacts of subsidies on labor hours are 

sufficiently large that the net present value of government revenue generated by 

deworming subsidies exceeds the cost of the subsidies, creating an “expenditure Laffer 

effect”. In the preferred estimate, each additional $1 in child deworming subsidies increases 

the net present value of government revenue by $13.  

Taken together, and building on Miguel and Kremer (2004), Alderman et al. (2006), 

and Alderman (2007), this new wave of studies promises to bring considerable new 

evidence to bear on the long-run impacts of childhood deworming on important life 

outcomes in areas with high worm infection rates.  

 

4 Point-by-point treatment of Aiken et al. (2014b) 

This section provides detailed, point-by-point responses to points raised in Aiken et 

al. (2014b). For legibility, we have included the original text from that report in bold 

italics, followed by our response. Square brackets denote text added to the quotes for 

clarity.  

 

Page iv, Results: “We found unexpected patterns in the school-attendance data, 

including a correlation between the amount of attendance data from a school and 

the level of attendance.” 

As we discuss at length in section 2.2 above, there is no statistical evidence that this 

pattern exists in the data.  

 

Page iv, Results: “In cluster-summary analysis, neither school attendance nor 

examination performance differed between arms in either study year. (School-

attendance risk differences: 1998 5.48, 95 per cent CI −1.48─12.44, p = 0.121; 

1999 2.16, 95 per cent CI −3.39─8.27, p = 0.483. Examination-performance mean 

difference: 1998 −0.109, 95 per cent CI −0.332─0.115, p = 0.336; 1999 −0.028, 

95 per cent CI −0.228─0.171, p = 0.777.) We found some evidence of 

improvement in age-adjusted regression models for each year (adjusted OR 1998 

1.48, 95 per cent CI 0.88–2.52, p = 0.15; aOR 1999 1.23, 95 per cent CI 1.01-1.51, 

p = 0.04) but not for examination performance. When we combined data from 

both study years in an observation-level model, the effect on school attendance 

was stronger than in either year (aOR 1998+1999 1.82, 95 per cent CI 1.74–1.91, 

p<0.001), but it had no effect on examination performance.” 

It is unusual to emphasize subset results (the year-by-year analysis) and analysis 

that was not pre-specified (the cluster summary analysis) up front as “main” findings. The 
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study took place over two years, and the original study – as well as the pre-analysis plan for 

the reanalysis (Aiken et al., 2013) – both emphasize the importance of combining the 

estimates across both years. In particular, the pooled estimation is the culmination of the 

pre-specified analysis, and the power calculations on page 7 of that plan showing only 

moderate power in the stepped wedge design also appear to be based on the two years of 

data together, indicating that an analysis year-by-year would be severely underpowered. It 

is thus not at all surprising that the results are less statistically significant once only subsets 

of the data are analyzed – the most immediate reason for higher P-values when you split 

the data into year 1 and year 2 separately is that there are smaller samples (roughly half) 

that are being analyzed. The stepped wedge design may also contribute, since it contains a 

valuable change in treatment status for the Group 2 schools, which can increase statistical 

power. 

When one focuses on the pooled results, which efficiently utilize all of the data, there 

is abundant evidence that deworming led to large, positive and statistically significant 

impacts on school participation across literally dozens of regression specifications, as shown 

in Table 1 and Table 3 (above).  

 

Page iv, Results: “We found evidence of reduction in hookworm and roundworm 

infections but not in schistosomiasis or whipworm.” 

These results confirm what was found in Miguel and Kremer (2004), and are not 

surprising. Recall that treatment for schistosomiasis was only provided in the subset of 

schools with sufficient prevalence of the disease, typically in schools that were close to Lake 

Victoria. Also, the baseline rate of “moderate-to-heavy” whipworm infections is somewhat 

lower than for the other geohelminths.  

 

Page iv, Discussion: “We found that the evidence that the intervention improved 

school attendance differed according to how we analysed the data.”  

As we detail extensively in Sections 1 and 2 above, we are puzzled by and disagree 

with this interpretation of the results. Under the specifications laid out in the authors’ own 

pre-analysis plan (Aiken et al., 2013), the combined estimates across the two years is 

always statistically significant at high levels of confidence (P-value <0.01), and this is true 

with different covariates (Aiken et al., 2014b, Table 4), with slightly different samples (i.e., 

all children, or just those targeted with deworming; their Appendix 4), and even diluting the 

treatment effect by mis-defining the treatment measure (their Table 4 versus Appendix 7). 

So in fact the evidence presented in Aiken et al. (2014b) itself overwhelming demonstrates 

a robust large increase in school attendance. Ignoring the original study’s prospective 

research design by focusing only on cross-sectional variation, and then splitting the sample 

into halves leads to under-powered statistical analysis that is inferior to the approach used 

in Miguel and Kremer (2004) and in the pre-analysis plan of Aiken et al.  

 

Page iv, Discussion: “Our inability to review the sampling strategy guiding data 

collection and the potential for bias in measurement procedures necessitate 

caution in interpreting these results.” 

We discuss this issue at length in section 2.4 above. In particular, we make the point 

that the re-analysis authors provide no evidence for biased measurement procedures, and 



20 

 

in fact there is evidence that data collection across the three program treatment groups was 

carried out in an even-handed and professional manner. 

 

Page iv, Conclusion: “These data provide weak evidence that a school-based drug-

treatment and health-education intervention improved school attendance and no 

evidence of an effect on examination performance.” 

As we detailed previously, we are puzzled by and strongly disagree with this 

assessment of the school participation results, which appears to be driven by the 

combination of underpowered design and misclassification of treatment status. All analyses 

that make appropriate use of the prospective experimental design, and that appropriately 

define the treatment variable, imply that there are substantial, and highly statistically 

significant (P-value<0.01) impacts of deworming on school participation. 

 

Page vii, Glossary definition for ‘indirect effect’: “The difference between the 

outcome in an individual not receiving the intervention in a population with an 

intervention programme and what the outcome would have been in that individual 

in a comparable population with no intervention programme.” 

This is incorrect, as externalities can also accrue to the treated. 

 

Page x: “The results from the pure replication are summarised as follows [in Table 

1], with results derived from both study years unless otherwise annotated. Effects 

that we found to be beneficial and significant in the pure replication are shaded.” 

We do not agree with several of the results reported in Table 1 of Aiken et al. 

(2014b). Hicks, Kremer, and Miguel (2014) details how the “indirect effect: between school” 

and “overall effect” are miscalculated by the re-analysis authors for all outcomes. Corrected 

calculations result in estimated between-school indirect effect and overall effect sizes that 

are highly statistically significant for moderate-to-heavy worm infections and school 

participation (P-value < 0.05 and < 0.01, respectively), and overall effect sizes that are 

similar to or larger than those reported in Miguel and Kremer (2004).  

 

Page x: “We have not examined the indirect between-school effect (or the overall 

effect that includes this) in this statistical and scientific report for the following 

reason: in our pre-analysis plan, we stated that we would investigate the 

between-school indirect effects using ‘the same analytic approach as described in 

the original paper’ (Aiken et al. 2013). In our pure replication report (Aiken et al. 

2014), we reanalysed the between-school indirect effects according to precisely 

the methods used in the original study, and we recorded our results there, 

reproduced in the column headed ‘indirect effect: between school’. Therefore, we 

have already fulfilled our stated intentions with regards to these types of effects 

and have not pursued them further.” 

We were surprised to see no inclusion of the externalities in analysis. The re-analysis 

authors’ own pre-analysis plan was clear in its intent to include a study of indirect effects of 

deworming in the statistical replication arm (which followed the pure replication arm) of the 

analysis: 
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“In addition, and depending on the results of the primary analyses, we will 

conduct further analyses that look at … the indirect effects of the intervention 

on all three outcomes domains (school attendance, exam performance, health 

indicators). We aim to replicate the spatial method used in the original study 

to estimate the indirect effects of the intervention, using the same distances 

(up to 6 km from schools) employed in the original study, as these are 

plausible distances for the scale of such an effect. However, our plan for 

analysis of these indirect effects is dependent on first demonstrating a direct 

effect – following the standard reporting practice for clinical trials, if our 

analysis does not demonstrate direct effects, we will not pursue analyses 

looking for indirect effects.” (Aiken et al., 2013, page 5)  

  

Aiken et al. (2014a) find externalities on worm prevalence within schools and up to 3 

km away. Yet Aiken et al. (2014b) focus on the simple difference between treatment and 

control schools, and ignore the important issue of deworming externalities. We disagree 

with this approach. In the presence of positive deworming treatment externalities such as 

those estimated in Miguel and Kremer (2004) and Aiken et al. (2014a), all of the estimators 

used in Aiken et al. (2014b) are downward biased, yielding lower bounds on true deworming 

treatment effects. 

 

Page xi: “Since the original authors did not make their theory of change explicit, 

we cannot know whether our theory of change differs from theirs.” 

This claim is a mischaracterization of Miguel and Kremer (2004), which includes a 

lengthy discussion of the likely mechanisms (i.e., “theory of change”) underlying the 

education results.  

 

Page 3: “We aimed to analyse the trial using the principle of ‘intention to treat’. An 

intention-to-treat approach compares outcomes between clusters (for example, 

schools) randomly allocated to different treatment conditions irrespective of 

whether treatment was, in practice, actually implemented or adhered to. 

Commonly, the intended treatment is described in a protocol, while actual 

treatment received by both treatment and control groups may be described post 

hoc in the results. Often, some form of ‘per protocol analysis’ focused on 

comparing those that did and did not receive the intended treatment is also 

conducted, although the intention to treat is typically considered the primary 

analysis as it is both unbiased by selection into treatment condition and the 

comparison that is most likely to reflect expected outcomes under real-life 

implementation. 

We inferred from the original paper, in the absence of a protocol, that the 

combined educational and drug-treatment intervention package was intended to 

be delivered from the start of each year. This inference was based on the 

statement that, ‘Due to ICS’s administrative and financial constraints, the health 

intervention was phased in over several years. Group 1 schools received free 

deworming treatment in both 1998 and 1999, Group 2 schools in 1999, while 

Group 3 schools began receiving treatment in 2001. Thus in 1998, Group 1 schools 

were treatment schools, while Group 2 and Group 3 schools were comparison 
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schools, and in 1999, Group 1 and Group 2 schools were treatment schools and 

Group 3 schools were comparison schools’ (p.165). The paper also states, ‘In what 

follows, “treatment” schools refer to all twenty-five Group 1 schools in 1998, and 

all fifty Group 1 and Group 2 schools in 1999’ (p.170). We note that when 

reporting the results of the analysis, ‘1998’ was operationalised as May 1998–

March 1999, while ‘1999’ was operationalised as March 1999–November 1999 

(p.191), April 1999–November 1999 (p.193) or May 1999–November 1999 

(p.195).” 

 This justification for the re-analysis authors’ decision to recode the treatment term is 

completely unfounded, and frankly quite strange. Description of the timing of treatment in 

each year is provided clearly in Miguel and Kremer (2004); all references to the timing of 

treatment (pages 170, 192, and 210) correctly note that treatment took place in March-

April in 1998 and March-June in 1999. Moreover, the construction of the (post-treatment) 

school participation measure for each year (which the re-analysis authors describe in the 

latter part of the above quote) was clearly and consistently defined in the original authors’ 

STATA analysis do files, which were provided to Aiken et al. at the time they embarked 

upon this project. The re-analysis authors carefully studied this code and did not raise any 

objections to that definition, or confusion, in their pure replication report (Aiken et al., 

2014a). Nor did the re-analysis authors make any explicit mention of any redefinition of the 

treatment measure in their pre-analysis plan (Aiken et al., 2013) – which was registered 

after receipt of the data and do files from the original paper – or in the original version of 

the present report (Aiken et al., 2014b) that was initially submitted for publication by 3ie. It 

was only after we were provided the analysis files underlying that report, and discovered 

what we assumed to be a major coding error, that the re-analysis authors added any text 

describing the recoding of treatment. 

We find the re-analysis authors’ use of an intention-to-treat justification unusual and 

non-standard here. Such a framework is typically employed to study treatment impacts for 

a group in which, among those assigned to treatment, some received the treatment and 

others did not. In our case, not a single school began receiving treatment prior to March of 

either program year, so there is no situation in the early months of 1998 or 1999 when, 

among schools that were supposed to receive treatment, some had already done so and 

others had not.  

Moreover, treatment in the first several weeks of each year would have been 

impossible due to the basic research design of the project. As the timeline described in 

Miguel and Kremer (2004), Appendix Table A1 makes clear, it is central to the design of the 

original study that administration of deworming drugs not begin immediately at the start of 

each year. In both 1998 and 1999, the early part of the calendar year was devoted to 

conducting meetings introducing the program to each community, and to collecting pupil 

questionnaire and parasitological data. In Year 1, this pupil questionnaire and parasitological 

data serves as a baseline. In Year 2, this data collection was critical to the study of health 

impacts: the pupil questionnaire and parasitological data collection in the first 3 months of 

1999 provide the only opportunity to study the impacts of deworming on worm loads, 

height, weight, and hemoglobin concentrations, comparing outcomes in Group 1 (which had 

already been treated in 1998) to Group 2 (which had not yet been treated, but was about to 

be phased into treatment). Hence, the timing of treatment following the collection of this 
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data was central to the research design of Miguel and Kremer (2004), and much of the 

analysis in the original paper would not be possible without it.  

The collection of parasitological data at the start of each year before treatment was 

also necessary to determine which drugs would be administered in each school, i.e., 

albendazole and/or praziquantel (based on the prevalence of geohelminths and 

schistosomiasis, respectively). 

In fact, if we follow the replication authors’ assumption on what constitutes a 

treatment observation to its logical conclusion, then all of the worm infection and health 

outcomes program estimates need to be “thrown out”, since according to them, Group 2 

schools are all already treatment schools by January 1st 1999, and thus the comparison 

between Group 1 and Group 2 is meaningless. Yet this is nonsensical since no Group 2 

schools were treated, nor was there ever any intention of treating them, in the early months 

of 1999. Rather, extensive data collection was carried out in all schools in the early months 

of 1999 precisely because Group 2 had not yet been phased into treatment, allowing for 

analysis of health impacts.  

Simply put, as far as we can tell there is no basis for the assertion in Aiken et al. 

(2014b) that schools were “supposed” to be phased into treatment at the start of each 

calendar year. 

 

Page 4: “The quasi-randomisation procedure for the deworming trial did not 

ensure that there was equal balance in the number of SAP schools in each group.” 

The research paper that estimated impacts of this other program (the School 

Assistance Program, or SAP) on educational outcomes (including school attendance) finds 

no meaningful overall educational impacts (Glewwe, Kremer, and Moulin, 2009).  

 

Page 4: “In accordance with our interpretation of the intention to treat, school-

attendance observations of pupils in year 1 (1998) were interpreted as 

corresponding to the treatment condition in Group 1 and the control condition in 

Groups 2 and 3, and in year 2 (1999) observations were interpreted as 

corresponding to the treatment condition in Groups 1 and 2 and the control 

condition in Group 3.” 

We note that this text was not present in the original version of this report, as it was 

initially submitted for publication as part of the 3ie Replication Paper Series, nor was there 

any mention of this recoding of the treatment variable in the replication authors’ pre-

analysis plan (Aiken et al., 2013). As we describe in detail above, the justification for 

recoding the treatment measure in this way is entirely unfounded. Tables 1 and 3 of this 

note present the primary results of Aiken et al. (2014b) – both the individual-level and 

cluster summary results – correctly defining treatment, and show substantial, highly 

significant, and robust impacts of deworming on school participation. 

 

Page 5: “At the start of each year of the study, worm-infection rates were 

assessed among subsamples of pupils from intervention schools for that year. 

Thus in year 1 (1998), a sample was drawn from pupils across all grades in Group 

1 schools prior to the drug treatment. In year 2 (1999), pupils from both Group 1 

(after one year of intervention) and Group 2 (1999) (pre-intervention) schools 

were selected.” 
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This is in direct contradiction to the so-called “intention-to-treat” assumption the 

replication authors just made a few lines earlier, in which they assume that Group 2 schools 

are treatment schools for the entirety of 1999. Yet here they conduct the worm infection 

analysis assuming that “Group 2 (1999) (pre-intervention) schools” were the control group. 

This is an example of a fundamental lack of coherence in the statistical analysis in Aiken et 

al (2014b). 

Note that only pupils in grades 3-8 were eligible to be selected for stool samples in 

either year. 

 

Page 5: “In later analysis, egg counts from the two readers were averaged and 

converted into eggs per gram of stool values.” 

During the helminth egg counts, each reader examined 50 mg of stool from a 

sampled child. The two separate egg counts were then added together for egg counts per 

100 mg, which were then converted to eggs per gram (multiplying by ten). 

 

Page 6: “We performed a sample-size calculation before commencement of this 

replication (Aiken et al. 2013), which is reproduced in Appendix 2. On this basis, 

we judged that these data would have adequate power to detect an approximate 5 

per cent improvement in school attendance, as per the naïve result in the pure 

replication.” 

 We note that these power calculations appear to have been calculated based on the 

pooled data following the study’s original research design. This suggests that splitting the 

data to perform a year-by-year analysis would leave the resulting analysis severely 

underpowered. 

 

Page 7: “We handled missingness in the outcome data on pupil attendance by 

applying the following steps sequentially. First, we removed from the dataset any 

data that had been collected during a visit that was not scheduled according to the 

visit plan. We did this to try to increase the likelihood that the data used were 

prespecified.” 

We note that many of the seemingly “stray” observations for particular schools in the 

original data were for students who transferred across schools, and hence were picked up in 

other schools that had a different data collection schedule than their original school. Right 

now this data is portrayed as “bad” data that is related to missingness, data quality 

problems, etc. In reality, this is a major strength of the data collection. Very few datasets 

directly observe pupil attendance in school at all (instead depending on school registers of 

unknown reliability) and fewer still attempt to track pupils across schools over multiple 

years. That is why we include these observations in our analysis. Dropping them does not 

make a major difference to the results (as shown by the re-analysis authors), but we still 

believe Aiken et al’s (2014b) approach is inappropriate. 

 

Page 9, Statistical analysis Step 1: “We summarised the outcomes by calculating 

the mean of the school-level summary measures for each group and for each 

intervention arm in each year. We calculated the school-level summary attendance 

figures from the observations without first summarising pupil-level attendances. 

We compared the summary measures for each intervention arm within years using 
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a t-test. This approach is in accordance with the vertical conceptualisation of the 

stepped-wedge design referred to in the PAP, although the PAP did not prespecify 

the use of a statistical test. The cluster-summary approach accounts for the 

correlation between repeat observations and within schools but does not weight 

according to the precision of the cluster-summary estimates.” 

The cluster-level analysis presented in the left panel of Aiken et al. (2014b), Table 4 

is not mentioned anywhere in the authors’ pre-analysis plan. In fact, the authors did not 

even pre-specify that they would present intervention versus control statistics in the cluster 

summary table; they write: “Summarize and display the outcomes clearly for each 

intervention arm in each year. For example, the proportion of children absent in the 25 

schools in each group in 1998, and in 1999.” (Aiken et al., 2013, p. 10, point 1). Instead, all 

of the analysis was to be carried out using “individual-level analysis … using regression 

models with random effects” (Aiken et al., 2013, p. 10, point 2). This pre-specified 

individual-level analysis corresponds to the results reported on the right hand panel of Aiken 

et al. (2014b), Table 4. This is also made clear in Aiken et al., 2013, p. 10, where it says:  

 

“For the primary analysis of school attendance we will compare observations of 

attendance or non-attendance across treatment arms, within years. Each child, in 

each school, will have a number of observations that are either ‘present’ or ‘absent’ 

and coded as 1 and 0, respectively. Therefore, this analysis will use logistic 

regression to model the effect of treatment condition on the outcome at each 

observation. We will include a ‘treatment’ variable in the model that will take the 

value ‘1’ if the child under observation was enrolled at a school receiving treatment 

in that year and ‘0’ if the child was in a school not receiving treatment in that year. 

The primary result will be an odds ratio that a child is present between treatment 

and non-treatment arms.” 

 

Given that the cluster-level analysis was not pre-specified, we were surprised to see 

so much importance being placed on these results. In particular, these results are featured 

in the “primary outcomes” table (Aiken et al., 2014b, Table 4), alongside individual-level 

pre-specified analysis, and are used by the re-analysis authors to make claims about the 

supposed (non-)robustness of the school attendance results. We believe that two decisions 

in particular related to this non-pre-specified cluster-level analysis are rather unusual, and 

we show that a standard approach to a cluster-level analysis yields results that suggest a 

substantial, highly significant relationship between deworming treatment and school 

attendance. 

First, we find the decision of the re-analysis authors to present an unweighted 

cluster-level analysis (that implicitly weights each school equally, rather than each 

individual or each attendance observation) to be unusual and non-standard. As we discuss 

in detail in Section 2.3 above, cluster-level analysis weighted by either pupil observations or 

pupil population have meaningful interpretations, and these are standard analytical 

approaches. We show in Table 3 that either of these standard weighting methods suggests a 

substantial and highly statistically significant (P-value < 0.05) impact of deworming on 

school participation in the year-by-year analysis.  

Second, there is no justification given for why the re-analysis authors chose not to 

present pooled estimates (accounting for a secular trend over time) in the cluster 
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summaries, mirroring what they did in the individual-level analysis. As we describe in detail 

in Section 2 above, pooling the years makes maximum use of the data available, providing 

analysis that is adequately powered to detect impacts. As we show in Table 3, the pooled 

results are highly statistically significant (P-value < 0.01) when either standard weighting 

approach is used, and even when the cluster-level analysis is unweighted but the treatment 

measure is correctly defined. It is only when the replication authors simultaneously make 

multiple analytical errors – in weighting observations, defining the treatment variable, and 

failing to pool both years of data – that they find results that are not statistically significant 

at traditional confidence levels. 

 

Page 10: “Our primary analyses identified an unexpected finding: the combined-

year multilevel model for school attendance produced an effect estimate that was 

larger than either of the year-specific effects. On further investigation of the data, 

we found patterns of correlation between attendance and cluster size that we felt 

might explain this. Consequently, we plotted the proportion of pupils observed in 

attendance in each school against the number of observations made in a school 

stratified by year and by allocation group.” 

We were surprised by the claim that it is “unexpected” that the pooled-year estimate 

could be larger than either of the year-specific effects. This is a natural possibility in the 

analysis of panel data using a stepped wedge design. For instance, different intervention 

groups of schools are likely to start out with slightly different school attendance levels at 

baseline simply due to sampling variation. Stepped wedge analytical designs are able to 

account for these minor baseline differences, and the additional statistical power they 

provide is a major strength of the analysis in Miguel and Kremer (2004). It may lead to 

pooled estimated that differ from each individual cross-sectional estimate; this is standard 

statistics and nothing “unexpected”.   

Furthermore, the patterns of correlation between attendance and cluster size are not 

“unexpected” either - there might be a correlation between the number of observations per 

schools (which is driven mainly by pupil population) and average attendance rates. School 

population might correlate with many different things, including school quality, local 

socioeconomic status, etc. The fact that such a correlation exists in no way affects the 

validity of the research design, as we describe in detail in Section 2.2 above. 

The re-analysis authors never explain why either of these issues create a problem for 

the analysis. For instance, school attendance may be correlated with school population when 

we look across schools. Larger schools may be richer (or poorer), or more or less isolated, 

etc. Finding this correlation is interesting but orthogonal to our understanding of treatment 

effects, and it does not undermine the research design. 

 

Page 11: “We investigated the sensitivity of our school-attendance results to the 

decision about which school-attendance observations corresponded with pupils 

being in treatment condition and which corresponded with the control condition. 

This analysis was not preplanned but was undertaken following a final 

correspondence with the original authors in October 2014. We investigated two 

scenarios, based on the suggestion from the original authors that the first school 

visits occurred before the drug treatment was delivered in year 1 (1998) and that 

the drug treatment was delivered in Group 2 only after the second visit period in 
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year 2 (1999). As described above, we do not have information from a protocol 

about when the drug treatment was intended to be delivered, about when the 

original authors made the decision to consider these first visits in each year as 

under control conditions or about when the educational component of the 

intervention was intended to be or was actually delivered. We did not have 

sufficient data to perform this analysis according to calendar dates. We also did 

not have information to explain how the timing of visits and deworming were 

linked.” 

This so-called sensitivity analysis is absolutely essential. As we describe in Section 

2.1 above, in their primary analysis the re-analysis authors recode the key treatment 

measure, assigning over 10,000 observations to a treatment condition when they were in 

fact not yet treated. The re-analysis authors did not raise any issues regarding the correct 

coding of the treatment measure in their re-analysis of the Miguel and Kremer (2004) do 

files (as presented in Aiken et al., 2014a), nor did they explicitly mention this recoding in 

their pre-analysis plan (Aiken et al., 2013) or the original version of the present report 

(Aiken et al., 2014b) that was submitted to 3ie for publication. Moreover, the justification 

added on to the present version of the report misuses the “intention to treat” terminology.  

Simply put, there was never any intention to treat children at the very start of each 

calendar year in the Miguel and Kremer (2004) study. That would not have been possible 

given our research design, which required the collection of parasitological and 

anthropometric data prior to deworming treatment in each calendar year. Indeed, the 

analysis of health outcomes is only possible using the data that was collected from Group 1 

and Group 2 individuals during the first three months of 1999. An implication of the 

replication authors’ claims about the underlying “intention” to treat Group 2 schools starting 

on January 1st, 1999 is that the original study somehow never intended to estimate impacts 

on health outcome measures; this is clearly false and simply makes no sense. 

This misspecification of individuals has important implications for the analysis, as a 

comparison of Aiken et al. (2014b) Table 4 (using the miscoded treatment term) and Aiken 

et al., (2014b) Appendix Table 7 (the bottom panel of which correctly codes the treatment 

term and makes maximum use of the data by not dropping the early visits in 1999 

unnecessarily) shows. Specifically, in their incorrectly coded “primary” school participation 

analysis presented in the top right panel of their Table 4, the impact of deworming on 

school participation is not statistically significant in 1998 (P-value = 0.150), while the 1999 

impact and the pooled impacts are both statistically significant (P-value = 0.044 and < 

0.001, respectively). In contrast, the correctly coded so-called “sensitivity” school 

participation analysis presented in the lower right-hand panel of Appendix 7 indicates that 

there are statistically significant results for both years separately and pooled together (P-

values = 0.036, =0.088, and <0.001, respectively). 

Finally, the replication authors incorrectly claim that there is no information on the 

timing of deworming treatment visits, but this data is available, has been shared with the 

replication authors, and fully confirms the timeline of data collection and deworming 

treatment described in Miguel and Kremer (2004).  

 

Page 11: “In scenario two, we excluded observations of attendance in the first 

visit period in year 1 (1998) and added observations in the first and second visit 

periods in year 2 (1999) to the analysis for the first year, analysing observations 
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in Group 2 during these two visit periods as corresponding to the control 

condition. Therefore, year 1 comprised observations in the second to the eighth 

visit periods in 1998, plus observations in the first and second visit periods in 

1999. Year 2 comprised observations in the third to the eighth visit periods in 

1999, which is the same as in scenario one. This data handling most closely 

approximates that used by the original authors but differs most from our original 

conception of the design of the stepped-wedge trial shown in Table 2 and 

published in our preanalysis plan. In effect, this handling of the data can be 

thought of as changing the time of the crossover from control to intervention from 

the beginning of 1999 (as in Table 2) to a time point later in 1999.” 

The pre-analysis plan in Aiken et al. (2013) did not indicate any recoding of the 

treatment term, so we do not consider that analysis to be pre-specified at all. There is 

simply no text in the pre-analysis document indicating that the replication authors’ “original 

conception” of the study design bears any resemblance to the coding of the treatment 

variable that they employ in this replication study.  

All of the evidence from project documents, analysis data, and the published paper 

(Miguel and Kremer 2004) – not to mention our own personal experience working on the 

project – indicates that the original plan was to introduce deworming treatment starting in 

March of each year. The replication authors’ decision to use different timing in their 

definition of treatment is simply an error, and one that unnecessarily introduces 

measurement error into a key variable in the analysis. 

 

Page 14: “There was substantial missingness for WAZ data in all three groups.” 

This missingness was due to weight not being collected from children who were not 

in school on the day of the pupil questionnaire data collection. (Note that these proportions 

missing are similar to daily absenteeism.) 

 

Page 18: “Examining the visits that were successfully conducted, data were 

available for approximately 74 per cent of the pupils in these visits in year 1 

(1998) and approximately 86 per cent in year 2 (1999). Within each year, there 

were broadly similar proportions of missing data across the three groups for 

attendance observations in visits that were successfully conducted.” 

Missing data in a multi-year longitudinal study on the order of 15 to 29% per data 

collection round is quite typical in field studies, especially in low income settings. There are 

many reasons for missing data, from lost paper copies (as the data collection was recorded 

on print-outs), information lost when the sheets were transferred to the data entry team, 

data entry errors, and so on. There were also many cases (that we can recall from 

fieldwork) where the field team only had time to collect namelist information for a subset of 

grades in a particular school, because they simply ran out of time or something else came 

up that forced them to leave the school. For that reason, too, there will be “missing” 

observations for some pupils even on days when other students in a school had their 

attendance observed. Once again, as long as these errors are occurring at approximately 

the same rate in treatment and control schools, which appears to be the case, then they 

should not induce systematic bias. This is a point emphasized by Aiken et al. (2013). And 

indeed, the proportions missing are quite similar across the three intervention groups, which 

is reassuring. 
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Page 18: “In year 2 (1999), there was a higher proportion of missing examination 

data …” 

This is presumably in part due to rising drop-out rates over time (an issue that also 

affects average school attendance in year 2 relative to year 1). 

 

Page 18: “A total of 544 (1.7 per cent) pupils had moved schools by the end of 

year 1 (1998), and 2,376 (7.6 per cent) pupils had moved by the end of year 2 

(1999)…” 

We have this data because we systematically tracked students as they moved across 

schools over time, updating the school namelist data collection to reflect this (i.e., collecting 

information on students in their new school). This ability to track across schools over time is 

a strength of the data collection, in our view. 

 

Page 19, Step 1 results: “In year 1 (1998), intervention schools had a mean 

attendance 5.48 per cent (95 per cent CI −1.48–12.44) higher than control 

schools, although this was not statistically significant (t-test p-value 0.12). In 

year 2 (1999), the intervention schools had a 2.16 per cent (95 per cent CI −3.39–

8.27) greater mean attendance than control schools, but there was no statistical 

evidence of a difference (t-test p-value 0.48). These risk differences correspond to 

odds ratios of 1.78 and 1.21, respectively. In year 1 (1998) and year 2 (1999), 

there was no evidence of an association between intervention and examination 

performance in the cluster-means analysis.”  

As noted above, the cluster-level analysis was not pre-specified – the replication 

authors did not even suggest that they would present treatment versus control group 

statistics at the cluster summary level (Aiken et al., 2013). Moreover, this analysis is 

presented in an unusual way, weighting each school equally rather than weighting either by 

number of observations or by pupil population, and not pooling the data to make use of the 

research design and maximize statistical power.  

Creating a “school-weighted impact estimate” is not of general interest; the 

“individual-weighted impact estimate” is of general interest, both intellectually and in terms 

of public policy, when we care about health or education outcomes in a population. The re-

analysis authors provide no rationale for presenting estimates which weight all schools 

equally, and we find this strange in a setting with such large differences across schools in 

pupil population, with seven-fold differences in populations across schools in some cases. If 

we do consider the cluster summary analysis, but weight the clusters with any standard 

weighting approach (either by number of observations, or by population), we find large, 

positive and statistically significant impacts of deworming on school attendance, for each 

year separately or pooled for both years (see Table 3, above).  

We are also puzzled as to why the pooled 1998 and 1999 results are not shown here. 

Table 3 shows that there are large effects with much greater statistical precision in that 

case, too. I.e., no matter how you do the analysis, if you pool data across both years there 

is always a large, positive and statistically significant impact of deworming on school 

attendance in this data. Aiken et al. (2014b) do show here that looking at 1998 and 1999 

separately, and using non-standard weighting, and using a specification that was not pre-

specified, does sometimes lead to only marginally significant results. In our view, it is only 
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when multiple non-standard deviations from the pre-analysis plan are made simultaneously 

that the result loses statistical significance at traditional confidence levels. 

If we focus on the individual-level results presented in the right-hand panel of Aiken 

et al. (2014b), Table 4, we see statistically significant improvements in school attendance 

due to deworming in 5 out of the 6 estimates presented. The random-effect logistic 

regression is step 2 in the pre-analysis plan. So far, we see that in both 1998 and 1999, 

there are large positive point estimates in this analysis, which are sometime statistically 

significant on their own. But of course each of these only uses a piece of the data for the 

study as a whole. In the limit, we could analyze data separately month by month (or week 

by week) and none of the individual treatment effect estimates would be statistically 

significant. But that would not imply that there is no impact of the study using all of the 

data at hand. When the authors present the results cut up year by year, they owe it to the 

reader to mention that each of these is a subset of the data, and thus is underpowered 

relative to the overall data set and research design. I.e., a not statistically significant effect 

within a subset of the data does not constitute meaningful evidence for a “non-effect”.  

It is clear here that when the full research design and both years of data are used, 

there is a large, positive, and statistically significant impact of deworming on school 

attendance. This holds with and without controls (age and SAP), and holds for either the full 

sample or the eligible population sample, so is quite robust. It is not surprising that when 

you look at each year separately (i.e., using only half the data, and not exploiting the full 

research design, with Group 2 changing treatment status) that statistical precision falls 

somewhat – although in the pre-specified analysis on the eligible subsample each year 

(1998, 1999) on its own is significant at either 95 or 90% confidence. Given this, the 

conclusion here that there is no meaningful evidence of an impact of deworming on school 

attendance is puzzling to us. 

 

Page 20: “In year 1 (1998), there were several schools in all of the groups that 

had more than 95 per cent attendance; in year 2 (1999), no schools had such high 

levels of attendance.” 

This makes a lot of sense. The sample in 1998 was selected on those who were 

enrolled in school, so we would expect quite high attendance in 1998. By 1999, many 

students in all groups dropped out. Dropout rates in primary school are currently quite high 

in Kenya, and were even higher in 1998 and 1999. So the fact that no school had over 95% 

attendance in 1999 is not surprising either. 

 

Page 20: “The results of the analysis exploring the sensitivity of the school-

attendance results to the handling of the treatment condition are shown in 

Appendix 7. In scenario one, 11,588 observations at the start of year 1 (1998) 

were excluded, as well as 31,404 observations during the first two visit periods in 

year 2 (1999). In comparison with our prespecified analysis, the year-specific 

results were approximately unchanged…” 

 In scenario one, which drops the observations corresponding to the miscoded periods 

of treatment, actually dropping data led to impacts that are generally larger in magnitude 

(in 6 out of 8 specifications). Furthermore, the cluster summary results move much closer 

to statistical significance (from P-values of 0.121 and 0.483 to P-values of 0.109 and 0.150, 

for 1998 and 1999 respectively).  
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 In scenario two, which makes full use of the data collected and correctly classifies 

treated individual, the results are much stronger. Impacts of deworming on school 

participation in 1998 come across in both the cluster summary analysis (P-value = 0.056) 

and the individual-level analysis (P-value = 0.036), where these effects had been non-

significant in the miscoded analysis. Overall, the results in the bottom panel of Aiken et al. 

(2014b) Appendix 7 suggest positive and statistically significant impacts of deworming on 

school participation in 5 out of 6 models (with the odd case being an unweighted cluster 

mean for 1999 – our Table 3, above, shows that even that result is statistically significant 

(P-value < 0.5) when an appropriate weighting approach is applied).  

 

Page 24: “At the start of year 2 (1999), substantially more pupils were tested in 

Group 2, the control group, than in Group 1, the intervention group.” 

The oversampling of Group 2 pupils in 1999 was done deliberately. 

 

Pages 24-25: Results presented in Tables 5 and 6 

Again, the re-analysis authors’ own pre-analysis plan (Aiken et al., 2013) specifies 

that the analysis of secondary outcomes (worm infection, HAZ and WAZ) will be performed 

in an analogous fashion as that for the individual-level regressions presented in Table 2 for 

school attendance and exam scores, but using OLS instead of logistic regressions (page 10). 

It is unclear why the authors deviated from their plan, and only presented worm infection 

outcomes in an unweighted school-level analysis (Aiken et al., 2014b, Tables 5 and 6). 

 

Page 26: “The absence of a clearly specified protocol for collection of these data 

initially compromised our confidence in the results relating to school attendance. 

We therefore approached the data cautiously by starting with simpler but arguably 

more robust and transparent analyses and progressively building up to more 

complex forms of analysis.” 

It is unclear to us why a cluster summary analysis weighting each school equally 

analysis is any “more robust and transparent” than a cluster summary analysis that weights 

each pupils (or attendance observation) equally.  They are equally simple and transparent. 

It does seem obvious to us that a “simple” analysis that ignores the study’s prospective 

stepped wedge research design and mis-weights observations is inferior to a more 

“complex” approach that utilizes all of the data, exploits all of the variation in the data, and 

weights the data appropriately.  

 

Page 27: “In further analysis, we observed that there was a relationship between 

the number of attendance observations performed in a school and the overall rate 

of attendance in that school (Figure 2). The association between the number of 

pupil observations and the overall attendance in schools was noticeably different 

by intervention status; these were directly related in two out of three 

intervention-group years but were inversely related in all of the control-group 

years. In Group 2, which changed from control to intervention status between 

study years, the direction of this association switched between years.” 

As discussed in detail in section 2.2, there is no statistical evidence for differences in 

this relationship across treatment groups or over time.   
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Page 30: “We investigated the sensitivity of the school-attendance results to 

decisions about which observations corresponded to the intervention condition 

and which corresponded to the control condition. In particular, we incorporated 

information highlighted to us by the original authors concerning the timing of the 

deworming treatment in schools and, related to this, their opinions about whether 

some school-attendance observations should be considered as corresponding to 

control rather than intervention conditions. We explored two scenarios. In neither 

of the two scenarios were the results substantially different from the pattern of 

the main results of the prespecified analyses.” 

We disagree with the implication in this passage that there is an “opinion” on the 

definition of treatment status. As described clearly and consistently in Miguel and Kremer 

(2004) and the associated documentation and analysis code (STATA do files), all of which 

the re-analysis authors had access to since the very start of their work on this endeavor in 

early 2013, treatment in Group 1 schools did not begin until March 1998 (after the first 

round of school data collection visits), and treatment in Group 2 schools did not begin until 

March 1999 (after the second round of school data collection visits). The first few months of 

each year were utilized for community sensitization meetings, and collection of 

parasitological, anthropometric, and health behavior data. In 1998, this data forms the 

baseline, and in 1999 it is used to study the difference between Group 1 (treated) and 

Group 2 (untreated) schools. Without this data, any analysis of health outcomes (worm 

loads, hemoglobin, anthropometrics) would have been impossible – so we do not see how 

the re-analysis authors can claim that there was any “intention” that Group 2 schools should 

be treated at the start of 1999. An implication of their “view” on the timing of treatment is 

that we simply never intended to estimate health impacts of the study, since Group 2 was 

“really” supposed to be a treatment school starting on January 1st, 1999; but this claim 

about the “intended” timing of treatment is simply false. We also note that the collection of 

parasitological data at the start of each year from the schools that were being phased into 

treatment later that year was necessary to determine which drugs would be administered. 

We also disagree with the re-analysis authors’ summary that the results are not 

substantively different when treatment is defined correctly. In particular, the estimated 

impact of deworming on school participation is substantially weaker in the analysis in which 

they mis-define the treatment variable, as expected since doing so introduced unnecessary 

measurement error into a key variable in the analysis (which can be seen by comparing 

their Table 4 and Appendix 7).  

 

Page 31: “Without more information about how the sampling was performed, and 

the degree of success in relocating the subsample in Group 1, the substantial 

difference in the number of pupils sampled in Group 1 and Group 2 at the start of 

year 2 (1999) raises concerns that the samples may not be comparable.” 

We note that it was a deliberate decision to choose a smaller sample for Group 1 in 

1999 compared to Group 2. This was due to budget limitations, in part. Furthermore, it is 

unclear why the re-analysis authors chose to raise a concern about potential lack of 

comparability across the Group 1 and Group 2 samples, when they could use the data to 

simply test for these differences.  

Finally, we again note a fundamental intellectual incoherence in the analysis in Aiken 

et al (2014b), namely, that they consider Group 2 schools to be “control” schools in early 
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1999 in the worm infection analysis, but “treatment” school in early 1999 in the school 

participation analysis. In other words, they have elected to mis-code the treatment variable 

in some pieces of their analysis but not in others, a decision that is puzzling to us. 

 

Page 33-34: “Furthermore, the pure replication found improvements in school 

attendance to be similar whether or not children had received drug treatment, and 

in this analysis, all results were similar whether applied to drug-eligible pupils 

(main analysis) or all school pupils (see Appendix 4). This further undermines 

confidence in a causal relationship between drug administration and changes in 

school attendance.” 

As discussed in Miguel and Kremer (2004), there is strong evidence of deworming 

externalities on both worm infections and school participation both within the treatment 

schools and to neighboring schools within 3 km. There are large school participation gains 

for both the treated and untreated pupils in treatment schools, and we cannot reject that 

the impacts are equal for these two groups (in Table IX of Miguel and Kremer 2004, and in 

Aiken et al. 2014a), in part because this is a relatively statistically underpowered test. 

Deworming breaks the cycle of transmission for worm infections, and we show in Miguel and 

Kremer (2004) that it reduces reinfection for individuals within and in the vicinity of 

treatment schools. Intestinal worms have quite short average lifespans, on the order of one 

to two years, so sharp reductions in reinfection could quickly translate into a lower worm 

disease burden among both the untreated and the treated. Other work also suggests 

substantial epidemiological externalities among the untreated in treatment communities 

(Bundy et al. 1990, Ozier 2014). 

 

Page 34: “A number of plausible pathways to increase school attendance exist that 

operate through behaviour change in children that are unrelated to the actual 

removal of worm infections. Causes of pupil behaviour change might include the 

educational component of the intervention, the placebo effect associated with 

receiving drug treatment, being in an intervention school (Hawthorne effect), or a 

desire to please parents or teachers who were aware of the study aims. Behaviour 

changes could subsequently cause changes in new worm infections or change how 

children perceive their health. All of these could lead to changes in school 

attendance without changing health status. It is also plausible that the removal of 

worm infections could lead to alteration in behaviour patterns mediated through 

some other biological mechanism that was not examined in this study, such as the 

alteration of immune-system activity, which has been described as an effect of 

helminth infections. There are also a number of plausible causal pathways that act 

outside of the child, such as at the level of the family or school.” 

We strongly disagree with the concerns raised here regarding placebo effects and 

other behavioral changes, as laid out in detail in section 2.4 above. 

 

Page 35-36: “For any trial of a public-health intervention, the generalisability of 

the findings is an important question: would the same intervention lead to the 

same results if applied in a similar setting outside the context of a formal trial? 

What would constitute a similar setting? This study was conducted in rural 

western Kenya in 1998–1999, and the researchers found that all schools tested 
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had > 50 per cent baseline prevalence of worm infection. This suggests that Busia 

District was a ‘high worm burden’ setting at that time. For the results of this trial 

to be applied to other settings, there would have to be a similarly high burden. As 

the nature of the causal pathway operating here is uncertain, it is unclear what 

other aspects of the setting would need to be similar for the intervention to work 

in the same way. For example, poverty and gender bias are two other factors that 

almost certainly impact school attendance, but these effects operate in complex 

ways that vary substantially from place to place, which might alter the effects of 

this intervention. A recent high-profile publication reported from a large trial 

looking at the effect of deworming and vitamin A supplementation on preschool 

mortality in north India found that deworming had no effect in this lightly infected 

area (Awasthi et al. 2013).” 

The Awasthi et al. (2013) study is not relevant since it does not estimate impacts on 

educational outcomes, and thus does not speak to the debate at hand.  

As noted in Section 3 above, there is growing evidence from multiple cluster 

randomized studies in areas with widespread worm infections that deworming treatment 

leads to substantial gains in both educational and labor market outcomes in the medium to 

long-run (Croke, 2014; Ozier, 2014; Baird et al., 2014). 
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