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Abstract

High pollution persists in many developing countries despite strict environmental rules. We
use a field experiment and a structural model to study how plant emission standards are
enforced. In collaboration with an Indian environmental regulator, we experimentally dou-
bled the rate of inspection for treatment plants and required that the extra inspections be
assigned randomly. We find that treatment plants only slightly increased compliance. We
hypothesize that this weak effect is due to poor targeting, since the random inspections in the
treatment found fewer extreme violators than the regulator’s own discretionary inspections.
To unbundle the roles of extra inspections and the removal of discretion over what plants to
target, we set out a model of environmental regulation where the regulator targets inspec-
tions, based on a signal of pollution, to maximize plant abatement. Using the experiment
to identify key parameters of the model, we find that the regulator aggressively targets its
discretionary inspections, to the degree that half of plants receive fewer than one inspection
per year, while plants expected to be the dirtiest may receive ten. Counterfactual simulations
show that discretion in targeting helps enforcement: inspections that the regulator assigns
cause three times more abatement than would the same number of randomly-assigned in-
spections. Nonetheless, we find that the regulator’s information on plant pollution is poor,
and improvements in monitoring would reduce emissions.

I Introduction

Recent pollution levels in emerging economies like China and India exceed the highest levels

ever recorded in rich countries. Such pollution reduces lifespans (Chen et al., 2013; Greenstone

et al., 2014; Ebenstein et al., 2017) and labor productivity (Graff-Zivin and Neidell, 2012; Chang

et al., 2016; Adhvaryu et al., 2016; He et al., 2016). High pollution persists despite strict emission
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standards on the books. Regulatory enforcement is thus the crucible for environmental quality,

but we know little about why enforcement fails. Regulators blame a lack of resources to carry

out regulations. Other observers offer less charitable explanations, for example that regulators

with wide discretion choose not to enforce standards, out of corruption, laziness or incompe-

tence (Stigler, 1971; Leaver, 2009).1 Whether regulatory discretion helps or hinders enforcement

is generally uncertain. While discretion can be abused, it also allows regulators to use local

information to strengthen enforcement.

Gujarat, India is an ideal setting in which to study regulatory enforcement. Gujarat is one

of India’s most industrialized states and contends with major pollution challenges.2 Pollution is

not for a lack of standards, as there are strict maximum limits on air and water emissions from

industrial plants. Nor is it from an inability to punish violators; in 2008, before our study, the

Gujarat Pollution Control Board (GPCB) ordered 9% of the plants in our sample to close, at

least temporarily, sometimes cutting off their utilities.

While punishments are severe when meted out, the chance of being caught is low. The GPCB

has a limited inspection budget and chooses which plants to inspect. Half of plants are inspected

less often than the prescribed rate, while other, similar plants are inspected many times more.

This discretion in inspection targeting may hurt or help regulatory enforcement. It would hurt

enforcement if plants bribe the regulator to avoid inspections, or if regulators shirk and avoid the

dirtiest plants to minimize conflict and monitoring costs. Discretion may also help, if it allows

the regulator to use local information to target more polluting plants. Understanding the effects

of limited resources and regulatory discretion on enforcement is generally hard due both to poor

data on regulation and outcomes and the endogeneity of inspection targeting.

This paper uses a field experiment and structural estimation to unbundle the roles of resources

and discretion in regulatory enforcement. The experiment covered 960 industrial plants and ran

for two years. All sample plants came from the highest, ‘red’ category of pollution potential.

The inspection treatment, assigned to half of plants, was cross-randomized with an audit reform
1The view that discretion leads to regulatory abuse of power was clearly expressed by the current Indian

Prime Minister when he unveiled a scheme of randomly assigned inspections for compliance with labor rules:
“Now computer draw will decide which inspector (labor) will go for inspection to which factory and he will
have to upload his report online in 72 hours. These facilities are what I call minimum government, maximum
governance. I have been hearing about ’inspector raj’ since childhood.” (The Economic Times, 2014)

2For example, all seven of the cities in Gujarat that are monitored for air pollution exceed the national
standards for fine particulate matter (Central Pollution Control Board, 2012).
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experiment in the subset of plants that were eligible for environmental audits (Duflo et al.,

2013).3 The inspection treatment met the de jure inspection rate by providing the resources

needed to bring all treatment plants up to at least the required minimum number of inspections.

The treatment also removed the regulator’s discretion over these extra inspections, by allocating

them randomly across all treatment plants. It did not alter pollution standards or the regulatory

penalties for violations. The regulator continued to exercise discretion in allocating its existing

budget of inspections across both the treatment and control groups.

The analysis is conducted with unusually rich, perhaps unique, data on the regulatory process,

plant abatement and pollution. On the regulatory process, we code nearly 10,000 pieces of

correspondence between the regulator and sample plants, which record their interactions over

five years (from two years before the experiment through one year after). These documents

include plant inspections, pollution readings, regulatory notices and penalties, on the regulator’s

side, as well as written responses from plants, such as documentation of abatement equipment.

We also ran an independent endline survey of plant pollution and abatement costs.

Our experimental results pull on each link in the chain from inspections to emissions—which,

in the end, the treatment did not meaningfully reduce. First, the experiment was implemented,

in that inspection rates in the treatment group were twice those in the control, and treatment

plants report higher perceived inspection rates, showing the scrutiny was felt. Second, treatment

plants were more often found in violation of pollution standards and received more citations for

those violations. Third, GPCB followed-up on inspections in both treatment arms the same way:

all inspections were entered in the same database and were judged by the same officials. We

empirically verify that, conditional on an inspection’s findings, treatment status did not affect

the regulator’s follow-up. Yet, fourth, despite more citations, treatment plants were no more

likely to be penalized. Fifth, we cannot reject the null of a zero treatment effect on average plant

pollution emissions, although we find a small increase in the share of firms in compliance.4

Why did the bundled treatment, including both additional resources and reduced discretion,

prove so weak at lowering emissions? A pattern of evidence suggests that a main reason is the
3In 1996, the High Court of Gujarat ordered GPCB to instate a third-party audit system wherein plants from

polluting sectors must provide an annual audit report to GPCB. Duflo et al. (2013) evaluated a reform of this
audit system and found that making third-party auditors more accountable to the regulator and less beholden to
the plants they audit improves truth-telling and lowers pollution.

4The effects of both the inspection and audit treatments on pollution are negative, but their interaction is
positive and significant, consistent with the information obtained from these channels being substitutable.
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removal of regulatory discretion over what plants to inspect. Data on status quo inspections

and the process of regulatory sanctions, after an inspection, shows that the regulator reserves

the most costly penalties for extreme violations of regulatory standards. The treatment did

identify many more plants that violated emissions standards, but did not find any more extreme

violators, which would have been candidates for the most costly penalties. This gap suggests

that the regulator’s discretionary inspections, while done at a low rate on average in the status

quo, nonetheless found many of the dirtiest plants. Adding random inspections mostly picked

up smaller violators that the regulator would not have penalized in any case.

Motivated by this evidence, the second part of the paper uses a structural model to sepa-

rate the roles of resources and regulatory discretion. We model environmental regulation under

imperfect information and use the experimental variation in inspections to identify key param-

eters of the model. In the model, the regulator is benevolent and seeks to reduce pollution but

is constrained by resources and information. The model includes two stages. In the targeting

stage, the regulator choses whom to inspect, subject to its inspection budget, based on plant

observables and noisy signals of plants’ pollution, unobserved by the econometrician but known

to the regulator. Plants decide whether to abate pollution given the threat of inspections. More

polluting plants are both more likely to abate, because an inspection offers them a greater threat

of penalties, and abate more conditional on taking action, because the abatement technology is

proportional to pollution levels. The second stage is a penalty stage where, after an inspection,

penalties may be levied on non-compliant plants. The regulator must follow an exogenous process

for applying penalties to polluting plants. We estimate this process as a policy function, using

our rich data on the regulatory process, and hold the estimated policy fixed in counterfactuals.

The plant’s objective is to minimize the total cost of environmental regulation by trading off

costly abatement actions against the risk of future inspections and the penalties they may beget.

We use the penalty stage of the model to recover these unobserved penalties, using the plant’s

choice, in a dynamic problem, of when to install costly abatement equipment. This revealed

preference approach has the benefit of capturing all the costs of regulation, including formal

penalties, like a mandated plant closure, and informal costs like disruption and bribes.

The model estimates yield three broad sets of results. First, the regulator aggressively tar-

gets plants with high pollution signals, even though its signals are weakly related to true plant
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pollution. The estimates imply that half of plants receive fewer than one inspection per year,

while plants expected to be the dirtiest may receive ten. This finding suggests that targeting,

rather than neglect, is a reason why many plants are left largely alone. A sensitivity analysis,

using the method of Andrews et al. (2017), confirms that the estimates of key model parameters

are especially sensitive to the variation created by the experiment. If the experimental treatment

effects on pollution had been greater, for example, we would have estimated the parameter that

governs the efficacy of abatement in our model to be higher.

Second, regulatory penalties are costly when applied, but the risk of penalties is low. We

estimate that a realized plant closure costs about $50,000, inclusive of formal and informal costs,

or roughly two months of mean plant profits in our sample. Using these costs and the probability

of penalties, the expected discounted value of an initial inspection to a plant is negative $2,000.

Even for plants where an initial inspection reveals a pollution reading of at least five times the

regulatory standard, the expected value of the inspection is negative $6,000—greater than for a

plant with average pollution, but far smaller than the cost of certain punishment.

Third, counterfactual exercises reveal that regulatory discretion in choosing which plants to

inspect is valuable, especially for tight inspection budgets. At the GPCB’s current inspection

rate, the inspections chosen by the regulator induce three times more abatement than would the

same number of randomly-assigned inspections. The value of discretion declines as the number

of inspections available to the regulator increases. The experiment doubled inspections, from

the status quo, and assigned them randomly. We simulate that the effect on abatement of the

same number of added inspections would have been fifteen percent greater than the estimated

treatment effect, if the added inspections were assigned according to the regulator’s discretion.

In a regime with discretion, improving the regulator’s information can boost the efficacy of

inspections. A technology that gave the regulator perfect information on plant emissions would

increase abatement by thirty percent, at the status quo number of inspections. This abatement

is the same as would be achieved by a one-third increase in the inspection budget, if the added

inspections were allocated with discretion. Such technology is not science fiction: continuous

emissions monitoring systems (CEMS) are used widely in the United States, and India has

announced plans to roll out these devices in heavily polluting sectors (Central Pollution Control

Board, 2013, 2014).
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The paper makes several contributions to the literature. First, to the best of our knowl-

edge, it provides the first experimental evidence on how inspections change plant emissions.5

Second, we also believe it the first study with such rich data on the process of environmental

regulation, including data on regulatory actions, penalties and independently-measured plant

pollution emissions. Third, our model demonstrates how structural analysis can be used to

unbundle the channels through which an experimental treatment works. Our model captures

the context of the experiment, including unobserved plant heterogeneity, and we use the model

estimates to simulate counterfactuals that either were not part of the experiment (e.g., expand-

ing inspections with discretion) or could not plausibly have been part of any experiment (e.g.,

removing discretion from status quo inspections). We find that regulatory discretion, which is

seldom measured despite great theoretical interest, can be valuable.6 We also highlight that poor

information is a major constraint on regulatory efficacy.

II Context and Experimental Design

II.A. Context: Regulation of Industrial Pollution in India

In India, national laws set pollution standards, and practically all enforcement of environ-

mental regulations occurs at the state level. States may make their standards more strict than

the national standards, but cannot relax them (Ministry of Environment and Forests, 1986).

State Pollution Control Boards, such as the Gujarat Pollution Control Board (GPCB), are re-
5Studies of regulatory inspections in the United States show that inspections reduce pollution significantly

(Hanna and Oliva, 2010; Magat and Viscusi, 1990). The studies rely on observational data wherein dirtier plants
are more likely to get inspections, and this endogeneity is a strong concern (See Shimshack (2014) for a recent
survey). Studies of regulatory efficacy in emerging economies are more mixed, with Tanaka (2013), for example,
finding large reductions in pollution from a control policy in China and Greenstone and Hanna (2014) finding cuts
in pollution in India from policies targeting air, but not water, pollution. On the costs of regulation, Greenstone
et al. (2012) find U.S. regulations lower manufacturing productivity, and Ryan (2012), using a dynamic model,
finds that the U.S. Clean Air Act Amendments raised entry costs in the cement industry. There are few studies
of environmental regulation in developing countries, but Aghion et al. (2008) and Besley and Burgess (2004)
document negative productivity effects of rigid industrial regulation for India.

6Environmental regulation is a classic setting for incentive regulation (Laffont and Tirole, 1993; Laffont, 1994;
Boyer and Laffont, 1999). Limited regulatory capacity and commitment typically change the optimal regulatory
policy in emerging economies with incomplete markets (Laffont, 2005; Estache and Wren-Lewis, 2009). Papers
in organizational economics, such as Aghion and Tirole (1997), suggest that formal and real authority may
then optimally diverge leading to substantial value for discretion. More broadly, our findings resonate with the
literature on effective policy design when state capacity is limited (Besley and Persson, 2010). For instance,
consistent with this paper’s findings, Rasul and Rogger (2013) report significant gains from providing Nigerian
bureaucrats autonomy in decision-making. Other papers note, to the contrary, bureaucrats and politicians may
misuse discretion in environmental regulation (Burgess et al., 2012; Jia, 2014).
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sponsible for enforcing the provisions of the Water Act (1974), Air Act (1981) and Environmental

Protection (1986) Act, and their attendant command-and-control pollution regulations.

Turning to our study partner, the GPCB is responsible for monitoring and regulating ap-

proximately 20,000 industrial plants in the Indian state of Gujarat. The practices of the GPCB

are largely common with other Indian states. Each GPCB regional office has several inspection

teams and a Regional Officer who assigns inspections to plants. During an inspection, the team

observes plant conditions and its environmental management and often, but not always, collects

pollution samples for laboratory analysis. Officers at the regional and head office review in-

spection reports, which describe the plant’s condition, and analysis reports, which list pollution

concentrations for air and water pollutants.

Regulations mandate routine inspection of plants in sectors with the highest pollution po-

tential (“red” category plants) every 90 days if they are large- or medium-scale and once per

year if they are small-scale.7 In the year before the experiment, 42 percent of control plants

were inspected at less than the prescribed rate. These routine inspections, which the experiment

manipulated, make up 35% of total inspections. The remainder are due to plant applications to

operate (30%), public complaints (11%), and follow-ups on prior inspections or penalties (24%).

Plants found in violation of pollution standards can be harshly penalized. The regulator can

mandate that a plant install abatement equipment, post a bond against future performance or

even shut down, by ordering that a plant’s water and electricity be cut. Utility disconnections

remain in force until the plant has shown progress towards meeting environmental standards; the

median duration of closure in our data is 24 days. Because abatement equipment is observable,

plants may install equipment to show compliance, even when operational changes could fix an

initial violation.8 In addition to formal penalties like closure, plants may incur other costs of

regulation, such as disruptions to plant operations during inspections or bribes.
7The GPCB follows a government classification for plants based on their reported scale of capital investment,

with small-scale being investment less than INR 50m ($1 million), medium INR 50m to 100m ($1 million to 2
million) and large above INR 100m ($2 million) (throughout, we use an exchange rate of US$ 1 = INR 50).
Prescribed inspection rates for these plants are comparable to those applied to large plants, by air pollution
potential, in the United States (Hanna and Oliva, 2010).

8The regulator, in principle, can also take a violator to court for criminal sanction, but this is rare and does
not occur in our data, because documenting violations is burdensome and there are long prosecutory delays.
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II.B. Experimental Design

The goal of our experiment was to estimate the impact of moving from the status quo,

infrequent inspections allocated with discretion, to regular inspections of all plants at prescribed

inspection rates. Such a reform would bring the GPCB into compliance with its own prescribed

inspection rates and the Central Pollution Control Board’s (CPCB) inspection rules.

To this end, between August 2009 and May 2011 we worked with GPCB to increase inspection

frequency for a random subset of highly polluting plants. We identified the population of 3,455

red-category (i.e., high pollution potential) small- and medium-scale plants in three regions of

Gujarat (Ahmedabad, Surat and Valsad), which constitutes roughly 15% of the more than 20,000

regulated plants in Gujarat. By CPCB rules, these plants are supposed to be inspected either

once per year if they are small-scale or once in three months if they are medium scale (Ministry

of Environment and Forests, 1999). From this population, the sample of 960 plants was drawn in

two batches. First, we selected all 473 audit-eligible (i.e., “super red”) plants in Ahmedabad and

Surat. Second, we randomly selected 488 plants from the remaining audit-ineligible population.

Inspection treatment assignment was randomized within region by audit-treatment-status

strata (treatment: 233 plants, control: 240 plants and non-audit-eligible: 487 plants). The treat-

ment was thus cross-randomized and implemented concurrently with the audit reform treatment

studied by Duflo et al. (2013). The 481 plants assigned to the inspection treatment were assigned

at least one annual initial (routine) inspection and up to four per year. In the first quarter the

plant was assigned one initial inspection, after which it was randomly assigned on a quarterly

basis to be inspected again with probability 0.66. After four quarters this cycle started over.9

Regional GPCB teams consisting of an environmental engineer and scientist conducted treat-

ment inspections. To not overburden current staff, we worked with GPCB to rehire and integrate

three recently retired GPCB scientists into the overall team. Rehired staff were sometimes allo-

cated to regular inspections, and regular staff were often allocated to inspections assigned under

the treatment, so that teams were well-mixed in practice.10 Each morning in each region, the
9Towards the end of the inspection treatment, in the month prior to the endline survey, we also assigned,

randomly and independently of the other treatments, some plants to receive a letter from GPCB reminding them
of their obligations to meet emissions limits. This letter reiterated the terms of plants’ environmental consent,
which in principle they already knew, but it may have also served to increase the salience of regulatory compliance.
The letter had no effect on emissions or compliance (Appendix Table A8).

10Administrative data on staff assignments across all three regions, shows that only one staff member, who was
newly rehired, participated in treatment inspections only, whereas 32 staff members, mostly current employees,
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designated inspection team was randomly assigned a list of plants from the treatment group

at which to conduct initial “routine” inspections that day. This mimicked GPCB’s practice of

assigning teams to plants, except that the plant assignment was random, rather than being based

on an official’s discretion.

In all respects but targeting, control and treatment inspections were the same. Treatment

and control inspection reports entered the same database without any distinguishing flag, had

samples analyzed by the same GPCB labs and had the same GPCB officials deciding on follow-up

inspections and punishment.

Two of our experimental design choices are worth discussing. First, our treatment simultane-

ously modifies the number of inspections and the method of assignment. Separate experiments

on these two components would have been interesting: increasing the budget but with regula-

tory discretion, and, separately, asking the regulator to randomly inspect plants while holding

the existing budget constant. We could not get the regulator’s buy-in for the second option.

Regarding the first option, we lacked the budget to do two different treatment arms, one with

and one without discretion, and we concluded there was more to be learnt by testing the de jure

policy, with a prescribed rate of inspections for all plants. Our joint treatment implies that we

need the structural model to separate the impacts of resources and discretion.

Second, we explicitly asked the regulator to follow-up on the treatment and control initial

inspections identically. If randomly assigning inspections at a prescribed rate was adopted per-

manently, then the regulator might change its follow-up behavior in response, which our experi-

mental estimates will not capture. Identical follow-up allows us to focus on the one dimension,

of inspection targeting, that did change. Moreover, had the regulator been free to vary how

inspections were handled in the two groups, pure experimental or Hawthorne effects would have

been a concern (e.g., the regulator trying to look tough, or ignoring the treatment inspections).

II.C. Data

The paper uses two sources of data, an endline plant survey and GPCB administrative records.

The endline survey was conducted between April and July, 2011 (the experiment ended in May

2011), by independent agencies, mainly engineering departments of local universities, supervised

participated in both treatment and control inspections.
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by the research organization J-PAL South Asia. The survey collected pollution readings, ex-

penditures for abatement equipment investment and maintenance, and data on other aspects of

plant operations. The GPCB issued letters that required plants to cooperate with the surveyors

and stated truthfully that the results would not be used in regulation. Attrition was low and did

not differ by treatment status (12.9% of plants closed during the study and only 4.7% attrited

for other reasons, see Appendix Tables A5 and A6).

The second source of data is 9,624 GPCB documents on its interactions with plants. We

categorize these documents by (a) whether they record an action of the regulator or a plant and

(b) the type of action they record. Figure 3 shows the actions of the regulator and plant and

Appendix Table A1 maps these actions to their documentation.

The regulator can choose to Inspect, Warn, Punish or Accept. To Inspect is to revisit the

plant and gather another pollution reading. Inspect is documented by an inspection report and

an analysis report giving lab results on pollution. To Warn is to threaten the plant that it is

at risk of regulatory action and is documented by regulatory letters, citations for violations of

pollution standards and closure warnings, that the plant will be closed, absent some remedial

action. Punish records only costly punishments, mainly plant closure, documented by a closure

direction sent to the plant or a notice to the utility to cut off the plant’s water or electricity.

Accept is to accept the plant is in compliance and is documented by the regulator revoking in

writing a prior action, or simply taking no further action against a plant.

The plant has only two actions, Comply and Ignore. Comply is documented by the instal-

lation of abatement equipment, typically with a certification or invoice from the vendor that did

the work. Ignore is documented by any letter the plant writes to the regulator that does not

give evidence of compliance.11 The action Ignore is also inferred from the absence of any plant

response between regulatory actions.

Many regulator and plant actions occur in response to a prior action. We use two main rules

to create chains of related actions. First, documents that explicitly cite one another are linked.

Second, documents concerning the same plant that follow within a short time (usually 30 days)
11For example, a plant where GPCB found high air pollution readings claimed in correspondence: “At the time

of visit our chilling plant accidentally failed to proper working, so chilling system of scrubber was not effective by
simple water. Same time batch was under reaction and we were unable to stop our reaction at that time. Now it
is working properly.” That is, a piece of air pollution control equipment failed, causing pollution to be higher than
normal during the visit. These types of explanations are common when plants are found well out of compliance.
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are linked. We also impute additional Ignore actions, when none are documented, to enforce an

alternating-move structure. Appendix A describes the linkage rules in more detail.

II.D. Randomization Balance Check

Plant characteristics and past regulatory interactions such as inspections, pollution readings

and citations are balanced by treatment assignment. Appendix Table A4 presents a random-

ization check. Of 18 baseline measures reported, there is a significant difference between the

treatment and control groups at the ten percent level on only one measure.

Many plants face costly penalties or take remedial actions despite the poor coverage of in-

spections. In the control group, 40 percent of plants had any pollution reading collected in the

year prior to the experiment, and 34 percent of plants had a pollution reading above the limit

(fully 85 percent of those with a reading taken). Many plants (22 percent in the control group)

were cited for violations. More forcefully, 24 percent of control plants were mandated to install

abatement equipment,12 7.5 percent were ordered temporarily closed, 2 percent had to post a

bank guarantee (performance bond) and 1 percent had utilities cut off.

III Results: Experimental Estimates

This section examines how the experimental inspection treatment affects regulatory actions,

plant abatement costs and pollution emissions. To motivate our structural analysis, we then

document how the regulator targets discretionary inspections.

III.A. Regulatory Action

Table 1 presents differences in regulatory outcomes by treatment status during the experi-

ment. Each row considers a different outcome. As we move down the table rows, we move along

four links in the chain from inspections to penalties for violating plants.

First, the treatment was implemented faithfully (Panel A). Within a row columns 1 and 2

report the means for control and treatment plants, while column 3 reports the coefficient on the

inspection treatment dummy from a regression of each outcome on treatment and dummies for
12This rate of equipment mandates is unusually high; an Air Action Plan issued a blanket mandate for all firms

in some cities and sectors to upgrade their air pollution control devices (Gujarat Pollution Control Board, 2008).
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strata used in randomization. Control plants were inspected an average of 1.40 times per year

over the course of the experiment . Treatment plants were assigned to be inspected 2.12 more

times per year and actually inspected an additional 1.71 times per year, more than doubling the

annual rate of inspection, to 3.11 times. The treatment increased initial inspections, that start

a new chain of interactions with the regulator, by 1.50 times per year.

Treatment-assigned inspections could, in principle, either crowd-out or crowd-in the regula-

tor’s discretionary inspections. Crowd-out would arise if the regulator diverts inspections away

from treatment plants that are now being inspected at the prescribed rate. Crowd-in would oc-

cur if initial random inspections trigger follow-up inspections when a violation is found. On net,

discretionary inspections were neither crowded-out nor in, perhaps because both effects cancel

out.

Second, plants were aware of the increase in inspection frequency. Panel B reports perceived

inspection frequency. Both control and treatment plants overstate how many inspections they

receive in a given year. Though not officially told they would be inspected more, treatment plants

recognized the change, and recalled being inspected a significant 0.71 times more than control

plants in 2010. While correctly signed, the perceived difference understates by 58% the actual

difference in inspection rates. A placebo check shows that there was no difference in perceived

inspections in 2008, prior to the experiment.

Third, the additional treatment inspections led to more detected pollution violations and

regulatory citations, which threaten action against plants. Panel C examines the number of reg-

ulatory actions against sample plants: the regulatory actions are ordered by increasing severity,

from pollution readings, citations and warnings through to actions like mandated closures and

utility disconnections that have a large cost to plants. Treatment plants are a significant 0.21

share more likely to have a pollution reading collected over the nearly two-year treatment, on

a meager 0.38 base in the control. These readings lead directly to more treatment plants being

found in violation of a standard (0.22 increase) and a greater number of citations (0.21 share per

year) for these violations, more than doubling the citation rate in the control. Treatment plants

see a statistically significant annual increase of 0.07 closure warnings, which formally threaten

to close the plant unless remedial action is taken.

Fourth, despite the extra violations, there is no significant evidence of greater regulatory
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penalties for treatment plants. For example, closure directions, the mandated installation of

equipment and utility disconnections are higher in the treatment but by small and statistically

insignificant amounts (last two rows of Panel C). This fact will be central to our interpretation

of the effect on compliance and abatement: despite increased inspections and violations, costly

punishments did not increase.

Our experimental design was meant to rule out one potential explanation for the lack of

additional punishments in the treatment—namely, that the regulator, despite regularly following-

up on status quo inspections, just ignored the treatment inspections. We check the assumption of

equal follow-up directly in Appendix Table A7, where we regress the probability that the regulator

lets a plant go after an inspection on treatment status and the contents of that inspection. This

probability does not differ by treatment status, without controls (column 1) or conditional on

pollution (column 3). The other columns add interactions between the treatment and controls

for pollution and other characteristics, and test for the joint significance of the interactions of

treatment with these observables. We fail to reject that the treatment interactions are zero in all

specifications. Thus the follow-up to an inspection is the same for treatment and control plants,

conditional on the regulator’s own information.

III.B. Plant Abatement Costs, Pollution and Compliance

Table 2, Panel A presents estimates of treatment effects on plant abatement costs. We use

endline survey descriptions of abatement expenditures to separate abatement costs for capital and

maintenance.13 Abatement capital expenditures are observable by the regulator, and sometimes

mandated in response to a high pollution reading. Maintenance expenditures are not directly

observable by the regulator, but proxy for greater use of abatement equipment, and may thus be

associated with lower pollution. More than half of control plants (0.57) install capital equipment,

at an amortized cost of about $2000 per year (column 1), while average maintenance costs are

about $264 per year with only 11 percent of plants reporting positive maintenance expenditures.

As a basis of comparison, sample plants spend about $145,000 on electricity annually. We find no

meaningful effect on either capital abatement expenditures or whether any capital expenditure
13We distinguish maintenance from capital costs by searching descriptions of expenditures for strings associated

with maintenance, like “maintain” or “change.” See Appendix A for details. Capital costs are amortized into an
annual flow of expenditures for comparison to maintenance costs.
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was incurred (column 1 and 2). The column 3 estimate suggests that treatment plants did

increase maintenance expenditure by $838 (standard error $499, p-value < 0.10). This effect is

large relative to the control level of maintenance expenditures, but small in economic terms for

plants of this size. Additionally, there is an insignificant treatment effect on the probability of

reporting any maintenance expenditure (coefficient 0.01 share, standard error 0.02) (column 4).

Table 2, Panel B reports the results from regressions of pollution levels (column 1) and

compliance (column 2) on treatment assignments for the inspection treatment, audit treatment

and their interaction. Pollution is measured in standard deviations for each pollutant at the

plant-by-pollutant level and standard errors are clustered at the plant level.14 Compliance is an

indicator for whether a plant-by-pollutant reading is below the pollutant-specific standard.

The treatment had modest impacts on pollution emissions. In column 1, the treatment

reduced plant pollution emissions by 0.10 standard deviations (standard error 0.084). This

effect is about half the size of the statistically significant -0.187 standard deviation reduction in

pollution due to the audit treatment.15 The treatment increased inspections by 1.71 per year;

the implied local average treatment effect is therefore a reduction of 0.06 standard deviations

of pollution per inspection. The audit-by-inspection interaction is large and positive. The sign

of the interaction is as expected. Audits provide three reports of pollution in a year. If audit

quality improves, then the informational value of extra inspections falls. Conversely, if plants are

inspected regularly, then the audit adds less. The magnitude of the interaction is large enough to

offset the sum of the main effects. However, we can reject neither that there is no effect of both

interventions combined (p-value 0.97) nor that the joint effect for plants in both the inspection

and audit treatment groups is equal to the inspection treatment main effect (p-value 0.19).

The column (2) entries indicate that the inspection treatment marginally increased compli-

ance with pollution standards: treatment plants are 3.7 percentage points (standard error 2.1

percentage points, p-value = 0.087) more likely to comply, on a base of 61% compliant pollution

readings in the control. (Multiple pollutants are observed in the survey and only 10% of plants

are compliant on all pollution readings measured).16

14All specifications include region fixed effects and an audit-eligibility indicator. Since only Ahmedabad includes
both audit-eligible and ineligible plants, this specification is equivalent to using region-by-eligibility fixed effects.

15The audit treatment effect on pollution reported in Duflo et al. (2013) was estimated in the inspection control
group only and was slightly larger.

16To test the robustness of this compliance effect, Appendix Table A9 reports placebo checks where compliance
is coded to occur at various multiples of the real standard. The effect of inspection treatment on compliance is
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Compliance can increase without a large reduction in average pollution if plants near the

standard were the most responsive to the inspection treatment. Figure 1, Panel A plots the

coefficients on inspection treatment from regressions of indicators for a pollutant reading being

in a given bin, relative to the regulatory standard, on treatment assignments (as in Table 2, Panel

B, column 3, but with finer bins rather than a single dummy for compliance). Treatment reduces

pollution readings just above the standard more than in any other bin, though this decrease is

not statistically significant (p-value 0.17), and it significantly increases the number of readings

just below the standard, in [-0.2,0.0]. The treatment thus shifted some plants that were modestly

out of compliance with the de jure standard into compliance.

III.C. Status Quo Targeting of Inspections

The experimental results are puzzlingly weak. A doubling of inspections and citations failed

to increase penalties or reduce average emissions and led only to small changes in abatement

costs and compliance, despite that the regulator does punish plants found in violation and does

so similarly in the treatment and the control groups. Did the marginal treatment inspections not

generate much abatement because they are random, while discretionary inspections are targeted?

We provide several pieces of evidence on targeting in the status quo.

First, Figure 7, Panels A and B demonstrate that the treatment did not appreciably increase

the number of plants subject to five or more inspections in a year, who are typically severe

violators. Instead, it increased the frequency of inspections for plants that would not have been

inspected regularly, reducing the share of plants inspected at less than the prescribed rate from

50 percent in the control to 13 percent in the treatment group.

Second, despite the additional inspections, Figure 2 reveals that the treatment did not in-

crease the number of extreme violators, plants with pollution readings 5 or 10 times the stan-

dard.17 The treatment did find many plants that exceed the standard by smaller amounts.

This lower intensity of marginally discovered violations suggests that the regulator is already

inspecting the dirtiest plants, using the few inspections available in the control group.

Third, our endline survey pollution readings, in the control group, predict future regulatory

statistically significant only at the true standard.
17Thirty five (10) plants in the treatment group have a pollution reading greater than 5p (10p), compared

to 33 (12) in the control group. These rates are practically identical, and the null hypotheses that detection
probabilities for plants with readings > 5p and > 10p do not differ by treatment status cannot be rejected.

15



inspections conditional on plant observables and the regulator’s own past readings (Appendix

Table A10). Since the regulator did not see the endline survey readings, this prediction must mean

the regulator has its own signals of plant pollution, and uses these signals to target inspections.

Thus, it appears that the regulator is selectively inspecting and punishing the most polluting

plants. The failure of the treatment to use the regulator’s private information may, in turn, ex-

plain the surprising finding that the treatment had only weak impacts on penalties and emissions.

The following sections build on this insight to specify and estimate a model of the regulator’s

targeting problem.

IV A Model of Inspection Targeting and Enforcement

To understand why the treatment did not meaningfully reduce plant emissions, we set out

a structural model of regulation and plant behavior to unbundle the roles of resources and

regulatory discretion. We consider a benevolent regulator, who seeks to maximize abatement,

given available information, resource constraints and the process of applying penalties. Thus,

we abstract away from the possibility that the regulator’s choice of inspections is corrupted and

ask whether high plant pollution can be explained in terms of the constraints on the regulator’s

actions and information. (Our specification will allow corruption in the conduct of inspections,

just not their assignment.)

We model regulator-plant interactions as a game in two stages.

1. Targeting stage.

1. The regulator chooses an inspection targeting rule to minimize plant pollution subject to

a budget of inspections;

2. Plants choose whether to run their abatement equipment, given their abatement cost,

known level of pollution, and the regulator’s targeting and penalty rules;

3. The regulator observes a part of plant pollution and inspects plants by applying the tar-

geting rule (1.) to this signal, yielding a pollution reading from the inspection.

2. Penalty stage.

1. The regulator acts as a regulatory machine, following exogenous rules for follow-up and

punishment based on pollution measured in inspections and plant actions;

2. Plants face a single-agent dynamic problem: they play against the regulatory machine, and
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decide when to comply versus risk future penalties.

The model thus encompasses both the targeting of inspections, which our experiment changed,

and the penalties from high pollution readings, which it did not. To accord with the experiment,

we simplify the regulator’s behavior in the penalty stage by estimating a regulatory machine pol-

icy function that maps states to action probabilities. The estimates and targeting counterfactuals

therefore take the penalty stage policy as given.

IV.A. Targeting Stage

IV.A.1. Targeting stage actions

Plant j has a latent level of pollution in period m of

log P̃jm = φ0 + φ1Xj + u1j + u2jm, (1)

where Xj are observable plant characteristics, u1j is a pollution shock known to both the plant

and the regulator, and u2jm is a pollution shock known only to the plant, which varies over

time. We assume both pollution shocks are normal with u1j ∼ N (0, σ21) and u2jm ∼ N (0, σ22).

The higher the share of the residual variance in pollution that is due to σ1, the better the

information of the regulator. At the extreme, if σ2 = 0, the regulator has perfect information

and observes pollution at each plant; this would be the case if the regulator had access to a

perfectly functioning monitoring technology.

The regulator sets a targeting rule I(u1j |Xj , Tj , θT ) that assigns an annual number of initial,

routine inspections as a function of pollution shock u1j , given plant characteristics, treatment

status and targeting parameters θT . The regulator sets the rule first and then observes u1j to

assign inspections.

Plants know I(·|·), their characteristics, treatment status and pollution shocks and can there-

fore calculate how often they will be inspected. Plants also know their cost of abatement op-

erations and maintenance cj , where log cj ∼ N (µc, σ
2
c ). The cost and pollution shocks are mu-

tually independent, cj ⊥ u1j ⊥ u2jm ⊥ u2j,m+1. Plants use this information to decide whether

to Run their existing abatement equipment, which action is not observed by the regulator.18

Running abatement equipment reduces pollution proportionally to its latent level, such that
18Plants must install pollution control devices, depending on their sector and emissions potential, as a condition

of opening.
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logPjm = log P̃jm + φ2Run, where φ2 < 0. The functional form assumption that abatement is

proportional to pollution provides the regulator one incentive to target highly polluting plants.

We cannot directly test this assumption, although it seems to be realistic for many production

processes: for example, air pollution control equipment removes a fraction of pollution emissions

that are sent up a plant’s chimney.19

IV.A.2. Targeting stage payoffs and equilibrium

An equilibrium in the targeting stage consists of an abatement rule for the plant that mini-

mizes the cost of regulation and a targeting function for the regulator that minimizes pollution,

given the signal of pollution it observes.

The cost of regulation for plants in the targeting stage is summarized by a penalty value

function V0(Pjm), which gives the money value to the plant of an initial inspection (hence sub-

script 0) that finds pollution reading Pjm. We derive this function in Section V.A., below, as the

expected discounted value to the plant of all regulatory actions in the penalty stage, including

follow-up inspections, penalties and possibly bribes.

A plant anticipating Ij initial inspections will run its equipment if the reduction in expected

penalties, from lower pollution at each initial inspection, exceeds its cost of maintenance

Run∗ = 1
{
Ij(V0(Pjm)− V0(P̃jm)) > cj

}
. (2)

We expect that the value V0(·) will be decreasing in pollution, becoming more negative, so that,

for a plant that Runs its equipment, φ2 < 0⇒ Pjm < P̃jm ⇒ V0(Pjm)− V0(P̃jm) > 0. That is,

for a sufficiently small cost of maintenance, running abatement equipment will be worthwhile,

since it will reduce expected penalties in the penalty stage that follows an initial inspection.

The objective of the regulator is to set an inspection rule that maximizes total abatement (i.e.,

minimizes total pollution). Targeting depends on endogenous parameters λ ∈ θT and additional
19Air pollution control devices like filters, electrostatic precipitators, cyclones and scrubbers are commonly

installed in industrial plants in both India and developed countries. The US EPA rates such equipment by the
fraction of a pollutant it removes and reports efficacies of 90% for cyclones, 95-99% for bag filters and 99% for
scrubbers under their intended operating conditions (Environmental Protection Agency, 2012). As part of another
project we physically measured the efficacy of air pollution control devices for a small number of plants in Surat,
Gujarat, one of the areas in this paper’s sample, by comparing pollution concentrations before and after control
devices within the same plant’s exhaust system. We found efficacies of 76% for cyclones and bag filters, somewhat
worse than the EPA ideal.

18



exogenous parameters β, ρ ∈ θT . The optimal targeting parameter vector λ∗ solves

λ∗ ∈ arg max
λ

∑
j=1,...,N

∫ ∫
F
(
I(u1j |Xj , Tj , λ, β, ρ)(V0(Pjm)− V0(P̃jm))

)
×P̃jm(1− eφ2)dF (U2)dF (U1) (3)

such that∑
j=1,...,N

∫
I(u1j |Xj , Tj , λ, β, ρ)dF (U1) = N · I. (4)

The integrand of the objective (3) is the product of the probability of plant abatement and

the quantity of abatement a plant achieves by choosing to Run its equipment. This plant-level

expected abatement is integrated over the distributions of the two parts of pollution, which the

regulator observes after setting the targeting rule (u1j) or does not observe (u2jm), and summed

over plants j = 1, . . . , N to yield total abatement.20

The regulator’s budget constraint (4) is that total inspections under the chosen targeting

rule must be equal to the total inspection budget in expectation (i.e., the product of the number

of plants and the average inspection rate, I, per plant). While the targeting rule depends on

a stochastic shock, we treat the budget constraint as exactly binding, since the regulator sets

the rule before observing the u1j , the observed pollution shocks are independent and there are a

large number of plants N . The regulator can therefore work out how many inspections a given

rule will yield in expectation and this expectation will be very nearly right.

For our estimation and counterfactuals we impose a probit link form for the targeting rule:

I(u1j |Xj , Tj , λ, β, ρ) = λ2Φ

(
λ1 +X ′jβ1 + T ′jβ2 + u1

ρ

)
, (5)

where Φ is the normal cumulative distribution function. The parameters λ1, λ2, β and ρ deter-

mine the shape of the targeting rule: λ2 sets the maximum number of inspections, λ1 shifts the

share of plants that will have inspections near, or far below, the maximum, β is the coefficient

vector on plant observables, and ρ scales the argument of the targeting function. Loosely, a high

λ2 and a very negative λ1 will concentrate inspections aggressively in the plants observed to be

dirtiest. This functional form is restrictive: unconstrained, the regulator may not have chosen
20This objective function does not ascribe value to the penalty phase for the regulator. In particular, it does

not account for the fact that, by targeting a more polluting plant, the regulator, in the penalty stage, could better
compel them to install abatement equipment, providing a direct benefit of lower future pollution. We neglect this
outcome in the targeting stage because (a) most plants have unused abatement equipment, so the installation of
more equipment, on its own, is unlikely to reduce pollution (b) the cost of maintenance is far below the cost of new
equipment, so the maintenance margin is a more likely channel for plant deterrence. We believe that mandated
equipment installation is mainly a way to punish plants and of low marginal environmental value.
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from the probit family. We specify this form for two reasons. First, because it parsimoniously

fits a range of interesting targeting rules (See Appendix B for Monte Carlo simulations). Second,

it greatly reduces the dimensionality of estimation, relative to a non-parametric targeting rule,

and thereby makes it possible to constrain estimates by imposing the optimality of targeting.

IV.B. Penalty Stage

The targeting stage takes as given the value function V0(Pjm) of an initial inspection con-

ditional on pollution. To estimate this value function in the penalty stage, we model a plant’s

optimal compliance behavior after an initial inspection as a dynamic discrete choice problem,

assuming that the plant’s objective remains to minimize the overall cost of regulation.

The penalty stage starts with round 1, when an initial inspection takes place, and in sub-

sequent rounds t = 2, 3, . . . the plant j and the regulatory machine R alternate moves. In all

even rounds, the plant may Comply or Ignore the regulatory machine, where Comply requires

a plant to pay a constant amount to install abatement equipment. In any odd round after the

first, the regulatory machine has four actions aRt: Inspect, Warn, Punish or Accept, which

correspond to categorized regulatory data (Section II.C.).

Figure 3 shows these actions and their within-round payoffs for the plant. The plant’s payoff

for inspection includes any disruptions and bribes paid during the inspection. The payoff for

punishment is the cost associated with temporary closure and any remediation. Thus, the plant

seeks to minimize regulatory costs by choosing between a known abatement cost and the value of

continuing the stage, possibly facing greater costs if the regulatory machine chooses to Inspect

or Punish. Each chain of interactions between the plant and the regulatory machine is treated

as independent.21 We assume that the plant knows the regulatory machine’s action probabilities

in each possible future state.
21Specifically, we assume that u2j,m+1 is independent of u1j and u2jm. The regulator observes u1j , but condi-

tional on this, does not, for example, use past penalty stage readings to determine targeting. The data broadly
supports this assumption: the average time between chains, about five months, is much larger than the average
time between actions within a chain, two weeks. Further, recent pollution readings do not change regulatory
targeting of inspections (Appendix Table A10, column 4). Lastly, the regulator has a short memory; 93% of the
time when an action cites a prior inspection it is the most recent prior inspection.
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IV.C. Simulations of Optimal Inspection Targeting

How much should the regulator concentrate inspections among the plants with high observed

pollution shocks? Since the plant’s value of the penalty stage decreases (i.e., becomes more

negative) with pollution, the regulator can induce more abatement by allocating inspections

to plants with high pollution and therefore high expected penalties. This argument favors a

steep targeting function that concentrates inspections on heavily polluting plants. Moreover,

plant reductions in pollution are proportional to the pollution level, so allocating inspections to

higher-polluting plants yields higher abatement when those plants do abate. In favor of a flatter

targeting function, however, abatement also depends on the cost of running the equipment. If

the regulator targets all inspections to a few plants that it expects are highly polluting, it may

miss some easy targets with low running costs.

Appendix B reports Monte Carlo simulations that illustrate how changes in the shape of the

penalty function and regulatory information affect the choice of targeting rule, for one param-

eterization of the model. The simulations show that the results of this trade-off vary with the

regulator’s information (See Appendix Figure B2 for greater detail). If the regulator is poorly

informed, it is better to concentrate inspections in the plants with the highest observable pollu-

tion shocks. If the pollution signal is imprecise, then the regulator targets large outliers, that it

is confident will be polluted enough to abate when fearing inspection. If the regulator observes

a larger fraction of the variance in pollution, the optimal targeting function is flatter. In this

case the regulator is confident that plants observed to be moderately polluting may also abate

if inspected and so spreads inspections around, to catch plants with not only high pollution but

also low abatement costs.

V Estimation

The model is estimated moving backwards. First, we use backward induction within the

penalty stage. Our penalty estimation pools treatment and control plants since, as we discussed,

the regulator applies the same penalty rules for all plants. Next, we use the estimated value

function from the penalty stage to obtain targeting stage parameters.
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V.A. Maximum Likelihood for Penalty Stage

Building the likelihood for plant actions requires several preliminary steps. (1) We specify

the common state of the game as comprised of the pollution reading, the last two actions of

the regulator and plant and the game round. (2) We estimate state transition probabilities

using a count estimator. (3) We estimate a multinomial logit model of action probabilities

for the regulatory machine, conditional on the state. These steps are described in detail in

Appendix IV.B. Here we focus on the specification of penalties and the value of regulation,

taking the states, state transitions and regulatory policy as given.

The plant payoff if it complies by installing abatement equipment is −k. We assume all plants

have a cost for installing abatement capital equal to the average value of abatement capital costs

observed in our sample, k = $17,000.

The plant payoff, if the regulator chooses Punish, takes one of two specifications: a constant,

h(pjt) = −τ0, or a function of pollution

h(pjt) = −τ11{p < pjt < 2p} − τ21{2p ≤ pjt < 5p} − τ31{5p ≤ pjt},

where p is the legally mandated pollution threshold. This functional form allows the regulatory

machine to punish high polluters with a higher probability and possibly different penalties.

In some specifications plants also have direct costs of inspections b(pjt, aj−) = (1− 1{aj− =

Comply})× (ν11{p < pjt < 2p}+ ν21{2p ≤ pjt < 5p}+ ν31{5p ≤ pjt}) . This function specifies

that inspections are costless for plants that have recently complied but, for plants that have not,

inspections have a cost that depends on pollution emissions. The form is meant to capture the

idea that recent compliance may excuse the plant from offering bribes or other disruptions.

Using these preliminaries we build the plant’s action probabilities. The choice-specific utility

of taking action ajt for within-round payoff πj(ajt|st) is

vj(ajt|st) = πj(ajt|st) + ej(ajt|st) + δ
∑
st+1

f(st+1|ajt, st)
∑
aR,t+1

Pr(aR,t+1|st+1)×πj(aR,t+1|st+1) + δ
∑
st+2

f(st+2|aR,t+1, st+1)V (st+2)

 (6)

We specify shocks ej(ajt|st) to the utility of each action that are distributed identically and

independently across actions with a type-I extreme value distribution of unknown variance,

generating closed-form solutions for action probabilities (Rust, 1987). The plant discounts the
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value of future rounds by δ. The transition f(st+2|st+1), from the plant’s point of view, contains

both the machine’s action and any other change in the state before the plant moves again. We

assume that the machine’s action probabilities Pr(aR,t+1|st+1) and state transition probabilities

f(·|·) are stable and known to the plant.

The plant’s optimal action in the penalty stage maximizes its expected discounted value at

each state. The value of the state is the value of this best action Vj(st) = maxa∈AP
vj(ajt|st). In

determining its move now, the plant takes into account current payoffs and the value of future

states that are likely to follow. We use backward induction to solve for the values of each state

for the plant, conditional on a given set of penalty- and inspection-cost vectors θP = {τ, ν}.

Identifying the model parameters requires two known payoffs and a discount factor (Rust,

1994; Magnac and Thesmar, 2002). For the first payoff, we assume a zero payoff from Ignore for

the plant. For the second, we assume the penalty function equals zero for states when plants’

pollution reading is absent or below the standard. Given these two assumptions, the variance

of the plant action shock σa is then a free, estimable parameter. We use a discount factor of

δ = 0.991 between rounds, which has been calibrated, given the average round duration, to

match the annual returns on capital for Indian firms found by Banerjee and Duflo (2014).

The likelihood over chains n and rounds t is

L(θP ) =
∏
n

t=Tjn∏
t=1

Pr(ajnt|sjnt, θP ).

We use a gradient-based search with numerical derivatives to find parameters that maximize the

probability of plant actions that are observed in the data. Given the estimated parameters θ̂P ,

we use backwards induction to calculate the value of the penalty stage V0(·) for each level of

pollution at the time of an initial inspection.

V.B. Generalized Method of Moments for Targeting Stage

In the targeting stage, the regulator sets a rule for how to inspect plants. Plants, anticipating

the value of pollution that each inspection will yield and associated penalties, decide whether

to Run their abatement equipment. The Run decision is endogenous to plant pollution shocks

u1j and u2jm, both not observed by the econometrician. Taken together, the targeting stage is

characterized by a system of equations for inspections, pollution and the Run decision. We use

the generalized method of moments for estimation with both analytic and simulated moments.
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V.B.1. Targeting Stage Estimation Moments

The parameters to be estimated are θT = {φ, β, λ1, λ2, µc, σ1, σ2}, where φ are the parameters

of the pollution equation (1), β and λ govern inspection targeting (5), µc is the mean of the log

abatement maintenance cost, and σ1, σ2 give the standard deviations of pollution shocks, which

are known to both the plant and regulator (u1) or the plant only (u2), respectively.

We additionally fix the values of two model parameters outside of the estimation: the variance

of the maintenance cost shock σc and an inspection targeting parameter ρ. While in principle

identified, we found that estimating these parameters along with θT in our sample yielded esti-

mates too imprecise to be usable. Below, we discuss why this is the case and how our estimates

vary over a range of assumed values for these two parameters.

We observe Nj , Xj , Tj , Pj and cj × Run in the data and estimate V̂0(pj) from the penalty

stage, as described above. The estimation moments are chosen to match features of the pollution

and inspection distributions, in particular the interactions of treatment with inspections and

residual pollution. Appendix C.2 derives the moment conditions and a sensitivity analysis in

Section VI.B.2. discusses the contribution of different moments to identification.

A first set of moments is based on the error in the pollution equation, which is orthogonal to

treatment assignment in the model. Letting Zj = [1Xj Tj ] where Tj is the treatment assignment,

g1(φ) = Z ′j(logPj − φ0 − φ1Xj − φ2Run),

A second set of moments is based on expected inspections and inspections squared

g2(λ, β) = 1′(E[I(u1j |Xj , Tj , λ, β, ρ)]− Ij)

g3(λ, β) = 1′(E[I2(u1j |Xj , Tj , λ, β, ρ)]− I2j ).

where the expectation is calculated analytically, in the model, based on the targeting function (5)

and the distribution of u1 shocks. Expected squared inspections are meant to capture regulatory

information because dispersion in inspections, conditional on observables, reflects targeting on

unobserved (to the econometrician) pollution shocks.

A third set of moments is based on the probability of running abatement equipment and the

mean cost conditional on running. These moments are intended to target µc, the mean of the

unconditional maintenance cost distribution, and φ2, the efficacy of abatement.

Fourth and last, we form moments based on the variance of pollution shocks and their co-
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variance with inspections. In the model, if the regulator observes a higher fraction of pollution

variance, then inspections will have a higher covariance with residual pollution.

We fix σc and ρ outside the estimation. For σc, higher-order moments of the truncated cost

distribution could in principle provide identification. In practice, these estimates are imprecise

and sensitive to the choice of higher-order moments. With only around ten percent of plants

choosing Run, it is difficult to use the observed, truncated costs to infer the shape of the un-

conditional maintenance cost distribution. Therefore, we set σc = 0.5, as this is in roughly the

mid-point of the estimates we obtained by using different higher-order moments (albeit with

large standard errors). We set the parameter ρ = 0.25 standard deviations of observed pollu-

tion. This parameter operates almost like a scaling factor in the targeting function argument.22

Changes in the freely estimated targeting parameters, β and λ, can therefore closely replicate the

effects of varying ρ on the inspection distribution in the model (See Appendix D). Section VI.B.2.

considers the robustness of the targeting stage estimates to these assumptions.

V.B.2. Imposing the Constraint of Optimal Targeting

Optimal targeting is defined by maximizing abatement (3) subject to the inspection budget

constraint (4). To impose optimality in the regulator’s choice of targeting parameters λ, we

require that the first-order conditions of the Lagrangian of the regulator’s problem hold (see

Appendix C.3 for the derivation). Under the assumed targeting functional form, the three first-

order conditions impose two independent non-linear constraints. These conditions state that

the marginal reduction in pollution from increasing either targeting parameter must equal the

contribution of that parameter to the inspection budget. In addition, the parameters of an

optimal rule must satisfy the inspection budget.

V.B.3. Targeting Stage Objective Function

We stack the moments to form g(θT ) = [g′1 g
′
2 . . . g

′
7] and minimize gWg′ as a function of θT to

estimate the parameter vector θ̂T . In constrained estimation, we conduct this minimization sub-

ject to the optimal targeting constraints. We update the weighting matrix W to form a two-step
22The parameter ρ is not purely a scaling factor because u1 appears outside the targeting argument, with known

units of pollution, though it is not observed by the econometrician. However, estimation runs with free ρ did not
reliably converge.
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optimal estimator. Standard errors are calculated to account for the non-linear constraints and

their correlation with the moments (Newey and McFadden, 1994), and adjusting for simulation

bias, which is negligible with S = 5, 000.

VI Structural Estimates of Regulatory Costs and Targeting

VI.A. Penalty stage

VI.A.1. Plant and regulatory choice probabilities in the penalty stage

Table 4 presents estimates of multinomial logit coefficients for the conditional action proba-

bilities, for both the regulatory machine and plants. The machine is much more likely to punish

when pollution is high (Columns 1 to 3). Past actions matter for current actions. The machine

is less likely to Warn or Punish if it has warned before. It is also less likely to Punish if the

plant has Complied before. Plant compliance drops the likelihood of any inside action, which

would continue the penalty stage, and raises the probability that the machine Accepts to end the

stage and the imminent threat of punishment. These estimates support the trade-off between

compliance and future penalties for plants with high pollution that underlies the model.

VI.A.2. Revealed Preference Penalty Estimates

Table 5 presents the dynamic estimates for the penalty function. These estimates put a

monetary value on mandated plant closings, utility disconnections, and other penalties that

would not be estimable without the structural model.

In columns (1) and (2), we assume that Inspect does not entail any costs for the plant so that

Punish is the only regulatory action that is costly. In column (1) we see that when punishment

cost is constant, it costs a plant $54,000 (standard error $25,000; we round off penalty estimates).

In column (2) we allow the cost to vary with pollution. We cannot reject that the penalty function

is flat with respect to pollution (above the threshold), with estimates ranging from $40,000, when

observed pollution is slightly above (1-2p) the standard, to $54,000 (2-5p) for higher levels.

Columns (3) and (4) consider the case where both Punish and Inspect are assumed to be

costly to plants. We call this the case “with bribes” for short, though inspections may impose

other costs like disruptions to plant operations. Relative to column (1), the estimated cost of
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punishment in column (3) declines to $28,000 (standard error $21,000) with a per inspection

cost of $10,000 (standard error $3,000). Inspections are less costly than punishments, but more

frequent; reflecting this, the estimated cost of inspection is lower than that of punishment and

a lower cost of punishment is needed to rationalize plant compliance behavior when inspections

are also costly. In column (4), we allow the cost of inspections to vary by pollution reading. We

find, again, that inspections cost plants perhaps one-third or less of the value of punishment,

and that the cost of inspections does not significantly vary with pollution.

Does the scale of estimated penalties and inspection costs make sense? We compare the

estimates to abatement costs and plant profits as benchmarks. The highest penalties estimated

for punishment are over three times the average equipment capital cost. This ratio of penalties to

costs is reasonable given that penalties must meet, or exceed, costs required to induce abatement,

and that penalties occur infrequently, even for violating plants.23 On profits, mean plant annual

sales in our endline survey are $2.9 million. The typical penalty for severe pollution is plant

closure, with a median duration of 24.5 days. For each 10 percentage point profit margin for

plants, and assuming profit is proportional to closure (i.e., no substitution across periods), this

duration of closure implies a loss in profits of $20,000. Variable profit margins would then have

to be in the range of 20-30% to match the column (1) model estimates, which is arguably on the

higher side, but not unreasonable.

VI.A.3. The Value of Environmental Regulation to Plants

The value of the penalty stage to a plant summarizes all costs of environmental regulation.

Figure 4 shows this value, at a variety of states, as calculated through backward induction given

the estimated costs of regulatory penalties from Table 5, column (2). At each state, values are

divided between expected discounted future abatement costs (light grey) and expected discounted

future regulatory penalties (dark grey). The figure shows three different dimensions of the state:

the time dimension is shown across panels, the pollution dimension is shown across clusters of

bars within a panel, and the dimension of regulatory action across bars within a cluster.

States late in the penalty stage, when the machine is more likely to punish the plant, have

sharply lower valuations for plants. Panel A shows the plant value at t = 6. The value to the
23A plant with an extremely high pollution reading has a 1/3 chance of punishment implying an expected value

of penalties (= 1/3× $54, 000) that is about equal to the average abatement capital cost ($17,000).
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plant is sharply decreasing in pollution, for readings above the standard, reflecting the higher

risk of punishment, costly plant compliance and continuation of the penalty stage associated

with high pollution. The share of value due to penalties is also increasing in pollution.

Panel B shows the expected discounted value for the plant when it can first act (t = 2). The

value is shown for only the machine’s lagged action Inspect, which, by construction, is the only

action that the machine can take in t = 1. The values are much less negative than in t = 6, since

the probabilities of punishment, compliance and continuation are all sharply lower in the early

going. There remains a steep gradient of penalties in pollution: the value ranges from negative

$1,160, if the machine did not take a pollution reading, down to negative $6,240 if the inspection

found a pollution reading more than five times the standard, a more than five-fold difference.

The share of the expected value due to penalties is also increasing.

Overall, using the distribution of pollution on first inspection, the expected discounted value

of regulation on first inspection is -$2,131, of which 40% is expected future penalties and 60%

expected future abatement capital expenditures. Thus, a measure of regulatory costs that does

not account for the monetary value of penalties would be greatly understated, and differentially

understated for more polluting plants.

Using these expected discounted values, at discrete levels of pollution, we form the value of

an initial inspection to the plant as a function of any level of pollution, V0(p). To approximate

values for all pollution levels, we fit a piecewise-cubic Hermite interpolating polynomial function

to the discrete Figure 4, Panel B bars, to obtain a smooth V̂0(p) (Appendix Figure B1 plots

the resulting function). The resulting value function determines plant incentives for preemptory

abatement in the targeting stage.

VI.B. Targeting stage

We now turn to the targeting stage, which includes the pollution equation (1), the target-

ing function (5) and the distributions of pollution and cost shocks. Plants’ decisions to Run

abatement equipment (2) link pollution to inspection policy.
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VI.B.1. Estimates

Columns 1 and 2 of Table 6 presents coefficient estimates where regulatory targeting is

constrained to be optimal, conditional on the other parameter estimates. Columns 3 and 4 present

unconstrained estimates. For each column pair, Panel A gives estimates of select parameters

β, the effects of observables on targeting, in the inspection equation, and φ, the efficacy of

abatement, in the pollution equation. Panel B gives estimates of targeting parameters λ and

distributional parameters.

Panel A, column 1, replicates the reduced-form finding that treatment plants receive signifi-

cantly more inspections. To put coefficient estimates in terms of inspections, we need to calculate

marginal effects, which equate to about two inspections per year depending on the values of other

plant covariates. In column 2, plants that run their abatement equipment are estimated to re-

duce pollution by -1.90 (standard error 0.16) logged standardized pollution points. A coefficient

in logs of -1.90 is equivalent to an 85% reduction in pollution, which is similar to estimates of

the efficacy of air pollution control equipment.

The estimates of the pollution shock distributions, in Panel B, suggest that the regulator

observes only a small part of plant pollution, but uses this information to target plants with higher

pollution signals. The standard deviation of the unobserved pollution shock is 1.03 (standard

error 0.047) logged pollution points, as compared to 0.069 (0.003) for the observed component of

pollution. Thus, while less than 1% of the variance of pollution (= σ21/(σ
2
1 + σ22)) is observable,

the regulator targets aggressively. The maximum inspection coefficient λ̂2 = 33 and the shift

parameter is λ̂1 = −0.395. These parameters imply large differences in inspections across plants

for which the regulator observes different shocks, despite the fact that this observation is only

a small part of overall pollution. For example, an audit-eligible, inspection control plant in

Ahmedabad would expect to receive 0.56 inspections, with a shock at the 5th percentile of the

observable part of pollution, and 3.48 inspections with a 95th-percentile shock.

In columns 3 and 4, we remove the optimal targeting constraints, and a few changes in

the model estimates are notable. First, the inspection targeting parameters decline: λ̂2 falls

from 33 to 10 and λ̂1 becomes less negative (-0.22, standard error 0.066, versus -0.395, standard

error 0.003). Thus, targeting is slightly less aggressive in concentrating inspections in the dirtiest

plants. At the same time, the share of the variance in pollution that is observable to the regulator
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increases substantially and consequently more variation in inspections is attributed to observable

variance in pollution. Finally, the estimated effect of running equipment on abatement is smaller,

-0.71 (0.308) log points instead of -1.90 (0.16). Thus optimal targeting, which is very aggressive,

is justified, in the constrained model, if the amount of abatement achieved by running equipment

is large. Otherwise, plants that are high-inspection but also high-cost will not abate, and the

regulator does better spreading inspections around.

Given that optimal targeting is so aggressive, is it reasonable to assume that the regulator

is targeting optimally? In Table 6, Panel C we report a distance metric test for the two inde-

pendent constraints in the system. Under the null that the constraints are valid, the product

of the sample size and the difference in the minimized value of the criterion for the constrained

and unconstrained estimators is distributed χ2
2 (Newey and McFadden, 1994). We reject the

constrained estimates (p-value = 0.0003), implying that the regulator’s targeting parameters

(λ1, λ2) are not set optimally given the other parameters. However, Section VI.B.3. argues that

the fit of the constrained model is still quite good.

VI.B.2. Sensitivity Analysis and Robustness Checks

To develop intuition for how features of our data affect parameter estimates, we use the

measure introduced by Andrews et al. (2017) to provide a sensitivity analysis. This sensitivity

measures how a parameter estimate would change, at the margin, given a change in one moment,

holding fixed all other moments underlying the estimation. Since our structural estimates rely on

experimental variation, this method is appealing to build intuition for how the estimates would

change if the experimental results had been different.

Figure 5 reports the sensitivity of select parameter estimates (across panels) to select moments

(row headers within panel). The length of each bar is the increase (solid bar) or decrease (hollow

bar) in each parameter that would result from increasing the row moment by one standard

deviation, ceteris paribus. Appendix D reports the full sensitivity matrix of parameters with

respect to moments; here we highlight the sensitivity of targeting parameters λ, regulatory

information σ21/(σ21 +σ22) and abatement efficacy φ2 to the experimental variation. All inspection

moments refer to initial inspections and not follow-ups.

The differences in inspection moments between the treatment and control groups play a
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key role in estimating the targeting equation parameters. The targeting parameter λ2 is most

sensitive, amongst all moments, to the mean products of the treatment with inspections and

inspections squared (Figure 5, Panels λ1 and λ2; see also Appendix Table D15). These sensitiv-

ities imply that if the observed mean inspections of treated plants increased by one inspection

per year, from 2.93 to 3.93, with a corresponding increase in squared inspections, the estimated

maximal inspections parameter would rise from λ̂2 = 10.06 to λ̂2 = 26.23 and λ1 would decline

from λ̂1 = −0.22 to λ̂1 = −0.58, showing more aggressive targeting in the status quo. Plainly,

if the treatment increased initial inspections a lot, beyond the control level, it must have been

because the targeting function was steep.

The share of pollution variance observed by the regulator (hereafter, information) is sensitive

to the dispersion of inspections (mean inspections squared, conditional on mean inspections)

and the interaction of inspections with treatment (Figure 5, Panel σ21/(σ21 + σ22)). For example,

a one standard deviation increase in mean inspections squared, from 7.53 to 17.12, conditional

on mean inspections, would increase the estimated observable share of the pollution shock by

approximately 0.31 on a small base of 0.02. As information improves, the regulator inspects plants

more on the basis of pollution shocks observable to the regulator, but not the econometrician,

increasing dispersion in inspections. Information is also increasing in the covariance between

pollution and inspections because, in the model, if the regulator is more informed, it will assign

more inspections to plants with high pollution.

The efficacy of pollution abatement φ̂2 is sensitive to both pollution and cost moments. We

find that φ̂2 is increasing in the pollution residual in the treatment. If treatment pollution were

higher by one standard deviation, then φ̂2 would increase from −0.71 to −0.51 (Figure 5, Panel

φ2, moment Pollution Resid.×T ), indicating a decline in abatement efficacy. The interpretation

is that if the treatment had reduced pollution less than observed, conditional on abatement

decisions, the model would infer that abatement was less effective. The efficacy of abatement

depends not just on the pollution equation, as it would in a single-equation model, but also,

with a high sensitivity, on the cost of maintenance. If the mean maintenance cost conditional

on running increased by $100, the φ̂2 coefficient would increase from −0.71 to −0.53 (Panel φ2,

moment E[cj |Run]).

Finally, we have fixed values for two parameters, σc and ρ, and here we check the robustness of
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our estimates to these assumptions. Appendix D shows estimates of the unconstrained targeting

model for different values of σc and ρ. Changing the value of σc has very little impact on

estimation of the targeting parameters. It has a larger effect on the estimated effect of abatement:

moving from σc = 0.25 to σc = 1.00 increases the estimated φ̂2 from −0.60 to −1.07. Both the

lowest and highest estimate are within one standard deviation of the estimate we report for

σc = 0.50. Changing the value of ρ changes the estimated β and λ vectors in the targeting

function. The changes in β are roughly, but not exactly, proportional to changes in ρ, since ρ

scales the argument of the targeting function. Because the parameters β and λ that are estimated

adjust to offset changes in ρ, varying ρ does not have a large effect on the fit of the model to the

inspection moments (Appendix Table D13).

VI.B.3. Model fit

There are several ways to assess the model’s fit. Figure 6 compares the optimal targeting

function with the unconstrained targeting function. The x-axis reports the observed component

of pollution in standard deviations and the tick marks above the axis show the distribution of the

observed component of pollution.24 The y-axis reports the number of inspections for a control

plant with the average value of X ′j β̂, thus the figure shows the effect of the observable component

of pollution on the number of inspections. The unconstrained targeting function is depicted with

the solid black line and the dashed line represents the constrained optimal targeting function with

current information. It is striking that the unconstrained and constrained targeting functions

lie nearly atop one another throughout most of the distribution of the observed component of

pollution; the exception is that the optimal function allocates more inspections to the plants

with the highest observed pollution shocks. So although we statistically reject the constraints

that require targeting be optimal, the constrained estimates fit the data well, as they describe

a targeting rule that is very similar to the one derived from the unconstrained estimates. As a

basis of comparison, the full information optimal targeting function is shown as the dotted line.

For the estimated parameters, full information would lead the regulator to target somewhat more

aggressively at plants with observed pollution shocks above the median.

To get a sense of the model fit, it helps to compare the distributions of inspections and
24Because the estimated σ̂1 differs between the constrained and unconstrained estimates, each is plotted in

different units, corresponding to the standard deviation of observed pollution in that set of estimates.
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pollution in the data to those generated by the model. We generate data using the estimated

model parameters and a single simulation draw of the three model shocks. Figure 7, Panels

C and D show the modeled distributions of inspections in the control and treatment groups,

respectively, and can be compared to the true distribution in Panels A and B. The model and

data distributions of inspections in the control are nearly identical, and show a similar truncation

of the distribution at low levels. The treatment distribution in the model shows an upward shift

in the mass of inspections and fits well, though the distribution of treatment inspections in the

model is somewhat more skewed than in the data. Figure 7 shows the distribution of pollution

in the data (Panel E) and the model (Panel F). The model was fit only to moments based

on the mean and variance of pollution, but the fit throughout the distribution is good, with a

similar modal value, in [0.5p, p], and right-skewness. Overall, we conclude that our distributional

assumptions provide parsimonious fits to the inspection and pollution data.

A more stringent test of the constrained model fit is the extent to which it matches the

observed treatment effect on pollution compliance. Recall, from Figure 1, Panel A, that the ex-

perimental estimates show a narrow response to the treatment, with larger increases in pollution

readings below the regulatory standard and decreases in readings spread out above the standard.

Figure 1, Panel B reports coefficients from the same set of regressions for pollution bin dummies

on treatment in the model-generated data, where the input data are plant characteristics, treat-

ment assignments and draws from the distributions of pollution and cost shocks. It is striking

that the model and the experimental results produce a similar pattern of abatement: the largest

estimated increase in mass is beneath the regulatory standard, and the largest decrease in mass

is just above, with only modest decreases in mass in the higher parts of the pollution distribu-

tion. At the same time, the fit is not perfect, as the model predicts a large increase in mass in

the treatment that lies further beneath the regulatory standard than is seen in the data. This

suggests that treated plants are able to control pollution down to the standard, but no more,

whereas in the model abatement is assumed to be a discrete action and so may undershoot the

standard. Nonetheless, the fit of the predicted and actual responses to treatment appears good.
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VII Counterfactual Inspection Targeting

The value of the full structural estimation of the model is that it allows us to predict the

effect of alternative policies that we did not experimentally evaluate. We use the model estimates

to evaluate counterfactuals on optimal inspection targeting and pollution abatement that vary

in regulatory budgets, discretion and information.

The basic framework is the regulator’s problem of maximizing abatement (3) subject to the

budget constraint (4). We take as given regulatory penalties and thus the outcome of the penalty

stage, and examine the effect of cross-sectional changes in targeting on plants’ abatement deci-

sions. We consider these medium-run counterfactuals, matched to the horizon of the experiment,

since they change inspection targeting but neither the penalty function nor the abatement capi-

tal available to plants. If the targeting policies were changed permanently, the penalty function

might be adjusted in response.

Within this framework, we consider several targeting regimes. Within each regime, we vary

the budget constraint I and measure the reduction in pollution achieved. The first regime is a

uniform targeting rule that gives every plant the same number of inspections, regardless of the

observed pollution shock. This regime requires no information on pollution. Second, a targeting

regime with discretion, where the regulator solves (3), but where the regulator has only the sparse

information in observed pollution. Third, a targeting regime with discretion where the regulator

has full information. This regime is not feasible, with currently installed technology, but would

be feasible with the installation of continuous emissions monitoring systems like those used in

other countries for some pollutants (e.g., sulfur dioxide and nitrogen oxides in the United States).

Fourth, a hybrid regime, like in the experimental treatment, where an initial 1.47 inspections

(the control mean) are allocated with discretion, and additional inspections beyond that are

allocated uniformly across plants.

Figure 8 traces out the abatement achieved by the alternative targeting regimes. Each line

shows the total pollution abatement in units of the regulatory standard, relative to the latent

pollution level P̃ , (vertical axis) as a function of the total inspection budget per plant per year

(horizontal axis) under a different regime. The dashed-and-dotted (blue) line shows abatement

under the uniform rule that requires all plants to be inspected the same number of times. The

solid (red) line shows abatement under the optimal targeting rule where targeting is based on
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observed pollution only. The dashed (black) line shows abatement under the optimal targeting

rule where the regulator is assumed to observe all variation in pollution. The horizontal range

of the figure extends from zero inspections per plant per year to four, which is the prescribed

regulatory minimum for large-scale, high-polluting plants.

There are several notable findings. First, a uniform inspection rule does very poorly at low

levels of the budget constraint. At one inspection per plant, the average abatement is negligible,

and at the observed control inspection level of about 1.5 annual inspections per plant (i.e., the

first vertical line), mean abatement is 0.06 standards. The reason for this poor performance is

that few plants have trivial maintenance costs, and so spreading inspections out over all plants

causes the regulator to be spread quite thin; the result is that plants, which know the targeting

rule, generally find the cost of pre-emptive abatement to exceed its benefit.

Second, at any given budget constraint, regulatory discretion increases the abatement the

regulator achieves. At the observed level of 1.5 annual inspections per plant in the control,

shown by the first vertical line, the total abatement is about three times greater (0.17 standards

vs. the prior 0.06) when the regulator allocates inspections with its information (red solid line),

as compared to a constant rule (blue dashed-and-dotted line). Put another way, to achieve the

same level of abatement with uniformly allocated inspections would require a budget of about 2.2

inspections per plant. The value of discretion using partial information is especially strong, in

relative terms, at low budget constraints, but tapers off as the uniform rule eventually allocates

enough inspections for expected penalties to cover the maintenance costs of many plants.

Third, our simulation of the treatment regime, combining discretionary inspections with

additional random inspections, shows a weakened marginal response to treatment inspections.

The treatment, adding roughly 1.5 additional uniform inspections per year, moves along the

dotted red line from the left-hand to the right-hand dotted vertical line, increasing average

abatement by 0.14 standards. The marginal effect on abatement of adding random inspections to

discretionary inspections allocated by the regulator, as was done in the experiment, is small. This

is because inframarginal plants, which were not targeted by the regulator, do not receive enough

random inspections to induce abatement. Had the inspections in the treatment been allocated

according to the regulator’s optimal rule, along the solid red line, we estimate abatement would

have been about 15% greater. In other words, doubling inspection while keeping the same level of
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discretion would have decrease pollution by 0.16 standard deviations. This increase in abatement

is equivalent to an arc elasticity of pollution with respect to additional discretionary inspections

of -0.27, relative to the control mean level of inspections and pollution.

Fourth, there is a substantial benefit to better information in a discretionary regime. The

dashed black line gives the share of plants abating under an optimal targeting regime where the

regulator observes all variation in pollution (σ2 = 0) as would be the case where the regulatory

has access to a perfectly functioning monitoring technology. The difference in abatement under

an optimal targeting regime with full (dashed black) versus estimated (solid red) information

is 30% of baseline abatement (on average across budgets), and the amount of abatement from

better information is increasing in the inspection budget (the gap between the black solid and

blue dashed lines increases). Full information in a discretionary regime, at the control budget,

is as valuable as doubling inspections in a non-discretionary regime. It is apparent that full

information allows the regulator to more precisely target its inspections and this substantially

increases abatement.

Full information can in principle be achieved by the use of continuous emissions monitoring

systems (CEMS), devices which report real-time pollution readings. The Indian Central Pollu-

tion Control Board has developed standards for Continuous Emissions Monitoring Systems for

particulate matter, the most severe air pollution problem in India, and has recently mandated

their use for hundreds of large factories around the country (Central Pollution Control Board,

2013, 2014). CEMS have much higher fixed costs but fairly low variable costs relative to in-

spections. We estimate CEMS monitoring of particulate matter in Gujarat today costs about

USD 1800 per plant-year, on an amortized basis, whereas a single in-person inspection with

air pollution sampling costs USD 70, including the costs of staff, travel and lab analysis. The

efficacy of CEMS as a substitute for in-person inspections will depend on the evolution of costs,

as devices are installed and used more widely, and whether a monitoring regime with CEMS

provides incentives for accurate data reporting, rather than only the installation of monitoring

devices.

These results help reconcile a number of facts about the effect of the inspection treatment and

the constraints on regulation. The inspection budget, given the present penalty structure, would

induce practically no abatement if inspections were allocated evenly across plants. Discretion has
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value because it allows the regulator to concentrate inspections in the plants with high observable

signals of pollution and this greatly increases abatement, even though half of plants are left alone.

This targeting would grow more valuable if information were improved.

VIII Conclusion

We conducted an experiment on environmental regulation of industrial plants in Gujarat,

India. The treatment bundled increased inspection resources with a removal of discretion over

which plants to inspect. The striking finding is that the treatment had little effect on plants’

pollution emissions.

We unbundle the experimental results with exhaustive data and a structural model. Our data

set on the regulatory process, pollution readings and penalties opens the black box of interactions

between the GPCB and regulated plants; we are not aware of a comparable data set from any

country on regulatory process and outcomes. We set out a structural model of the interactions

between the regulator and plants to separate the roles of resources and discretion in regulatory

enforcement. At the GPCB’s current level of inspections, we find that removing discretion would

be damaging: the inspections chosen by the regulator induce three times more abatement than

would the same number of randomly-assigned inspections. With respect to the experiment, the

abatement achieved by the intervention’s increase in inspection resources was somewhat undercut

by the removal in discretion in targeting the extra inspections.

The structural analysis also uncovered that poor information on plant emissions hinders

enforcement when the regulator has discretion. A technology that provided the regulator with

perfect information on plant emissions would increase total abatement by roughly thirty percent

at the status quo inspection rate, the same reduction as would be achieved by a one-third increase

in the inspection budget, if the added inspections were allocated with discretion. The importance

of reliable information in discretionary regimes has not been widely appreciated in the literature

or policy debates.

Our analysis underscores that strict environmental standards and high levels of pollution

co-exist as long as regulators have weak enforcement tools. The study contrasts three prominent

policy levers. First, the impact of adding resources alone is likely positive but, at least in settings

similar to Gujarat, modest. Second, reducing regulatory discretion can undercut enforcement,
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even in settings with weak institutions. This result on discretion stands in contrast to the

conventional wisdom in policy circles and the academic literature that removing discretion is the

best safeguard against corruption. Third, improved monitoring of plant emissions can strengthen

enforcement, as regulators have poor information on which plants are deserving of sanction. We

saw a similar result in our parallel study of environmental audits, which found that plants reduce

emissions when third-party auditors report their emissions to the regulator more truthfully (Duflo

et al., 2013). While achieving perfect information, with continuous emissions monitoring systems,

may be possible in principle, further research is needed to address whether these devices are in

fact a reliable and cost-effective substitute for in-person monitoring, in a setting with weak

institutional capacity.

Regulators and governments generally consider reforms on many different dimensions. A

randomized experiment along each dimension will often be infeasible and so many policy inter-

ventions that are tested experimentally are bundled, in the manner of resources and reduced

discretion in our experiment. This paper has combined an experiment and structural analysis to

unbundle several aspects of regulatory enforcement in a critical policy domain.
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IX Figures
Figure 1: Effect of Treatment on Pollution Distribution

A. Experimental Data
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B. Model
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The figure panels report coefficients on the inspection treatment assignment from regressions of dummies for
a pollution reading being in a given bin, relative to the regulatory standard, on inspection treatment, audit
treatment, inspection × audit treatment, a dummy for being audit-eligible and region fixed effects. Panel A
reports coefficients from such regressions on the experimental data and Panel B reports coefficients from the same
regressions run on model-generated data using the constrained model estimates of Table 6. Pollution readings are
standardized by subtracting the regulatory standard for each pollutant and dividing by the pollutant’s standard
deviation; bins are 0.2 standard deviations wide and centered at the regulatory standard shown by the vertical
line. Each plant has multiple pollutant observations and regressions are run pooled for all pollutants together.
The whiskers show 95% confidence intervals for the inspection treatment coefficient.

Figure 2: Regulatory Targeting of Extreme Polluters
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The figure shows the number of plants with pollution readings either taken or that fall in various bins, relative to
the regulatory standard, during the first year of the intervention for the control and treatment groups, respectively.
The first pair of bars shows the number of plants that had at least one pollution reading taken. The remaining
four pairs show the number of plants with at least one reading above the standard (>1p), more than 2 times the
standard (>2p), more than 5 times the standard (>5p) and more than 10 times the standard (>10p).
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Figure 3: Actions of the Regulatory Machine and Plant

The figure gives the actions of the regulatory machine and plant at each node and the terminal nodes give
the payoffs in each round for the plant. The penalty stage begins with an inspection where the Regulatory
Machine (M) observes pj1. The machine can take four actions. If M Inspects, M gets a new signal of pollution
and the plant may have to offer a bribe with payoff −b(pjt, aj−). If M Warns, there is no cost to the plant.
If M Punishes, the plant faces a cost −h(pjt). After each of these moves the plant Ignores or Complies and
M moves again. If M Accepts, the stage ends.
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Figure 4: Value of Environmental Regulation for Plants

A. Value at t = 6
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B. Value at t = 2
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The figure shows the cost of regulation to plants in thousands of US dollars as measured by the expected discounted
value of different states in the penalty stage. Values are divided between expected discounted future abatement
costs (light grey) and expected discounted future regulatory penalties (dark grey), both of which, as costs to the
plant, have negative value. The figure shows three different dimensions of the state along which plant value varies.
First, the panels show the time dimension, with panel A evaluated when it is the plant’s turn to move at t=6, and
panel B at t=2. Second, the five clusters of bars on the horizontal axis show different maximum lagged pollutant
readings observed during the prior inspection. Third, within each group, the letters I, W and P show how the
value to the plant changes if the regulatory machine’s lagged action was Inspect, Warn or Punish, respectively.
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Figure 5: Sensitivity of Targeting Parameters to Moments
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The figure shows the Andrews et al. (2017) sensitivity measure of selected targeting model parameter estimates
with respect to selected moments used to estimate the model. The panels, left to right, show the sensitivity
of the parameters or functions of parameters λ1, λ2, σ2

1/(σ
2
1 + σ2

2), with respect to moments indicated by the
row headers. The length of each bar is the local sensitivity of the parameter with respect to the row moment,
measured in units of the parameter value per one standard deviation change in the moment. We omit from
the rows the products of pollution residuals and inspection means with observable plant characteristics other
than treatment status. Black filled bars indicate positive sensitivity and hollow bars negative sensitivity.
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Figure 6: Observed and Optimal Targeting Rules
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The figure shows several inspection targeting rules, which assign plants an annual rate of inspection as a function
of the component of pollution observed by the regulator. Two of the targeting rules are based on the estimates of
Table 6: the dashed (red) line gives the estimated optimal targeting function from the constrained estimates in
the table, and the solid (black) line gives the estimated targeting function from the unconstrained estimates. The
third, dotted (red) line gives the optimal targeting rule under an alternative regime where the regulator observes
all the variance in pollution. The vertical spikes on the horizontal axis represent a normal distribution of pollution
shocks, centered around the mean value of the observable characteristics X ′jβ1 on which inspections are targeted.
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Figure 7: Model Fit to Inspections and Pollution

A. Initial Inspections, Control (Data)
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B. Initial Inspections, Treatment (Data)
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C. Initial Inspections, Control (Model)
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D. Initial Inspections, Treatment (Model)
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E. Pollution (Data)
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F. Pollution (Model)
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The figure compares the distributions of inspections and pollution in the model to those in the experimental data.
Panels A through D show the distributions of the annual inspection rate (i.e., inspections per year). Inspections
include only initial inspections and not follow-ups. Panels A and B give the distributions in the data in the
control and treatment groups, respectively, using administrative records of inspection reports. Panels C and D
give the same distributions in the model. Panels E and F give the distribution of pollution in the data and in the
model, respectively. The units of pollution are units of the regulatory standard p, such that a value of 2 represents
pollution at twice the standard, etc.
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Figure 8: Value of Discretion: Abatement by Information Regime and Budget Constraint
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The figure shows the amount of pollution abatement achieved, in units of regulatory standards of abatement per
plant, under different counterfactual inspection regimes. Regimes vary in the information used by the regulator
and the inspection budget available per plant. Each line shows average abatement per plant against the total
inspection budget per plant per year (horizontal axis) under a different regime. The dashed and dotted (blue)
line shows abatement under a minimum threshold rule that requires all plants to be inspected the same number
of times. The solid (red) line shows abatement under the optimal targeting rule where targeting is based on the
observed component of pollution. The dashed (black) line shows abatement under the same optimal targeting
rule where the regulator is assumed to observe all variation in pollution. The dotted (red) line is a hybrid regime,
meant to reflect the experimental treatment, where inspections up to the control level of inspection (1.5 inspections
per plant per year) are allocated with discretion, according to the optimal rule, and additional inspections beyond
that level are allocated evenly across all plants.
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Table 1: Regulatory Interactions During Experiment

Control Treatment Difference

Panel A. Inspections by Treatment Status
Number inspections assigned in treatment, annual 0 2.12 2.12∗∗∗

[0] [0.57] (0.026)
Total inspections, annual over treatment 1.40 3.11 1.71∗∗∗

[1.59] [1.77] (0.11)
Initial inspections, annual over treatment 1.28 2.79 1.50∗∗∗

[1.38] [1.52] (0.094)
Observations 480 480

Panel B. Perceived Inspections by Treatment Status
Perceived Inspections, 2008 2.53 2.66 0.13

[1.42] [1.40] (0.10)
Perceived Inspections, 2009 2.78 3.16 0.38∗∗∗

[1.44] [1.37] (0.100)
Perceived Inspections, 2010 2.92 3.62 0.71∗∗∗

[1.58] [1.46] (0.11)
Total perceived notices and closures received, 2010 0.27 0.30 0.025

[0.64] [0.70] (0.048)
Observations 388 403

Panel C. Regulatory Actions by Treatment Status
Pollution reading ever collected at plant (=1) 0.38 0.60 0.21∗∗∗

[0.49] [0.49] (0.032)
Any pollution reading above limit at plant (=1) 0.34 0.55 0.22∗∗∗

[0.47] [0.50] (0.031)
Number of pollution readings above limit at plant 1.17 2.84 1.67∗∗∗

[2.58] [3.67] (0.20)
Total citations 0.15 0.35 0.20∗∗∗

[0.42] [0.69] (0.037)
Total water citations 0.046 0.12 0.071∗∗∗

[0.22] [0.37] (0.020)
Total air citations 0.021 0.042 0.021∗

[0.14] [0.20] (0.011)
Total closure warnings 0.094 0.17 0.077∗∗∗

[0.34] [0.48] (0.027)
Total closure directions 0.16 0.20 0.042

[0.48] [0.54] (0.033)
Total bank guarantees 0.060 0.065 0.0042

[0.27] [0.25] (0.017)
Total equipment mandates 0.027 0.040 0.013

[0.19] [0.23] (0.014)
Total utility disconnections 0.040 0.042 0.0021

[0.22] [0.20] (0.013)
Observations 480 480
The table shows differences in actual inspection rates (Panel A), perceived inspection rates (Panel B), and
other regulatory actions (Panel C) between the treatment and control groups of plants during the treatment
period of approximately two years. Columns (1) and (2) show means with standard deviations in brackets.
Column (3) shows the coefficient from regressions of each variable on treatment, where each regression includes
region fixed effects and a control for the audit sample. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2: Endline Pollution and Compliance on Treatments

(1) (2) (3) (4)

Panel A. Plant-level Costs

Capital costs Maintenance costs

(USD ’000s) Any (=1) (USD ’000s) Any (=1)

Inspection treatment (=1) -0.221 0.0213 0.838* 0.00974
(0.453) (0.0344) (0.499) (0.0224)

Plant characteristics Yes Yes Yes Yes
Audit experiment Yes Yes Yes Yes

Control Mean 2.050 0.567 0.264 0.108
Observations 791 791 791 791

Panel B. Plant-by-pollutant level Pollution

Pollution Compliance

Inspection treatment (=1) -0.105 0.0366∗

(0.0839) (0.0213)
Audit treatment (=1) -0.187∗∗ 0.0288

(0.0849) (0.0258)
Audit × inspection 0.286∗∗ -0.0365
treatment (=1) (0.142) (0.0353)

Control mean 0.682 0.614
Observations 4168 4168
The table shows intent-to-treat effects of inspection treatment assignment on plant costs and
pollution outcomes. Panel A shows regressions for plant costs estimated at the plant level. Costs
are divided into capital and maintenance costs based on descriptions of each expenditure (See
Appendix A). Cost amounts are in USD thousands. Capital costs, which are reported as lump-sum
in the survey, are amortized to an equivalent constant annual expenditure (using an interest rate
of 20 percent and a 10-year equipment lifespan). Plant characteristic controls include dummies for
size, use of coal or lignite as fuel, high waste water generated, and all regions. Audit experiment
includes dummies for audit treatment and audit sample. Robust standard errors in parentheses.
Panel B shows regressions for pollution and compliance at the plant-by-pollutant level. Pollution
consists of air and water pollution readings for each plant, taken during the endline survey, where
each pollutant is standardized by dividing by its standard deviation. Compliance is a dummy
for each pollutant being below its regulatory standard. Controls include region fixed effects and
a dummy for the audit sample. Standard errors clustered at the plant level in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Structure of Penalty Stage Actions

Round Regulatory Action Plant Action
Inspect Warn Punish Accept Ignore Comply N % left
(1) (2) (3) (4) (5) (6) (7) (8)

1 100.0 0.0 0.0 0.0 7423 100.0
2 99.6 0.4 7423
3 1.0 9.5 2.2 87.3 7423 100.0
4 92.8 7.2 941
5 23.3 4.8 5.3 66.6 941 12.7
6 91.1 8.9 314
7 18.8 11.8 9.9 59.6 314 4.2
8 83.5 16.5 127
9 21.3 5.5 18.1 55.1 127 1.7
10 82.5 17.5 57
11 26.3 3.5 10.5 59.6 57 0.8
12 87.0 13.0 23
13 26.1 4.3 8.7 60.9 23 0.3
14 77.8 22.2 9
15+ 16.7 8.3 0.0 75.0 100.0 0.0 9 0.1

Total without
inspections 0.0 4.6 1.6 42.7 50.2 0.9 7824

Total 31.0 3.2 1.1 29.4 34.6 0.6 25217
The table reports actions taken by the regulatory machine and by the firm in the penalty stage
using administrative data. Figure 4 defines actions and their payoffs and Table 1 maps them to
regulatory documents. Each column (1) - (6) of the table gives the probability, within that row,
of the party moving at that round taking the action indicated in the column header. Column
(7) gives the total number of actions observed in that round and column (8) gives the percentage
of penalty stages that continue up to at least that round. The penalty stage always starts with
an inspection. Action rounds within the stage then alternate between actions of the regulatory
machine and sample plants. The penalty stage ends when the machine Accepts. Rounds after the
15th round are not shown and the row 15+ summarizes these rounds; 6 chains go at least 17 rounds
and 4 chains go 19 rounds.
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Table 4: Multinomial Logit Model of Action Choice Conditional on State

Party to move: Regulatory Machine Plant
Inspect Warn Punish Comply
(1) (2) (3) (4)

Lagged regulatory actions
Warn, lag 1 0.33 -2.05*** -2.10*** -0.23

(0.23) (0.32) (0.31) (0.30)
Punish, lag 1 1.80*** -2.22*** -0.53* 1.29***

(0.23) (0.56) (0.30) (0.26)
Lagged plant actions

Firm: Comply, lag 1 -1.80*** -1.03** -0.82** -0.53
(0.32) (0.47) (0.37) (0.66)

Last observed pollution reading
0-1x -0.38 -0.25 0.052 -0.18

(0.23) (0.16) (0.24) (0.38)
1-2x -0.20 0.55*** 0.37** 0.39*

(0.16) (0.098) (0.18) (0.23)
2-5x -0.17 0.84*** 0.70*** 0.74***

(0.17) (0.10) (0.17) (0.22)
5x+ 0.27 0.63*** 1.15*** 0.90***

(0.21) (0.16) (0.21) (0.26)
Period

Constant -4.41*** -2.47*** -3.91*** -5.71***
(0.13) (0.057) (0.11) (0.21)

t > 3 2.91*** 1.26*** 2.56*** 2.59***
(0.25) (0.28) (0.27) (0.33)

t > 5 0.073 -0.35 -0.50 0.18
(0.21) (0.32) (0.30) (0.28)

t > 7 0.059 -0.55 0.55* 0.50*
(0.24) (0.37) (0.29) (0.28)

N 8897 8897
The table reports coefficients from multinomial logit models for the action choice probabilities
of the regulatory machine and the plant conditional on the state within the penalty stage. See
Table A1 for action definitions. Plant and regulatory actions are reported in administrative data
by the regulator. The omitted action for the regulator is Accept and for the plant is Ignore, so the
coefficients are to be interpreted as the effect of each component of the state on the party taking
the specified column action relative to the omitted action. Pollution readings are taken during
inspections throughout the treatment period. The omitted pollution reading is null, which occurs
when the regulator inspects but does not take a pollution reading. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table 5: Estimates of Plant Utility Parameters (US$ 1000s)

Whether bribes given if no compliance?
No bribes On inspection

(1) (2) (3) (4)

Parameters of penalty function

τ0 53.54 28.12 36.71
(24.68) (20.88) (22.92)

τ1 39.57
(28.17)

τ2 54.11
(27.43)

τ3 41.51
(19.15)

Parameters of bribe function

ν0 9.67
(3.07)

ν1 10.93
(3.48)

ν2 9.72
(3.99)

ν3 5.83
(4.96)

Standard deviation of action shock

σ 5.02 5.88 5.11 4.83
(0.46) (0.30) (0.39) (0.43)

Observations 1474 1474 1474 1474
The table presents pseudo-maximum likelihood estimates of the parame-
ters of the plant profit function, from the estimation of the plant’s dynamic
problem in the penalty stage. The four columns represent different specifi-
cations for the penalties and bribes the plant must pay. The parameters τ
give the value of penalties applied by the regulator, by choosing the action
Punish, conditional on the pollution component of the state being between
the standard and twice the standard (τ0), between twice and five times the
standard (τ1) and above five times the standard (τ2). The column 3 and 4
estimates also include estimates of bribes, in addition to formal penalties.
The parameters ν, for which estimates are reported in columns (3) and (4),
give the value of bribes given by the plant in penalty specifications where
the plant is assumed to give bribes, if it has not already Complied in the
stage, at the second inspection and later inspections. The final parame-
ter σ is the standard deviation of the plant’s action-specific payoff shock.
Observations are those at which the plant moves in rounds t=4 and on-
wards; t=2 is omitted because a large number of actions in that round are
imputed (see text). Inference is by the bootstrap over 100 samples with
replacement, where samples are taken at the level of the plant-chain (i.e.,
series of interactions) stratified on the maximum pollution reading observed
in the chain. Standard errors equal to the standard deviation of bootstrap
estimates are in parentheses.
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Table 6: Estimates of Targeting Stage Parameters

Constrained Unconstrained
Initial Log Initial Log

Inspections Pollution Inspections Pollution
(1) (2) (3) (4)

Panel A. Targeting and Pollution Equations

Inspection treatment 0.095 0.162
(0.009) (0.025)

Run equipment (=1) -1.902 -0.711
(0.160) (0.308)

Inspection targeting shift -0.395 -0.220
parameter (λ1) (0.003) (0.066)

Inspection targeting level 33.022 10.064
parameter (λ2) (1.876) (3.137)

Constant 0.212 -0.009
(0.109) (0.102)

Panel B. Distributions of Pollution and Maintenance Cost Shocks

Standard deviation of observed 0.069 0.111
pollution shock (σ1) (0.003) (0.022)

Standard deviation of unobserved 1.033 0.864
pollution shock (σ2) (0.047) (0.042)

Mean of log maintenance 2.388 1.833
cost (µc) (0.061) (0.334)

Panel C. Test of Targeting Optimality Constraints

Distance metric test statistic χ2
2 16.1039

Test p-value 0.0003
The table reports parameters of the targeting stage of the model. The first two columns report estimates from
the constrained model where the regulator is constrained to target optimally based on observed pollution
shocks, and the second two columns report estimates from the unconstrained model. Within each pair of
columns, the first column (1 and 3, respectively) reports the coefficients on the inspection equation and the
second column (2 and 4) reports coefficients on the pollution equation. Panel B reports estimates of the
distributional parameters for pollution and cost shocks under each model. Panel C reports the results of a
test of the constraints that require optimal targeting (equations (16)-(18) in Appendix C.3). The data set is
a cross-section of all sample plants. Inspections are calculated as the number of initial inspections per year
for each plant over the course of the approximately two-year experiment, and pollution is the maximum (over
pollutants) logged standardized endline survey pollution reading, where the standardization is in units of the
regulatory standard for each pollutant (e.g., twice the pollutant-specific standard is a value of log(2)). Both
the inspection and the pollution models additionally include the observable characteristics of audit treatment
assignment, audit × inspection assignment, an audit sample dummy and region dummies (not reported). The
parameters are estimated via generalized method of moments using a mix of analytic and simulated moments
as described in Section V. Standard errors are bootstrapped with B = 100, S = 5,000.
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Appendix A [NOT FOR PUBLICATION]

A Data and Supplementary Analysis

A.1 Mapping documents to regulatory and plant actions

Section II.C. describes the regulatory documents we use to assign actions to the regulator and

plants in our model of regulation. This Appendix gives more detail on the documents involved,

the mapping of these documents to actions, and the linkage of these actions into chains of related

actions.

Table A1: Mapping of Player Actions to Raw Documents

Action Document Description

Panel A. Regulatory Actions
Inspect Inspection report Analysis of air and water samples; report on plant

characteristics.

Warn Letter to plant Non-threatening letter ordering improvement in pollu-
tant concentrations.

Citation Threatening letter demanding explanation for high
pollution levels, missing permit to operate, or missing
pollution abatement equipment.

Closure notice Notice that the plant will be ordered to close in 15 days
if the plant does not take action to improve pollution.

Punish Closure direction Order to plant to close immediately.
Utility notice Notice that water or electricity has been disconnected.

Accept Revocation of
closure direction

Permission to start operation.

None No further regulatory action within 60 days.

Panel B. Firm Actions

Comply Equipment installed Notice that pollution abatement equipment has been
installed.

Process installed Notice that a process has been installed.
Bond posted Letter from bank to GPCB explaining that the firm

has posted a guarantee against future misconduct.

Ignore Letter to regulator Letter of protest to GPCB. Challenges parameter read-
ings and other directives.

None Implied by consecutive GPCB actions without plant
response.

Our approach is based on rules that the Gujarat Pollution Control Board follows as a reg-

ulatory agency. All regulatory actions that GPCB takes regarding regulated plants must be

documented. These documents are of distinct types, are all dated and are often cross-referenced;
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that is, a document taking a regulatory action will often cite explicitly a prior violation of pollu-

tion standards as grounds for that action. Plants are not, like the regulator, obligated to follow

rules in their correspondence. However, plants often do respond in writing to regulatory orders,

in particular when they want to document that they have made a costly abatement investment.

Table A1 and the discussion in Section II.C. covered the basic types of documents and

their mapping to actions. Many of the documents have a one-to-one correspondence to actions.

For the regulator, the action Inspect is always indicated by an Inspection Report, which is a

particular type of regulatory document. The action Punish is always indicated by a Closure

Direction sent to plants (or the plants’ utility). We group multiple documents of varying severity

under the action Warn, including simple citations noting violations of pollution standards and

more severe warnings that threaten closure. These documents all show that the regulator has

found a violation, and often threaten action if the plant does not remediate, but they have

in common that they do not impose a direct cost on plants. For plants, the main action of

interest is whether a plant chooses to Comply by installing abatement equipment. This action is

typically documented by a invoice or other record from an environmental consultant or vendor

that installed the equipment.

Regulatory interactions with plants occur in groups of related actions we call chains. Many

actions are responses to earlier actions. For example, if the regulator inspects a plant and finds

a violation, this may result in a later action of Warn or Punish, or in the plant possibly choosing

to Comply to avoid punishment. We link actions in a chain, for the same plant, using explicit

references in the documents underlying each action and the dating of those documents, as follows:

1. Link documents that reference one another.

1.1. Link documents if one document explicitly cites (by document number or date) an

inspection or other earlier document.

1.2. If there is no exact match, link documents if a near match exists that differs by at

most one digit.

2. Link documents dated close to one another.

2.1. Keep all documents already linked in (1.) together (we may call these sub-chains).
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2.2. Link remaining documents (or groups of documents) to those that happened soon

after and are plausibly logically related, using the following rules for each pair of

candidate documents:

• Documents to link if within 30 days:

i. Any regulator action followed by plant Ignore.

ii. Any regulator action followed by regulator Inspect.

iii. Regulator Punish (closure notice, closure notice, utility confirmation of ac-

tion) followed by plant Ignore or Comply (equipment installation, process

installation, bank guarantee posted).

• Documents to link if within 60 days:

i. Regulator Inspect followed by Warn (letter, show cause notice, closure notice,

closure direction).

ii. Regulator Inspect followed by regulator Accept.

iii. Plant Comply followed by regulator Accept (revocation of closure direction).

3. Impute missing actions to enforce structure of the plant’s problem.

3.1. Chains start with the action Inspect. If a chain does not start with an inspection,

append earlier inspections that occured within 1 month of chain start. If no such

recent inspection occurred, truncate the chain before first inspection.

3.2. Chains end with the action Accept. Impute regulatory action Accept at the end of the

chain if there are no further follow-up actions within 60 days.

3.3. Chains alternate moves between the plant and regulatory machine. Impute the plant

move Ignore between any consecutive GPCB actions.

In stage (3.) we impute actions to enforce an alternate-move structure to the plant’s problem.

The main assumption in imputing moves is that the plant had an opportunity to respond to all

regulatory actions with, even if it in fact did not respond. That is, we take the absence of a

response as the action Ignore. Similarly, we assume the regulator could have continued pursuing

plants at the end of each chain, and that if it does not this represents the action Accept. This

assumption is weak because our data is comprehensive and all regulatory actions against plants
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are documented, so that if the regulator did later Punish or Warn a plant, this action would

have been observed.

Table A2: Sample Chain

Round Player Action Document Date
(1) (2) (3) (4) (5)

1 GPCB Inspect Inspection report 2008-09-05
2 Plant Ignore 2008-09-05
3 GPCB Punish Closure Direction 2009-01-12
4 Plant Comply Equipment installed 2009-01-28
5 GPCB Inspect Inspection report 2009-01-31
6 Plant Ignore 2009-01-31
7 GPCB Inspect Inspection report 2009-02-04
8 Plant Ignore 2009-02-04
9 GPCB Punish Closure Direction 2009-05-22
10 Plant Comply Process installed 2009-05-30
11 GPCB Inspect Inspection report 2009-06-16
12 Plant Comply Process installed 2009-06-16
13 GPCB Accept Revocation of Closure Direction 2009-06-24

The table displays a 13-round chain of interactions between GPCB and one plant during the experiment.
Column (3) indicates the category of action, while Column (4) reports the underlying document to which
the action corresponds. Ignore actions by the plant in Rounds 2, 6 and 8 have been imputed based on
adjacent actions in the chain and hence Column (4) is left blank in these rounds. All chains begin with
a regulatory inspection, Inspect. The players then alternate moves until the regulator decides to Accept
the plant’s compliance for the time being, which terminates the chain. Table 1 in the paper describes the
way in which the actions are mapped to the underlying documents, and the Data Appendix provides a full
explanation of the rules used to construct the chains.

Table A2 gives an example of the result of this linking process. GPCB initially inspects a

plant and the plant does nothing. GPCB, presumably on reviewing the inspection report and

pollution samples, then orders that the plant be closed. The plant responds, several weeks later,

by installing abatement equipment. GPCB repeatedly inspects the plant over the next several

months, apparently finds the remedy inadequate, and again orders the plant closed. The plant

responds by modifying its production process. GPCB is then satisfied and revokes the closure

order. This example gives a sense of the rich back-and-forth that is possible to observe in the

chained action data.

A.2 Abatement costs

Measures of plant abatement cost come from the endline survey. The survey asked plants

to describe each piece of pollution control “equipment installed or upgrades made (including
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routine maintenance such as filter changes, etc.)” since the start of the experiment, to record

the corresponding expenditure, and to verify the equipment or upgrade took place.

We flag these abatement expenditures as either capital or maintenance expenditures and sum

them to the plant level. The determination of whether an expenditure is a capital or mainte-

nance expenditure is based on string matching with the text description of each investment.

Enumerators indicated maintenance using the word maintenance or change, as in the action of

changing a filter or other replaceable part. Expenditures with descriptions containing any of

the following strings are therefore coded as maintenance: “chang,” “mainten,” “maintain,” “main-

tan,” “(bag.*bag).” The “(bag.*bag)” string captures variations on “Change of bag filter bag,” a

common maintenance activity for air pollution control devices. Expenditures containing none of

these strings are coded as capital expenditures.

For the purposes of Table 2, Panel A, which compares capital and maintenance costs, we

amortize capital costs, which are reported as lump sums, into an equivalent annual expenditure.

We calculate the constant annual expenditure such that the sum of the present value of the

expenditure over the equipment lifespan equals the observed up-front capital expenditure (with

an interest rate of r = 0.20 and a 10-year equipment lifespan).

A.3 Experimental integrity: covariate balance and attrition

This subsection verifies the integrity of the experiment both ex ante and ex post. First, we

check the balance of covariates before the experiment started. Then, we check for differential

attrition during the experiment. Finally, we check our model assumption that the regulatory

acted similarly against treatment and control plants conditional on the results of an inspection.

Table A3: Experimental Design: Treatment Assignments

Inspection control Inspection treatment Total

Audit control 120 120 240
Audit treatment 116 117 233
Not audit eligible 244 243 487
Total 480 480 960
The table reports the number of plants assigned to each combination of the inspection
treatment and the audit treatment of Duflo et al. (2013). Inspection treatment status is
either control or treatment. With respect to audit, only some plants are audit-eligible
(see text). Conditional on being eligible for audit, plants are assigned to inspection
treatment or control.
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Table A3 describes the cross-cutting experimental design. Plants were assigned to inspection

treatment status conditional on audit treatment status (Duflo et al., 2013). Since only certain

plants are eligible for audits, there are three possible audit treatment statuses: not audit eligible,

and, conditional on being eligible, audit control or treatment. The inspection treatment status

is therefore orthogonal to audit treatment status and eligibility.

Table A4 compares the balance of the inspection treatment assignment on fixed plant char-

acteristics, in Panel A, and on regulatory interactions between plants and the regulator, like

inspections and violations of pollution standards, in Panel B. The table uses administrative data

and the regulatory interactions are measured over the last full calendar year (2008) prior to the

experiment starting in August, 2009. Each row considers a separate plant characteristic; columns

1 and 2 report the means for control and treatment plants, respectively, using administrative

data for the year prior to the experiment. Column 3 reports the coefficient α2 on the inspection

treatment dummy Tj from the following regression, where for each outcome Yj for plant j in

region r,

Yjr = αr + α1AuditSamplej + α2Tj + εj (7)

where αr are region effects and AuditSamplej is a dummy for a plant belonging to the audit

sample (i.e., being audit eligible, rather than being assigned to the audit treatment).25

We find that inspections, pollution readings and citations are balanced by treatment assign-

ment. Of 18 baseline measures reported, there is a significant difference between the treatment

and control groups at the ten percent level on only one measure.

Table A5 reports overall levels of attrition in the experiment. About 18 percent of plants did

not report complete the endline survey. Most of this attrition, 13 percentage points, was due to

plants that closed during the experiment. Table A6 compares attrition across the treatment and

control groups. One may be concerned that the extra scrutiny of treatment plants would drive

them out of business. We find, to the contrary, that attrition is not differential across treatment

arms (the point estimate for the effect of treatment on attrition is negative).

25Since only one region, Ahmedabad, contains both audit-eligible and audit-ineligible plants, this specification
is equivalent to a full set of region × eligible effects.
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Table A4: Inspection Treatment Covariate Balance

Control Treatment Difference
(1) (2) (3)

Panel A. Plant Characteristics
Capital investment Rs. 50m to Rs. 100m (=1) 0.087 0.071 -0.017

[0.28] [0.26] (0.017)
Located in industrial estate (=1) 0.33 0.37 0.032

[0.47] [0.48] (0.027)
Textiles (=1) 0.45 0.45 -0.0092

[0.50] [0.50] (0.020)
Dyes and Intermediates (=1) 0.13 0.16 0.027

[0.34] [0.36] (0.022)
Effluent to common treatment (=1) 0.37 0.35 -0.021

[0.48] [0.48] (0.031)
Waste water generated (kl / day) 192.1 196.8 4.30

[310.9] [316.4] (16.2)
Air emissions from boiler (=1) 0.50 0.52 0.019

[0.50] [0.50] (0.020)

Panel B. Regulatory Interactions in Year Prior to Study
Number of inspections 1.22 1.25 0.026

[1.32] [1.32] (0.079)
Inspections below prescribed (=1) 0.42 0.39 -0.031

[0.49] [0.49] (0.029)
Number of pollution readings 3.64 3.92 0.28

[5.65] [5.58] (0.31)
Pollution reading ever collected (=1) 0.40 0.44 0.048∗

[0.49] [0.50] (0.027)
Any pollution reading above limit (=1) 0.34 0.38 0.031

[0.48] [0.48] (0.026)
Citations 0.22 0.20 -0.023

[0.51] [0.55] (0.034)
Closure warnings 0.056 0.052 -0.0044

[0.31] [0.32] (0.020)
Closure directions 0.075 0.077 0.0019

[0.31] [0.34] (0.021)
Bank guarantees posted 0.019 0.029 0.010

[0.15] [0.21] (0.012)
Equipment mandates 0.24 0.25 0.0082

[0.54] [0.53] (0.029)
Any utility disconnection (=1) 0.010 0.0021 -0.0083

[0.10] [0.046] (0.0051)
Observations 480 480
The table tests for the balance of covariates by inspection treatment status using administrative
data from the regulator covering the year prior to the experiment. Columns (1) and (2) show
means with standard deviations in brackets. Column (3) shows the coefficient on treatment from
regressions of each characteristic on treatment and region fixed effects. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A5: Attrition in the Endline Survey

N %
(1) (2)

Survey completed 791 82.4
Plant closed 124 12.9
Plant refused survey 5 0.5
Other 40 4.2
Total 960 100.0
The table shows how many plants completed the end-
line survey, and the reasons for attrition for those that
did not. Plant closed includes plants that were perma-
nently closed (111), plants that were temporarily closed,
and plants where production was temporarily suspended.
Refused survey includes plants that were operating at the
time of the visit, but that refused to respond to the ques-
tions in the survey. Other includes plants that moved to
an unknown address, and plants for which an incorrect
address had been recorded

Table A6: Endline Attrition by Inspection Treatment Status

Treatment Control Difference
(1) (2) (3)

Survey completed 0.840 0.808 0.031
[0.367] [0.394] (0.024)

Plant closed 0.123 0.135 -0.013
[0.329] [0.343] (0.022)

Plant refused survey 0.008 0.002 0.006
[0.091] [0.046] (0.005)

Other 0.029 0.054 -0.025∗

[0.168] [0.227] (0.013)

Observations 480 480
The table shows differences in endline responses and reasons for attrition be-
tween the treatment and control groups. Columns (1) and (2) show means
with standard deviations in brackets. Column (3) shows the coefficient on
treatment from regressions of each characteristic on inspection treatment
assignment, region fixed effects, and audit sample control. Reported are
treatment effects, with region controls. Plant closed includes plants where
production. was temporarily suspended, and plants that were temporarily
or permanently closed. Refused survey includes plants that were in produc-
tion at the time of the visit, but that refused to respond to the questions
in the survey. Other includes plants that moved to an unknown address,
and plants for which an incorrect address had been recorded. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table A7: Probability of Regulator Acceptance on Treatment and Round

(1) (2) (3) (4) (5) (6)

Inspection treatment assigned (=1) 0.0129 0.00779 0.0127 0.0164 0.0106 -0.0280
(0.0112) (0.00926) (0.0110) (0.0137) (0.00835) (0.0207)

Constant 0.827∗∗∗ 0.869∗∗∗ 0.863∗∗∗ 0.861∗∗∗ 0.891∗∗∗ 0.910∗∗∗
(0.00831) (0.00701) (0.00894) (0.00974) (0.00700) (0.0134)

Period
t > 3 -0.219∗∗∗ -0.325∗∗∗ -0.323∗∗∗

(0.0252) (0.0350) (0.0557)
t > 5 -0.0367 0.0293 0.0548

(0.0479) (0.0366) (0.0610)
t > 7 -0.0571 -0.0224 -0.125∗

(0.0634) (0.0396) (0.0682)
Period × Treatment
t > 3 × Inspection Treatment 0.0219 0.0322

(0.0344) (0.0464)
t > 5 × Inspection Treatment -0.0610 -0.0248

(0.0638) (0.0790)
t > 7 × Inspection Treatment 0.0757 0.0920

(0.0821) (0.0961)
Lagged regulatory actions

Warn, lag 1 0.169∗∗∗ 0.150∗∗∗
(0.0364) (0.0477)

Punish, lag 1 -0.129∗∗∗ -0.101∗
(0.0413) (0.0535)

Lagged plant actions
Firm: Protest, lag 1 0.0482∗ 0.0535

(0.0272) (0.0363)
Firm: Comply, lag 1 0.248∗∗∗ 0.259∗∗∗

(0.0329) (0.0416)
Last pollution reading

0-1x -0.0102 0.0140 0.000305
(0.0158) (0.0211) (0.0119)

1-2x -0.0661∗∗∗ -0.0534∗∗∗ -0.0524∗∗∗ -0.0661∗∗∗
(0.0134) (0.0207) (0.0105) (0.0205)

2-5x -0.109∗∗∗ -0.120∗∗∗ -0.0896∗∗∗ -0.119∗∗∗
(0.0151) (0.0251) (0.0120) (0.0216)

>5x -0.160∗∗∗ -0.178∗∗∗ -0.116∗∗∗ -0.144∗∗∗
(0.0260) (0.0375) (0.0189) (0.0308)

Pol Reading × Treatment
0-1x × Inspection Treatment -0.0424

(0.0309)
1-2x × Inspection Treatment -0.0221 0.0239

(0.0271) (0.0280)
2-5x × Inspection Treatment 0.0186 0.0497∗

(0.0313) (0.0291)
>5x × Inspection Treatment 0.0330 0.0452

(0.0516) (0.0428)

p-value for F-test of no 0.249 0.608 0.245 0.388 0.204 0.315
× Inspection Treatment terms

Inspection control mean 0.827 0.827 0.827 0.827 0.827 0.827
Observations 8897 8897 8897 8897 8897 4089
Does not include region fixed effects. Omitted actions are Ignore (for Regulator) and Inspect (for plant). Omitted
pollution reading for column (6) is No Pollution Reading Taken. Standard errors clustered at plant level in
parentheses with ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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In the model we assume that the regulatory machine acts similarly against both treatment and

control plants (Section V). This assumption is based on the design of the experiment, since the

officials that decide to act against plants were not informed of whether an inspection report came

from a treatment or control plant. Here we present additional statistical evidence supporting

that this assumption held in practice.

Table A7 regresses a dummy for regulatory machine Acceptance (i.e., leaving the plant alone)

in a given round on the observable characteristics noted down during an inspection, treatment

status, and interactions of treatment status and observables. The columns 1 through 6 add

progressively richer specifications of observables and interactions. In column 1, there are no

controls. Column 2 controls for round of the game and its interactions with treatment, column

3 controls for pollution, column 4 controls for pollution and its interactions with treatment, and

column 5 and 6 additionally control for past regulatory and plant actions. In each column, we

report at bottom the p-value from an F -test that the coefficients on treatment and all treatment

interactions with observables are jointly zero. If the regulator followed-up with treatment plants

differently, we would expect the treatment main effect or the interaction of the treatment and

some observable to be significant (for example, if the regulator did not pursue treatment plants

after finding high pollution readings). We fail to reject the joint null with p-values between

approximately 0.20 and 0.60. We conclude that the regulatory machine treats plants similarly

conditional on the facts observed in an inspection.

A.4 Letter treatment

Table A8 reports the results of a treatment that sent plants a letter reminding them of

their obligations to meet emissions limits, shortly before the endline survey. The letter had no

significant effect on pollution or compliance.

A.5 Compliance placebo checks

Table A9 reports the results of placebo regressions showing treatment effects on compliance

at various compliance thresholds. Column 1 shows the regression of compliance on treatment

where compliance is defined as a pollution reading below the true standard p, and columns 2

through 4 show the same regression with placebo standards set at several multiples of the true
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Table A8: Endline Pollution and Compliance on Letter Treatment

Pollution Compliance
(1) (2)

Inspection treatment assigned (=1) -0.0160 0.0248
(0.0866) (0.0238)

Letter treatment assigned (=1) -0.0482 0.0311
(0.0928) (0.0241)

Inspection treatment 0.0326 -0.00340
× Letter treatment (=1) (0.130) (0.0345)

Inspection and Letter control mean 0.652 0.595
Observations 4168 4168
The table shows regressions of pollution (column 1) and compliance (column 2) on in-
spection and letter treatment assignments. Observations are at the plant-by-pollutant
level, where pollution consists of air and water pollution readings for each plant, taken
during the endline survey, and each pollutant is standardized by dividing by its stan-
dard deviation. Compliance is a dummy for each pollutant being below its regulatory
standard. The table regresses these outcomes on inspection treatment assignment,
letter treatment assignment and inspection × letter treatment. The letter treatment
was a letter sent by the regulator to plants shortly before the endline survey re-
iterating the terms of plants’ environmental consents and reminding them of their
obligations to meet emissions limits. Specifications also include region fixed effects.
Standard errors clustered at the plant level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

level. There is a significant effect, at the ten percent level, only at the true threshold (column

1).

A.6 Regulatory targeting using endline survey data

Table A10 presents additional evidence on regulatory targeting, plant-level regression esti-

mates for how inspections depend on a plant’s underlying pollution. To get at targeting under

the status quo, we restrict the regression to the control group. To measure the regulator’s re-

sponse to latent pollution levels, we run the regression in the year after the experiment ended,

using our own endline survey readings, which were not reported to the regulator, as the measure

of pollution. Columns 1 through 4 use a categorical dummy as the independent variable, where

missing readings are coded zero (and indicated by a separate dummy variable), readings beneath

the standard p are coded 1, between (p, 2p] as 2, (2p, 5p] as 3 and 5p and above as 4; column 5

shows dummies for the underlying pollution categories.

Table A10, column 1 shows that, conditional on plant characteristics, higher endline survey

pollution readings predict more inspections, even though the regulator does not observe these
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Table A9: Placebo Check of Alternate Compliance Thresholds

[0, p) [0, 2p) [0, 5p) [0, 10p)
(1) (2) (3) (4)

Inspection treatment assigned (=1) 0.0366∗ 0.0144 0.00323 -0.000368
(0.0213) (0.0193) (0.0131) (0.00824)

Audit treatment assigned (=1) 0.0288 0.0154 0.0123 0.0166∗

(0.0258) (0.0238) (0.0162) (0.00917)

Audit × inspection treatment (=1) -0.0365 -0.0245 -0.0109 -0.0106
(0.0353) (0.0316) (0.0214) (0.0116)

Inspection and audit control mean 0.614 0.813 0.928 0.975
Observations 4168 4168 4168 4168
The table presents regression estimates for compliance on inspection treatment assignment and
audit treatment assignment, using pollution levels taken from the endline survey. Compliance is
defined as pollution being below N times the limit p, with N being 1, 2, 3, 5 and 10 respectively.
Pollution standardized by backcheck standard deviation. Standard errors in parentheses. Includes
audit treatment and treatment interaction controls, and year and region fixed effects. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01

readings. Each higher category of pollution results in 0.170 more inspections per year (standard

error 0.0978), relative to a compliant plant.26 Regulatory targeting on unobserved pollution re-

mains as strong when adding controls for audit treatment status during the experiment (column

2) and recent regulatory penalties (column 3). Perhaps most strikingly, when adding recent pol-

lution readings that the regulator itself took as controls, we find the coefficient on endline survey

pollution readings remains unchanged (column 4). In column 5, we separate the components

of the categorical endline pollution variable and find that belonging to the highest pollution

bin is associated with 0.665 additional inspections per year (standard error 0.331). The dum-

mies for pollution bins above the standard are jointly significant in predicting later inspections

(F4,367 = 3.46, p-value < 0.01). The regulator appears to target inspections based on signals of

plant pollution beyond its own past pollution readings.

26Plant observable characteristics like belonging to a dirtier sector, being of greater scale and generating more
wastewater also predict more inspections (coefficients not reported).
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Table A10: Regulatory Targeting on Unobserved Pollution in the Control Group

Dependent variable: Number of inspections
in one year after endline survey

(1) (2) (3) (4) (5)

Endline pollution bin (0-4) 0.170* 0.173* 0.182* 0.172*
(0.0978) (0.103) (0.101) (0.103)

Endline Pollution ∈ [1p, 2p) (=1) 0.459
(0.278)

Endline Pollution ∈ [2p, 5p) (=1) 0.539
(0.349)

Endline Pollution ≥ 5p (=1) 0.665**
(0.331)

Constant 2.058*** 1.995*** 1.898*** 1.893*** 1.943***

(0.302) (0.463) (0.461) (0.532) (0.486)
Plant characteristics Yes Yes Yes Yes Yes
Audit treatment assignment Yes Yes Yes Yes
Recent regulatory actions Yes Yes Yes
Recent pollution readings Yes Yes

Mean dependent variable 1.392 1.392 1.392 1.392 1.392
F -stat p-value 0.00859
R2 0.213 0.213 0.259 0.284 0.285
Observations 388 388 388 388 388
The table regresses the number of regulatory inspections in the year after the endline survey on pollution
readings as measured during the survey, in the inspection control group of plants. As endline pollution
readings were not reported to the regulator, these readings represent an unobserved component of pollution,
from the regulator’s perspective. Endline pollution bin is a categorical variable that takes the value of 0 for
plants with no pollution readings, 1 if pollution is in [0, p), 2 if in [p, 2p), 3 if in [2p, 5p), and 4 if above
5p. All specifications also include a dummy for a plant having no pollution reading. Column 5 separates
pollution bin into a set of dummy variables and reports the coefficient on each; the omitted dummy is having
endline pollution bin equal to one (i.e., pollution beneath the standard). The F -test reported is for the joint
significance of the endline pollution bin dummies. Plant characteristics include dummies for size, use of coal
or lignite as fuel, high waste water generated, dye sector, textile sector, and region. Recent regulatory actions
include the number of regulatory actions of several types against the plant in the year before endline. Recent
pollution readings include dummies for pollution bins at the most recent regulatory inspection before endline.
Robust standard errors in parentheses with * p < 0.1, ** p < 0.05, *** p < 0.01
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B Simulation of Targeting Stage

This appendix describes the Monte Carlo simulation of optimal regulatory targeting.

B.1 Set-up

We set N = 900 plants and endow plants with exogenous observables Xj = [X1 X2 X3]

where X1, X2, X3 ∈ {0, 1} and Pr(X1 = 1) = 0.25, P r(X2 = 1) = Pr(X3 = 1) = 0.50. We

assume the parameter values in Table B11.

Table B11: Parameters for Targeting Model Simulation

Description Parameter Value
(1) (2)

Pollution equation φ [0.5 0.5 − .1 − 1.5]′

Inspection equation β [0.3 − .1 0.25]′

Maintenance cost µc 2
σc 1

Pollution shocks σ1 ∈ {0.31, 0.43, 0.61}
σ2 ∈ {0.73, 0.66, 0.50}

Targeting parameter ρ 1

The table gives the parameters for the Monte Carlo simulation of the tar-
geting model. Pollution parameters are the coefficients on [Xj Run] in the
pollution equation and inspection parameters the coefficients on Xj . Other
parameters are described in Section IV.

In each simulation, we:

1. Draw shocks for each plant (holding the draws fixed across simulations);

2. Construct latent levels of pollution if the plant does not abate;

3. Solve the regulator’s targeting problem subject to a budget of N = 1.47 inspections per

plant.

The nine different simulations vary on the two dimensions of penalty function shape and

regulatory information.

We use three different penalty functions that yield approximately the same average level of

penalties but have different curvature. Figure B1 shows these alternate functions. The horizontal

axis in the Figure is the pollution found at a plant on initial inspection, in units of multiples of the

regulatory standard. The vertical axis is the expected discounted value of the penalty function, in

USD thousands. All penalty functions intersect the same penalty values at pollution readings of
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1× and 7.5× the regulatory standard. The three functions differ in their curvature. The dotted

(blue) line is the penalty function as estimated in the penalty stage, interpolated between discrete

values using a piecewise-cubic hermite interpolating polynomial (pchip), a type of spline that

preserves monotonicity between knots. The estimated penalty function shows sharply increasing

marginal penalties at the regulatory standard and decreasing marginal penalties beyond that.

The solid (black) line is a linear penalty function (constant marginal penalty) and the dashed

(red) line is a quartic penalty function (increasing marginal penalty).

Figure B1: Alternate penalty function forms
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The figure shows alterate functional forms for the penalty function, which
gives the expected discounted value of the penalty stage, at the time of an
initial inspection, as a function of plant pollution. The value is measured
in USD thousands and polluion is measured as a multiple of the regulatory
limit; i.e., a plant with pollution equal to two has a reading double the
limit. The solid (black) line is a linear penalty function (constant marginal
penalty), the dashed (red) line is a quartic penalty function (increasing
marginal penalty), and the dotted (blue) line is the penalty function as
estimated in the penalty stage. The estimated penalty function is interpo-
lated between discrete values using a piecewise-cubic hermite interpolating
polynomial (pchip), a type of spline that preserves monotonicity between
knots. All penalty functions are set to intersect the estimated penalty
function at pollution values of 1.0 (the standard) and 7.5 (roughly the
limit of the pollution values observed).

The second dimension on which the simulations vary is the information available to the reg-

ulator. We keep σ21 +σ22 = 0.625 across simulations and vary the fraction of the variance in total

pollution that is observable to the regulator, setting σ1 such that σ21/(σ21+σ22) ∈ {0.15, 0.30, 0.60}.
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In total there are therefore nine different simulation runs with each combination of regulatory

information and penalties.

B.2 Simulation results

This section presents results from simulations of the targeting model to show how regulatory

penalties and information shape optimal inspection targeting.

The optimal targeting rule will depend on several aspects of the model. First, since the plant’s

value of regulation from the penalty stage varies with pollution, the regulator can induce more

abatement by allocating inspections to plants with high pollution and therefore high expected

penalties. Second, plant reductions in pollution are proportional to the level of pollution, so

allocating inspections to higher-polluting plants will have higher yield in abatement, if those

plants do abate. These forces both suggest allocating more inspections to plants with higher

observable pollution shocks. Third, however, plants have idiosyncratic maintenance costs, and if

inspections are very concentrated on the plants with the highest observable pollution shocks, the

regulator may miss chances to induce lower-cost plants to Run their equipment. The relative

strength of these forces—how much the regulator should go after the plants it thinks are the

dirtiest—will depend on the accuracy of the regulator’s signal of pollution and the shape of the

penalty function with respect to measured pollution.

Figure B2 shows the optimal targeting functions, the key endogenous object of interest, from

each of these nine simulations. The three panels vary in the share of pollution observable to the

regulator, and the three lines within each panel vary in the shape of the penalty function. We

plot all the optimal targeting functions for a hypothetical plant for which the argument of the

targeting function X ′jβ = 0, aside from the contribution of the observed pollution shocks.

Consider first the variation in targeting functions induced by the regulator’s information.

The solid (black) line in all figures represents the optimal targeting function, of the form (5),

given a linear value function of the penalty stage (constant marginal penalties for higher initial

pollution). In Panel A, when the share of variation in pollution observed by the regulator is

small, the optimal penalty function is steep. The maximum inspection parameter λ2 = 28.72

indicates that a plant with an arbitrarily high u1j shock would receive at most 28.72 inspections

per year, and the shift parameter λ1 = −1.82 implies that plants would have to draw extremely
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Figure B2: Optimal Targeting Rules as Observable Share of Pollution Varies
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The figure compares the optimal inspection targeting function in Monte Carlo simulations of the targeting stage
of the model that vary (i) the share of variation in pollution that is observable by the regulator (across panels)
and (ii) the shape of the penalty function (across curves within a panel). The share of variation observable to the
regulator is equal to σ2

1/(σ
2
1 +σ2

2) ∈ {0.15, 0.30, 0.60} across panels. Each curve within a panel shows the optimal
targeting rule, giving inspections as a function of the standard deviations of observed pollution, that solves the
regulator’s problem of minimizing pollution subject to an inspection budget, in a Monte Carlo simulation of the
model. The curves within a panel differ in the shape of the regulatory penalty function. The alternate shapes of
the penalty function are shown in Figure B1 and explained in the notes for that table.

high shocks to receive these high inspections—a plant with a 3σ1 shock and X ′jβ = 0 would

receive only about 4 initial inspections per year. The regulator knows little about pollution and

puts its eggs in one basket by going after the plants observed to be dirtiest aggressively. As the

share of pollution observable to the regulator decreases, in Panels B and C, the optimal targeting

function (black curve) gets much flatter and shifts leftwards. The regulator, more confident in

its signal and therefore that a plant with moderately high observed pollution will Run, spreads

inspections around to pick up a broader set of plants that may have low abatement costs.

The variation in the shape of the penalty function is not as important as information for the

optimal targeting rule, though it does change the rule somewhat. For example, if the regulator

has very little information (Panel A), the optimal targeting rule is somewhat more concentrated

in high polluting firms under a linear penalty function then under the estimated penalty function,

which has decreasing marginal penalties at high pollution levels. This difference makes sense;

under a linear penalty function, inspecting plants that are highly polluting has an extra kick,

since marginal penalties do not taper off at high levels of pollution. We see a similar ordering

for higher levels of information in Panels B and C. Perhaps most subtly, the estimated penalty

function (dashed) with increasing, then decreasing marginal penalties, yields less concentrated

inspections than the quartic penalty function under low information but more concentrated
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inspections under high information. This reversal happens because, under low information, the

regulator is inspecting mainly the plants with the highest observable shocks, so the region of

the penalty function at very high pollution is relatively more important. At this high range

the estimated penalty function has decreasing marginal penalties, unlike the quartic penalty

function. Under high information, the regulator is inspecting a broader range of plants, so

the region of the estimated penalty function near the standard—which has sharply increasing

marginal penalties—comes into play, and it is better for the regulator to concentrate inspections

slightly more.

The regulator’s targeting problem captures the trade-offs involved in setting a targeting rule

in an economically rich way. The parsimonious probit link form (5), governed by parameters λ,

allows a range of interesting targeting rules, from those that are very steeply increasing, to rules

close to linear in pollution, to rules that are nearly flat.
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C Estimation

C.1 Penalty stage estimation

Here we provide further details of the preliminary estimation steps involved in forming the

penalty stage likelihood.

1 . Actions and plant payoffs in a penalty stage round

In all even rounds, the plant may Comply or Ignore the regulatory machine. To Comply,

a plant must pay a constant πj(ajt = Comply|st) = −k to install abatement equipment. We

assume all plants have costs for installing abatement capital equal to the average value of abate-

ment capital costs observed in our sample, conditional on installation, which is k = $17,000. To

Ignore the regulator costs the plant nothing today, but may increase the risk of future regulatory

action.

If the machine Punishes the plant payoff takes one of two forms depending on the specifica-

tion. Most simply, we estimate specifications where plant penalties are a constant h(pjt) = −h.

We also estimate specifications where plant penalties depend on pollution

πj(aRt = Punish|st) = −h(pjt)

= − (τ01{p < pjt < 2p}+ τ11{2p ≤ pjt < 5p}+ τ21{5p ≤ pjt}) ,

where pjt is the pollution reading and the legally mandated pollution threshold p. The payoff

for punishment is the cost to the plant of temporary closure and any remediation.

If the machine Inspects the plant has payoff

πj(aRt = Inspect|st) = −b(pjt, aj−)

= −(1− 1{aj− = Comply})×

(ν01{p < pjt < 2p}+ ν11{2p ≤ pjt < 5p}+ ν21{5p ≤ pjt}) .

The subscripts in aj− reference the prior action of the plant. If the regulator is to move at

turn t, then aR− will be the regulatory machine’s prior action at t − 2; if the plant is to move

at t then aR− will have been taken at t − 1. The payoff for inspection captures the possible

disruption posed by inspections and any bribes plants give on being inspected. This function

specifies that inspections are costless for plants that have recently complied but, for plants that
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have not recently complied, inspections incur costs that depend on pollution emissions. We also

estimate specifications where inspections are costless for all plants.

Warnings are costless to the plant but continue the stage and obligate the plant to respond.

Finally, the machine may Accept that the plant is compliant, which costs the plant nothing and

ends the penalty stage.

2 . States and state transitions

We specify the common state of the game as comprised of the pollution reading, the last two

actions of the regulator and plant, and the penalty stage round:

st = {pjt, aj−, aR−,1{t > 2},1{t > 4},1{t > 6}} .

The pollution reading pjt is the maximum reading for any pollutant observed in the most recent

inspection; if no inspection occurs in round t, then pollution is recalled from the last inspection

within the stage. We specify the round as entering with several dummies to allow regulatory

actions to respond flexibly to the selection of plants that may occur across rounds.27

The state transition after the plant moves is wholly deterministic, because the plant affects

only how its own action is recorded in the state: if it chooses to Comply today, then aj− =

Comply tomorrow. The transition after the regulator moves has a deterministic part, for the

machine’s action, and a stochastic part, the current plant pollution reading. We use a simple

count estimator for the pollution state transition when the machine moves.

Pr(p′|pjt, aRt) =

∑
j,c,t 1{pj,t+1 = p′|pjt, aRt}∑

j,c,t 1{pjt, aRt}
.

The pollution state may transition only if aRt = Inspect. We restrict the pollution transition to

depend on past pollution and the machine’s move, but not the plant’s past moves.28 When the

machine Accepts the penalty stage ends and the firm draws a new u2jm.

We treat each chain of interactions between the plant and the regulatory machine as inde-

pendent, i.e. u2j,m+1 is independent of u1j and u2jm. The regulator continues to observe part of
27In theory, the whole history of player actions could enter the state. We found that enriching the state in

plausible directions, like including further lags, did not help predict regulatory actions.
28The count estimator may be biased for low-probability events in finite samples, so that conditioning on more

past actions will leave many cells empty (e.g., the probability of pollution transitioning from above 5 times the
standard to between 1 and 2 times given that the plant complied and the regulator inspected). Nonetheless, we
find the count estimator preferable to smooth alternatives, such as an ordered logit model, because it does not
restrict state transition patterns.
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pollution, u1j , but conditional on this observation does not, for example, use past readings from

the penalty stage to determine targeting.29

3 . Regulatory machine conditional choice probabilities

The plant knows the machine action probabilities in each possible future state. We use a

multinomial logit model to estimate these conditional probabilities, where:

Pr(aRt = a|st) =
exp (q(st)

′ωa)∑
a′ exp (q(st)′ωa)

ωa is a vector of coefficients for each action and q(sit) is a vector of state values: dummies for the

possible most recent actions, categorical bins for the observed pollution level pit, and dummies

for the stage of the game.

4 . Action-specific values

We calculate action-specific values for the plant using backwards induction. We assume the

game is finite and that the regulatory machine will always accept in period T = 35, which is well

beyond the ultimate round of t = 19 actually observed in the data.30 We further assume the

plant does not anticipate any change in future value from actions beyond the current penalty

stage. In the plant’s problem, which is then finite, we infer action-specific values using the state

transitions and choice probabilities, starting at the final round.31 We use a discount factor of

δ = 0.991 between rounds, which has been calibrated, given the average round duration, to

match the annual returns on capital for Indian firms found by Banerjee and Duflo (2014).
29This assumption is for tractability but is also empirically reasonable. The average time between chains, about

five months, is much larger than the average time between actions within a chain, two weeks. Recent pollution
readings do not change regulatory targeting of inspections (Appendix Table A10, column 4). Lastly, the regulator
has a short memory in practice; of those actions that explicitly cite a prior inspection, 93% of the time the
inspection cited is the most recent prior inspection.

30Given that the probability of regulatory machine’s acceptance in any given round acts like a discount factor,
this assumption on the game length is conservative in that late rounds matter very little for plants’ expected
values.

31When t = T , then vj(aRt|st) = 0. At t = T − 1, the plant’s value equals its one-period profit plus an action-
specific shock, vj(ajt|st) = πj(ajt|st)+ej(ajt, st). The regulator always moves as estimated in the data. At moves
t = T − 3 and all earlier moves of the plant, the plants action-specific value is found with the empirical analogue
to equation (6), where the plant’s profit in a given round depends on the parameters θuP . For the estimation,
we restrict the sample to all plant actions taken in round t = 4 and after, omitting t = 2 on the grounds that
we believe the plant often does not have a chance to respond to the regulator in t = 2 before another regulatory
action is observed (See discussion in Section II).
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C.2 Targeting stage estimation

Section V.B. describes the moments used to estimate the targeting stage of the model. This

Appendix derives the expressions for these moments in the model. Given the form of the inspec-

tion targeting function and the assumed distributions of cost and pollution shocks, most of the

model moments have concise analytic forms.

• Pollution equation. We use Tj as an instrument for Nj in the pollution equation (1):

g1j(φ) = Z ′j(logPj − φ0 −X ′jφ1 −Runjφ2) (8)

where Zj = [1 X ′j Tj ]
′.

• Inspection equation. The targeting rule allows for an analytic expression of the expected

number of inspections, given plant characteristics Xj . We calculate the expected number

of initial inspections for a plant with certain observable characteristics as

E[I(u1j |Xj , Tj , λ, β, ρ)] =

∫
φ(u1/σ1)I(u1j |Xj , Tj , λ, β, ρ)dF (U1)

=

∫
φ(u1/σ1)λ2Φ

(
λ1 +X ′jβ1 + Tjβ2 + u1

ρ

)
dF (U1)

= λ2Φ

(
λ1 +X ′jβ1 + Tjβ2√

ρ2 + σ21

)
,

using the distribution of u1.32 Therefore, for any Xj , Tj and candidate parameters, we

can calculate the expected number of initial inspections by integrating over the observable

pollution shocks. With this expression, we form moments

g2j(β) = Z ′j(E[I(u1j |Xj , Tj , λ, β, ρ)]− Ij). (9)

Similarly, we can calculate the expected value of squared inspections as

E[I2(u1j |Xj , Tj , λ, β, ρ)] =

∫
φ(u1/σ1)I2(u1j |Xj , Tj , λ, β, ρ)(u1|Xj , Tj ;β)dF (U1)

= λ21

∫
φ(x)Φ2

(
x− a
b

)
dx

for x = u1/σ1 ∼ N (0, 1), aj = [−(λ1 +X ′jβ1 + Tjβ2)/σ1], b =
√
ρ2 + σ21. This integral can

32Let X ∼ N (0, 1). Then

I(a, b) =

∫
φ(x)Φ

(
x− b
a

)
dx = 1− Φ

(
b√

a2 + 1

)
= Φ

(
−b√
a2 + 1

)
.

Recall that u1 ∼ N (0, σ1) so u1/σ1 ∼ N (0, 1).
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be represented as a bivariate normal cumulative distribution function N2. If we let

Z1, Z2 ∼ N

µ =

 −aj
−aj

 ,Σ =

 ρ2 + σ21 σ21

σ21 ρ2 + σ21




and represent the joint CDF of these variables as Pr(Z1 ≤ z ∪ Z2 ≤ z) = F(z, µ,Σ), then

the expected value of inspections squared is

E[I2(u1j |Xj , Tj , λ, β, ρ)] = λ22F([0 0]′, µ,Σ).

We form moments as

g3j(β) = Z ′3j(E[I2(u1j |Xj , Tj , λ, β, ρ)]− I2j ). (10)

where Z3j = [1 Tj ]
′.

• Abatement cost moments. We use the observed probabilities of Run and expected

abatement costs, conditional on running, to form:

g4j(φ, µ, σ) = Pr(Run = 1|φ, µ, σ)− 1{cj > 0} (11)

g5j(φ, µ, σ) = E[cj |Run, φ, µ, σ]− 1{cj > 0}cj . (12)

The probability of running and expected cost, conditional on running, are both functions of

the distributions of cj , u1 and u2. There is not a convenient analytic form for the truncated

distribution of cj , from which to form moments, since this would be the expectation of a

truncated sum of log-normal and normal components, passed through a non-linear penalty

function V0(·). Therefore, we partly simulate the relevant probability and expectation.

Let cj = Ij(V0(Pj) − V0(P ∗j )) so that Run = 1{cj < cj}. The threshold cj is a function

of plant pollution shocks u1, u2 and model parameters (including parameters on targeting,

to determine Ij). For candidate parameters and a draw of shocks, we can calculate cj for

each plant. Then the probability of Run in a simulation s is

Prs(Run = 1|φ, µ, σ) = Pr(cj < csj |φ, µ, σ)

= Φ

(
log csj − µc

σc

)
.

Across S simulation draws for each pollution shock, we calculate

Pr(Run = 1|φ, µ, σ) =
∑

s=1,...,S

Φ

(
log csj − µc

σc

)
/S.

We have used simulation over two dimensions of the shock, and an analytic expression for
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the truncated moment over the third.

For the expected value of maintenance costs, conditional on maintenance, we use the mo-

ments of the truncated log-normal distribution.33 We form the expected cost of mainte-

nance, conditional on running equipment, as

E[cj |Run, φ, µ, σ] = exp(µc + σ2c/2)
Φ(−σc + b0j)

Φ(b0j)
,

where b0 = (log csj −µc)/σc. Again, because the value csj depends on the simulation draws,

we take the expected value of cj as the mean of this expression over simulation draws.

This simulation is somewhat complicated: plants only decide on whether to Run abate-

ment equipment based on their expectation of the regulator’s targeting, and this targeting

rule depends on parameters. Thus the simulation involves first solving the targeting rule

for given parameters, then simulating csj for each draw of pollution shocks, and finally

calculating the probability of abatement and expected value of abatement over simulation

draws.

• Variance of pollution shocks. We wish to estimate the components of σ for the standard

deviation of the observed and unobserved pollution distributions.

From the pollution equation, the variance of log pollution is equal to the sum of the

variances of the two independent shocks (recall, ε2 = u1 + u2). Therefore

g6j(β, φ, σ) = E[ε22|β, φ, σ]− ε̂22

= σ21 + σ22 − ε̂22.

where we can form our empirical estimate of the pollution residual as ε̂2 = Pj−φ̂0−X ′jφ̂1−

Runjφ̂2. This moment identifies the sum of the variances of the observed and unobserved

shocks.

• Covariance of pollution and inspection shocks. Finally, we are interested to separate

the effect of observed and unobserved pollution shocks. The key idea is that only observable
33For truncation from above with x ∼ N (µ, σ) and y = ex, these are

E[y|y ≤ b] = exp(µ+ σ2/2)
Φ(−σ + b0)

Φ(b0)

E[y2|y ≤ b] = exp(2µ+ 2σ2)
Φ(−2σ + b0)

Φ(b0)
.

where b0 = (log b− µ)/σ.
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pollution shocks result in more inspections. We form an additional moment

g7j(β, φ, σ) = E[ε2 · I|θ]− ê2j × Ij .

This moment is related to the covariance of the pollution shock and the level of inspections.

Intuitively, if the inspection decision is based upon a part of the pollution error not observed

by the econometrician, then the pollution residual and inspections will covary.

We derive a prediction for E[ε2 · I|θ] in the model.

E[ε2 · I|θ] = E[(u1 + u2) · I(u1|θ)]

= E[u1 · I(u1|θ)] + E[u2 · I(u1|θ)]

= E[u1 · I(u1|θ)].

Where the third line follows because the pollution shock u2 is unobserved by the regulator

and cannot affect inspection decisions. This is the key idea for identifying targeting; the

inspection targeting function depends only on the observable part of the shock.

We proceed by substituting in the targeting function and integrating by parts to yield the

desired moment in the model

E[ε2 · I|θ] = λ2
σ1
ρ
φ

(
−(λ1 +X ′jβ1 + Tjβ2)√

ρ2 + σ21

)
.

This moment will depend on the observable characteristics of each plant. Because λ2 > 0,

σ1 > 0 and ρ > 0, this correlation is expected to be positive: plants with high pollution

shocks are expected to have higher inspections, due to regulatory targeting.

C.3 First-order conditions of regulator’s targeting problem

The regulator’s objective function given parameters and firm characteristics is

λ∗0, λ
∗
1 ∈ arg min

λ1,λ2

∑
j=1,...,N

∫ ∫
F
(
I(u1j |Xj , Tj , λ, β, ρ)(V0(Pj)− V0(P̃j))|φ, µc, σc)

)
×P̃ (1− eφ2)dF (U2)dF (U1) (13)

such that∑
j=1,...,N

∫
I(u1j |Xj , Tj , λ, β, ρ)dF (U1) = N · I. (14)

The optimal targeting rule is of the form

I∗(u1j |Xj , Tj , λ, β, ρ) = λ∗2Φ

(
λ1 +X ′jβ1 + Tjβ2 + u1

ρ

)
. (15)
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In practice, the integrals over pollution shocks are approximated with draws of u1, u2. Therefore

we write this objective function as a sum over simulations s = 1, . . . , S. Let A(λ|·) represent the

amount of abatement achieved with targeting parameters λ. The cost distribution is log-normal,

so

A(λ|Xj , Tj , β, φ, σ, us) =
∑
j

∑
s

Φ

(
log[I(u1j |Xj , Tj , λ, β, ρ)∆js]− µc

σc

)
× P̃ (1− eφ2),

where ∆js = V0(Pj)− V0(P̃j) is the reduction in expected penalties from taking the abatement

action Run. We omit arguments and substitute the form of the targeting function.

A(λ) =
∑
j

∑
s

Φ

(
log[I(u1)∆js]− µc

σc

)
× P̃ (1− eφ2)

=
∑
j

∑
s

Φ

(
log[λ2Φ((λ1 + β1Xj + β2Tj + u1)/ρ))∆js]− µc

σc

)
× P̃ (1− eφ2).

Let Zjs = (X ′Jβ1 + Tjβ2 + u1)/ρ. Then we have

A(λ) =
∑
j

∑
s

Φ

(
log[λ2Φ(λ1/ρ+ Zjs)∆js]− µc

σc

)
× P̃ (1− eφ2)

=
∑
j

∑
s

Φ

(
log λ2 + log[Φ(λ1/ρ+ Zjs)] + log[∆js]− µc

σc

)
× P̃ (1− eφ2).

Let the argument of the cost distribution be denoted by Cjs. Taking the derivative with respect

to λ2,

∂A(λ)/∂λ2 =
∑
j

∑
s

φ(Cjs)
1

λ2σc
× P̃ (1− eφ2).

With respect to λ1,

∂A(λ)/∂λ2 =
∑
j

∑
s

φ(Cjs)
1

σc

1

Φ(λ1/ρ+ Zjs)
φ(λ1/ρ+ Zjs)

1

ρ
× P̃ (1− eφ2).

We can write the Lagrangian of the optimal targeting problem. Omitting arguments,

L(λ1, λ2) =
∑
j=1

∫ ∫
F
(
Ij(u1)(V0(Pj)− V0(P̃j))

)
× P̃j(1− eφ2)dF (U1)dF (U2)

−γ

∑
j∈C

∫
Ij(u1)dF (U1)−N · I


=

∑
j

∑
s

Φ

(
log[I(u1j |Xj , Tj , λ, β, ρ)∆js]− µc

σc

)
× P̃j(1− eφ2)

−γ

∑
j∈C

λ2Φ

(
λ1 +X ′jβ1 + Tjβ2√

ρ2 + σ21

)
−N · I

 .
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Here we denote by C the set of plants j in the control group. Thus the optimality constraint

is that the targeting rule is optimal in the control group. We then calculate the first-order

conditions of the constrained problem.

∂L
∂λ2

=
∂A
∂λ2
− γ

∑
j

Φ

(
λ1 +X ′jβ1 + Tjβ2√

ρ2 + σ21

)
= 0 (16)

∂L
∂λ2

=
∂A
∂λ1
− γ

∑
j

λ2φ

(
λ1 +X ′jβ1 + Tjβ2√

ρ2 + σ21

)
1√

ρ2 + σ21
= 0 (17)

∂L
∂γ

=
∑
j∈C

λ2Φ

(
λ1 +X ′jβ1 + Tjβ2√

ρ2 + σ21

)
−N · I = 0. (18)

This optimal targeting parameters λ1, λ2 satisfy these first-order conditions with Lagrange mul-

tiplier γ representing the shadow value of the inspection budget constraint.
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D Robustness and Sensitivity Analysis

This Appendix studies the robustness of the structural estimates. Section D.1 considers the

robustness of estimated targeting parameters with respect to the two calibrated parameters σc

and ρ. Section D.2 considers the sensitivity of a broader set of parameters of interest with respect

to variation in the underlying moments in the data, using the measure of Andrews et al. (2017).

D.1 Robustness to Calibrated Parameters

The targeting stage estimation fixed the values of σc and ρ. Fixing these values reduces

the number of free parameters in the maintenance cost distribution from two to one and in the

targeting function from three to two. This sub-section studies how the values of these parameters

affect the values of estimated parameters.

Table D12 shows the baseline targeting stage estimates in column 1 and estimates with

alternate values of the fixed parameters in columns 2 through 4. The calibrated parameters are

shown in the column headers. Columns 2 and 3 change the value of σc from the baseline value

of σc = 0.50 to σc = 0.25 and σc = 1.00, respectively, and columns 4 and 5 change the value of

ρ from the baseline value of ρ = 0.25 to ρ = 0.15 and ρ = 0.35, respectively.

First consider the effect of altering σc on the parameter estimates. Since σc is a cost param-

eter, and affects the willingness to Run maintenance equipment to reduce pollution, we expect

and indeed find that there are very small effects of this parameter on the targeting equation

coefficients. There are two main effects of altering σc: first, a higher σc in column 3, relative to

column 1, increases the estimated µc and increases the efficacy of abatement (Run equipment co-

efficient). The model accommodates higher dispersion of cost by moving the cost distribution up

and increasing the efficacy of abatement, raising both the gross costs and benefits of abatement,

so that the model can still match the moments on the share of plants that are willing to Run

and their cost conditional on Run. The changes in estimates are noticeable but not very large;

multiplying σc by a factor of four, from column 2 to 3, increases the efficacy of abatement by a

factor of −1.07/− 0.60 = 1.78, and both estimates are within one standard error of our baseline

estimate in column 1. For comparison, in Table 6, the change in the estimated abatement efficacy

from imposing the constraint of optimal targeting is much larger.

Next consider the change from altering ρ on the parameter estimates. Since ρ is an inspec-
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tion targeting parameter, we expect and find that there are very small effects of changing this

parameter (in columns 4 and 5) on the coefficients in the pollution equation (relative to column

1 baseline estimates). Changing ρ, which is the denominator of the argument of the targeting

function, has predictably larger effects on the coefficients β and λ in the targeting function.

In particular, for a smaller ρ, in column 4, we see smaller β estimates for the targeting equa-

tion, and for a larger ρ, in column 4, we see larger β estimates. These changes are roughly

but not exactly proportional; for example the inspection treatment coefficient normalized by ρ

is 0.162/0.25 = 0.648 in column 1 and 0.121/0.15 = 0.807 in column 4. The argument of the

targeting functions, for a plant the same observables and u1 shock, therefore changes with ρ

somewhat, and the estimated parameters λ also change to fit the moments in the data. For

example, in the column 4 estimates the maximum inspections parameter λ2 moves down for a

smaller ρ and the shift parameter λ1 becomes less negative, which offset the effects of changes

in the β/ρ coefficients on inspections.

These counteracting shifts in estimated parameters will matter to the extent that the tar-

geting function fits the data moments differently with different values of ρ. To get a sense of

the net effect of these changes, in Table D13 we give the values of the main targeting moments,

expected inspections and expected inspections squared, from the model, calculated under each

set of fixed and estimated parameters. The column headers are the same as in Table D12.

Looking across the columns of Table D13 we see that the expected inspections moment

ranges from 2.15 in the baseline case to as high as 2.18 and as low as 2.13. The range of expected

inspections hardly varies depending on whether the targeting function has a moderate ρ, or, say,

a lower ρ with smaller β estimates and shifts in λ, as in column 4. The expected inspections

squared moment is only somewhat more variable with a range from 6.95 to 7.36 depending on

the fixed value of ρ. Because the targeting moments can be fit about equally well with different

values of ρ, offset by changes in the estimated (β̂, ˆlambda), the values of these parameters are not

separately well-identified, and estimation runs allowing a free ρ yielded very imprecise targeting

parameters.

Finally, consider the effects of both calibrated parameters on the estimated standard devia-

tions of pollution shocks in Table D12, Panel B. The baseline estimate of σ̂1 = 0.111. Doubling

or halving σc has nearly no effect on the estimated σ1 (σ̂1 = 0.110 and σ̂1 = 0.117, respectively)
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and decreasing and increasing ρ also has small effects (σ̂1 = 0.093 and σ̂1 = 0.112, respectively).

All these changes are within one standard error of the original estimate and typically far smaller.

The effects of the fixed parameters on the standard deviations of unobserved pollution σ2 are

also small.

We conclude that the interpretation of the parameter estimates is robust to variations in the

fixed parameters σc and ρ. In particular, the significance of direct changes in the ρ parameter

for targeting appear to be offset by changes in the estimated λ and β parameters. The fixed

parameters do not affect the key finding that the regulator has little information on pollution.

D.2 Sensitivity of Parameter Estimates to Moments

1 . Sensitivity Matrix: Definition

We estimate the targeting function through the generalized method of moments with a mix of

analytic and simulated moments (Section V.B. and Appendix C.2). Andrews et al. (2017) defines

the sensitivity matrix Λ for any estimator θ̂ that minimizes a criterion function ĝ(θ)′Ŵ ĝ(θ), where

ĝ(θ) is a vector of moments or other statistics and Ŵ is a weight matrix.

Assume that
√
nĝ(θ0) converges in distribution to g̃ such that E[g̃] = 0 under the model. For

alternative specifications of the model this may not be the case. Andrews et al. (2017) define local

perturbations of the maintained model and show that, under these perturbations,
√
n(θ̂ − θ0)

converges in distribution to a random variable θ̃ such that θ̃ = Λg̃. Then the estimator θ̂ has

first-order asymptotic bias:

E[θ̃] = ΛE(g̃),

where Λ = −(G′WG)−1G′W , W is the probability limit of the weight matrix Ŵ , and G is the

Jacobian of the probability limit of ĝ(θ) at θ0. We can estimate Λ using the standard plug-in

estimates of W and G at little extra computational cost.

Because the moments are in different units, we scale Λ so that it can be read as the effect of

a one-standard-deviation violation of the given moment condition on the asymptotic bias of the

given parameter. The value of entry Λjk is therefore measured in the units of parameter k per

standard deviation of moment j.

Sensitivity has two equivalent interpretations. Formally, sensitivity is defined as the asymp-
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totic bias of the estimator under local misspecification. One can also think of sensitivity as

approximating how a change in one data moment, such as would be generated by an alternative

model, would locally affect the parameter estimates.

D.3 Sensitivity of Selected Parameters

Table D14 presents sensitivities for selected parameters (columns) with respect to the esti-

mation moments. Each column of the table gives the sensitivity of the column parameter to the

estimation moments listed down the rows. Table D15 condenses this information into the four

moments to which each main parameter of interest is most sensitive.

1 . Sensitivity of inspection treatment coefficient

To illustrate the intuition for the sensitivity measure, consider the sensitivity of the inspection

treatment coefficient in the targeting equation (Table D14, column 1). The sensitivity of the

treatment coefficient to the product of the mean of inspections and the treatment dummy is 1.89

(Row Inspection mean × T ). This sensitivity means that, if the product of inspections and the

treatment dummy were higher by one standard deviation, the estimated inspection coefficient β2

would increase by 1.89 (within the argument of the targeting function; the marginal effect of this

change on mean inspections therefore depends on covariates). In this simple case, sensitivity is

easy to understand. The higher the mean inspections for treated firms, relative to control, the

higher the estimated treatment effect. Table D15 shows that the four most influential moments

for β2 are (i) the mean of the product of treatment with inspections squared, (ii) the mean of the

product of treatment with inspections, (iii) mean inspections squared and (iv) mean inspections.

We now turn to consider the sensitivity of several parameters of interest to the estimation

moments. We focus on the parameters of regulatory information, abatement cost and the efficacy

of pollution abatement

2 . Sensitivity of inspection targeting parameters λ1 and λ2

The inspection targeting equation relates unobserved (by the econometrician) pollution shocks

and plant observables to inspections. A higher level parameter λ2 gives the maximum number

of inspections a plant may receive and a higher shift parameter λ1 increases the argument of the
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targeting function, so that all plants receive a higher level of inspections.

Table D15 shows that interactions of the treatment with the inspection distribution moments

are influential for the targeting parameter estimates. In the λ1 row, the column (2) sensitivity

of -2.99 means that a one-standard-deviation higher mean product of inspections and treat-

ment, conditional on other moments, would decrease the inspection shift parameter λ1 by 2.99.

If squared inspections in the treatment group were relatively higher—without changing mean

inspections—the estimated inspection shift parameter λ1 would decrease. This shift downwards

would allow the model, with a steep targeting function, to match a relatively higher volatility of

inspections in the treatment, since plants in the treatment group are more likely to be shifted

out onto the steep part of the targeting function. The targeting parameters are also sensitive to

other interactions of the treatment with the inspection distribution.
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Table D12: Robustness of Targeting Estimates to Calibrated Parameters

σc = 0.50 0.25 1.00 0.50 0.50
ρ = 0.25 0.25 0.25 0.15 0.35

(1) (2) (3) (4) (5)

Panel A. Targeting and Pollution Equations
Pollution Equation
Run equipment (=1) -0.742 -0.604 -1.073 -0.703 -0.786

(0.307) (0.233) (0.550) (0.282) (0.333)
Audit treatment -0.102 -0.097 -0.111 -0.106 -0.099

(0.085) (0.084) (0.089) (0.085) (0.086)
Audit treatment × 0.066 0.059 0.082 0.069 0.069
inspection treatment (0.108) (0.107) (0.114) (0.107) (0.109)

Audit sample 0.613 0.607 0.624 0.618 0.601
(0.137) (0.135) (0.143) (0.137) (0.138)

Region: Ahmedabad -0.201 -0.186 -0.232 -0.214 -0.183
(0.132) (0.130) (0.138) (0.131) (0.132)

Region: Surat -0.371 -0.345 -0.426 -0.382 -0.351
(0.164) (0.161) (0.177) (0.163) (0.166)

Constant -0.004 -0.034 0.067 0.002 -0.010
(0.103) (0.096) (0.129) (0.100) (0.105)

Targeting Equation
Inspection targeting shift -0.219 -0.220 -0.203 -0.075 -0.457
parameter (λ1) (0.066) (0.066) (0.062) (0.034) (0.137)

Inspection targeting level 10.043 10.162 9.304 6.951 18.445
parameter (λ2) (3.124) (3.164) (2.598) (1.233) (11.751)

Inspection treatment 0.162 0.161 0.168 0.121 0.182
(0.025) (0.025) (0.025) (0.017) (0.036)

Audit treatment -0.005 -0.005 -0.007 -0.006 -0.003
(0.017) (0.017) (0.018) (0.013) (0.020)

Audit treatment × 0.016 0.015 0.018 0.015 0.012
inspection treatment (0.021) (0.020) (0.022) (0.016) (0.023)

Audit sample 0.095 0.095 0.098 0.070 0.110
(0.024) (0.024) (0.025) (0.018) (0.030)

Region: Ahmedabad -0.221 -0.222 -0.232 -0.178 -0.237
(0.044) (0.044) (0.045) (0.033) (0.057)

Region: Surat -0.178 -0.179 -0.186 -0.144 -0.193
(0.040) (0.040) (0.041) (0.030) (0.050)

Panel B. Distributions of Pollution and Maintenance Cost Shocks

Standard deviation of observed 0.111 0.110 0.117 0.093 0.112
pollution shock (σ1) (0.022) (0.022) (0.023) (0.016) (0.028)

Standard deviation of unobserved 0.866 0.855 0.899 0.862 0.871
pollution shock (σ2) (0.042) (0.037) (0.073) (0.041) (0.045)

Mean of log maintenance 1.859 1.637 2.350 1.852 1.870
cost (µc) (0.316) (0.317) (0.337) (0.315) (0.315)

The table reports estimates of the targeting stage of the model under alternate values of the calibrated pa-
rameters σc and ρ. Each column shows one set of estimates of the unconstrained targeting model, i.e. without
imposing that the regulator’s inspection rule is optimal. We use S = 200 simulations for each set of estimates.
Column 1 shows the baseline estimates (These estimates differ very slightly from those reported in Table 10
of the paper because Table 10 uses S = 5000 simulations).
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Table D13: Robustness of Expected Inspections to Calibration

σc = 0.50 0.25 1.00 0.50 0.50
ρ = 0.25 0.25 0.25 0.15 0.35

(1) (2) (3) (4) (5)

E[Inspections] 2.147 2.149 2.150 2.177 2.126
E[Inspections2] 7.111 7.136 7.131 7.358 6.949
The table reports how the model predictions for moments of expected in-
spections and expected inspections squared change depending on the value
of the calibrated parameters σc and ρ. The rows show the values of the two
moments and the columns show the predictions of the model at the estimated
parameters with each set of calibrated parameters (shown in the column head-
ers). The values of the expected inspections and expected inspections squared
moments in the data are 2.20 and 7.53, respectively.

Table D14: Sensitivities for Selected Parameters

Moment β2 φ2 λ1 λ2 φ0 σ1 σ2 µc
(1) (2) (3) (4) (5) (6) (7) (8)

Pollution Resid.×T -0.360 3.114 -0.938 41.689 0.758 -0.362 0.444 1.579
Pollution Resid. -0.873 -1.858 -2.406 105.770 3.901 -0.927 -0.119 -1.800
Pollution Resid.×X1 0.026 0.819 0.087 -3.703 0.272 0.033 0.106 0.402
Pollution Resid.×X2 -0.047 -1.464 -0.151 6.477 -0.458 -0.058 -0.186 -0.817
Pollution Resid.×X3 -0.185 0.081 -0.505 22.258 -0.055 -0.195 0.045 0.080
Pollution Resid.×X4 0.439 -0.206 1.195 -52.658 -2.651 0.461 -0.081 0.160
Pollution Resid.×X5 0.383 -0.015 1.042 -45.914 -2.829 0.402 -0.047 0.216
Inspection Mean×T 1.888 -0.411 1.779 -112.948 -0.357 0.688 -0.075 0.254
Inspection Mean -1.210 0.223 0.292 44.942 0.402 -0.583 0.027 0.223
Inspection Mean×X1 0.297 0.168 -0.061 -4.052 0.013 0.029 0.017 0.063
Inspection Mean×X2 -0.335 -0.133 0.102 3.278 -0.007 -0.027 -0.013 -0.074
Inspection Mean×X3 0.128 -0.080 0.260 -12.134 -0.004 0.033 -0.014 0.278
Inspection Mean×X4 -0.182 -0.283 -0.622 16.114 -0.083 -0.017 -0.020 -0.312
Inspection Mean×X5 -0.172 0.023 -0.644 14.989 -0.031 -0.014 0.011 -0.191
Insp. Squared Mean×T -2.085 1.746 -2.992 171.161 0.880 -1.205 0.220 0.336
Insp. Squared Mean 1.469 -2.163 1.283 -95.999 -1.003 1.044 -0.232 -0.742
Prob(Run) -0.005 1.026 -0.014 0.603 0.172 -0.005 0.107 -1.356
E[cj |Run] -0.049 10.317 -0.138 6.066 1.729 -0.053 1.072 7.256
Var(Pollution) -0.000 0.090 -0.001 0.053 0.015 -0.000 0.886 0.067
Cov(Pollution, Insp.) 0.872 -0.731 2.376 -104.703 0.185 0.917 -0.255 0.806

Note: This table presents values from the estimated sensitivity matrix Λ, scaled so that the entries
can be read as the effect of a one-standard-deviation violation of the given moment condition on the
asymptotic bias of the given parameter. For the column of corresponding to a given parameter, we
can interpret the entries as the sensitivity of the estimated parameter to beliefs about the degree of
misspecification of each moment, expressed in standard deviations. Alternatively, we can interpret the
estimated sensitivities as a measure of how estimates will respond to changes in the underlying data.
While sensitivity is computed with respect to the complete set of variables, the table shows only a
subset of particular interest.
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The units of sensitivity are not comparable across parameters, since they are measured in

the units of each parameter. The sensitivities for λ2 are so large because λ2 gives the maximum

number of inspections for an arbitrarily large observable pollution shock. Given the estimated

shape of the targeting function, this maximum is not reached in the sample. Movements in λ2

have a lesser effect on the changes in inspections for plants with in-sample covariates and more

likely shocks.

The parameters λ1 and λ2 are sensitive to many of the same moments, but in opposite

directions. The sensitivities of these parameters have different signs for seventeen of twenty

moments (Table D14) and for all of the four most influential moments (Table D15). In addition

to the moments of the inspection distribution, the inspection shift parameter is sensitive to

the pollution residual and the covariance of the pollution and inspection residuals (Table D15,

columns 4 and 6). This relationship arises since λ1 is the constant in the argument of the

targeting function, and u1, the observed pollution shock, enters the same argument. The level of

λ1 must adjust to match the observed level and dispersion of inspections given that the observed

pollution shock has mean zero. To put it another way, if the pollution residual increased and the

inspection shift parameter did not change, the model would over-predict inspections on average.

3 . Sensitivity of abatement efficacy φ2

The sensitivities show that several moments affect the estimated effect of running abatement

equipment on pollution, φ2. The most obvious ex ante are that the φ2 estimate is sensitive to

the pollution residual times the treatment and the pollution residual. If treatment pollution

were higher by one standard deviation, then φ̂2 would increase from −0.71 to −0.51, indicating

a decline in abatement efficacy of 11 percentage points (efficacy being 1 − exp(φ2)). If the

treatment had reduced pollution less than observed, the model would infer that abatement was

less effective.

The efficacy of abatement depends on the pollution equation, as it would exclusively in

a single-equation model, but also the cost of maintenance. Table D15 shows that Pollution

Resid.×T is only the second most influential moment for φ2, after the moment giving the abate-

ment maintenance cost conditional on running equipment. If the mean maintenance cost condi-

tional on running increased by 100 dollars, the φ̂2 coefficient would increase from −0.71 to −0.53
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(Panel φ2, moment E[cj |Run]).

4 . Variances of observed and unobserved pollution shocks, σ1 and σ2

A goal of the model is to understand what the regulator knows about pollution. Sensitivity

analysis can tell us how the model separates the pollution shock into an observed component

with standard deviation σ1 and an unobserved component with standard deviation σ2.

Table D15, row σ2 shows that the unobserved component of pollution is most sensitive to

maintenance cost, the variance of pollution and the pollution residual interacted with treatment,

in that order. Directly, if the variance of observed log pollution were higher then the unobserved

pollution shock would be estimated to be higher also (column 4). More subtly, if expected

maintenance cost is higher conditional on running, for example, then it must be that there is

greater variance in unobserved pollution, in order to induce plants to be willing to run their

costly equipment (given a fixed inspection targeting function, set by parameters λ).

The moments important for the observed component σ1 are notably distinct from those that

are important for σ2. The moment to which σ1 is most sensitive is not a pollution moment but

the product of squared inspections and treatment. Since the observed pollution shock enters

the targeting function, and treatment plants have a higher targeting function argument (i.e.,

higher inspections), the observable pollution shock is estimated to be larger if the dispersion of

inspections is greater for treatment plants (column 2) and for control plants (column 4). The

squared inspections moments are the uncentered second moments of the targeting function and

so capture how much variation in pollution there is on which the regulator can target. If the

covariance of pollution and inspection residuals is higher this increases the observable part of the

pollution shock (row σ1, column 8) but decreases the unobservable part (row σ2, column 8). The

model can therefore separate the two pollution shocks since only the observable shock influences

the distribution of inspections, through targeting, and since they have effects of opposite sign on

the covariance between pollution and inspections.
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