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Abstract 

In order to induce farmers to adopt a new agricultural technology, we use predictions 
from the threshold model of diffusion to target information to key individuals within 
villages in Malawi. We combine social network data and model simulations to ex ante 
determine who is treated in our field experiment. We observe adoption decisions in 
200 villages over 3 years. Our results are consistent with a model in which many 
farmers need to learn from multiple people before they adopt themselves. This means 
that without proper targeting of information, the diffusion process can stall and 
technology adoption remains perpetually low.  
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1. Introduction 

 Technology diffusion is critical for growth and development (Alvarez et al. 2013, Perla and 

Tonetti 2014). Information frictions are potential constraints to technology adoption, and social 

relationships can serve as important vectors through which individuals learn about, and are then 

convinced to adopt, new technologies.1  With a better understanding of the diffusion process and how 

people choose to adopt new technologies, we could potentially manipulate social learning and identify 

strategies that would maximize diffusion.  In this paper, we implement a field experiment in which we 

choose entry points of information into a social network and introduce a productive new agricultural 

technology via those entry points across 200 villages in Malawi.  

 Our experiment explores whether agricultural extension services can be improved to induce 

technology adoption. Agricultural productivity growth in Africa has stalled (World Bank 2008), in part 

because of a slow adoption rate of new technologies. Extension is the key policy tool governments 

use to promote technology adoption (Anderson and Feder 2007), and it often relies on social learning.  

A large literature has established that social learning about agricultural practices influences the uptake 

of new technologies among farmers (Griliches 1957, Foster and Rosenzweig 1995, Munshi 2004, 

Bandiera and Rasul 2006, Conley and Udry 2010, Burlig and Stephens 2019, Islam et al 2019).  We 

implement insights from the “threshold model” of diffusion (e.g. Granovetter 1978, Centola and Macy 

2007, Acemoglu et al 2011) - which postulates that individuals adopt a behavior only if they are 

connected to at least a threshold number of adopters – in a field experiment on agricultural extension. 

It is an attractive model to test in the context of agricultural technology adoption for several reasons.  

First, different thresholds in adoption are naturally micro-founded through a naive Bayesian learning 

model, as we demonstrate in section 2.  Second, it has clear policy relevance: if farmers need more 

                                                            
1 Large literatures in economics (Duflo and Saez 2003, Munshi 2008, Magruder 2010, Beaman 2012), finance (Bursztyn et 
al. 2013), sociology (Rogers 1962), and medicine and public health (Coleman et al 1957, Doumit et al. 2007, Oster and 
Thornton 2012) show that information and behaviors spread through inter-personal ties.  
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than one connection who has adopted before they themselves adopt (what this literature calls complex 

contagion), this would generate a very slow and in many cases permanently stalled adoption pattern. We 

anticipate that learning about a new agricultural technology in a developing country is precisely a 

context in which agents may have a high threshold. Third, in threshold models, the choice of network 

entry points used to influence diffusion becomes crucial, in that you cannot easily replicate the 

diffusion gains of strategic targeting by simply training a few additional farmers (Akbarpour, Malladi 

and Saberi 2018).  

We partner with the Ministry of Agriculture in Malawi to run experiments that could 

potentially enhance the effectiveness of its extension services by asking extension agents to target 

farmers in the village who will induce widespread social learning. Suppose an extension agency can 

train two farmers per village on a new technology. Whom should it train to maximize diffusion? If 

knowing only one farmer who has adopted is sufficient for most farmers to adopt—a threshold known 

as simple contagion (Centola and Macy 2007)—the extension agent would optimally spread the entry 

points far apart to minimize repetition and redundancy in the same part of the network. Instead, if 

farmers need to know multiple adopters to be persuaded to adopt (complex contagion), it is critical that 

the entry points are clustered together and share connections, in order to improve the chances that 

some recipients will learn from multiple sources simultaneously.  The design of our field experiment 

is based on this insight. 

Our experiment proceeded in the following steps. We first collected social network census 

data on agricultural learning relationships in 200 villages in Malawi. We then conducted simulations 

on those data to identify the two theoretically optimal entry points (“seeds”) that would maximize 

diffusion of information about a new technology, assuming the diffusion process is characterized by 

either simple contagion or complex contagion. In 50 villages, the two seed farmers were chosen based 

on the simple contagion model and in another 50 villages according to complex contagion. Ministry 
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of Agriculture extension agents trained the selected seeds. The specific technology promoted, ‘pit 

planting’, has the potential to significantly improve maize yields in arid areas of rural Africa.2  It is a 

practice that was largely unknown in Malawi, and learning is therefore crucial for the diffusion of this 

technology.  After being trained, seeds were asked to disseminate information about pit planting. We 

then trace adoption patterns in these villages over the next 3 years.   

 We compare the adoption in these network theory-based treatment villages against a 

benchmark treatment of 50 randomly selected villages, where agricultural extension agents use their 

local knowledge to select seeds.3 As another comparison, we implement a fourth arm in which we 

choose seeds as we did in complex contagion villages but where we proxied social network ties with 

geographic proximity (we call this arm the ‘Geo’ treatment). Unlike social network relationships, 

geographic location is easy for extension agents to observe, so we view this as a first step towards a 

policy-relevant alternative to data intensive approaches.  

A key insight from the threshold model is that poor targeting could lead to a complete failure 

of adoption within the village. We observe no diffusion of pit planting in 45% of the ‘benchmark’ 

villages after 3 years. In villages where seeds were selected using the complex contagion model, there 

was a 56% greater likelihood (p<0.01) that at least one person other than the seeds adopts in the 

village, relative to the benchmark.  The results suggest that simply changing who is trained in a village 

on a technology based on social network theory can increase the adoption of new technologies 

compared to the Ministry’s existing extension strategy.   

                                                            
2 It has been shown to increase productivity by 40-100% in tests conducted under controlled conditions (Haggblade and 
Tembo 2003); in large-sample field tests conducted under realistic “as implemented by government” conditions 
(BenYishay and Mobarak 2019), and using experimental variation among villagers in the present study.   
 
3 Extension workers may be able to select influential partners based on specialized knowledge such as her eagerness to 
try the new technology, or the trust other villagers place in their opinions.  As such, this benchmark provides a 
demanding test for network-based diffusion theory: our theoretically optimal partners were selected only by their 
position in the network, without the advantage of this additional local information. 



4 
 

During the 3-year period of the experiment, pit planting adoption grew from 0% to about 

11% in the complex contagion villages. This rate of increase in adoption is comparable to the spread 

of some very profitable new agricultural technologies (e.g. Munshi 2007). Ryan and Gross (1943) show 

that it took 10 years for hybrid seed corn to be adopted in Iowa in the 1930s, and there was often 5 

years between when a farmer heard of the technology and adopted it. The adoption rate is 3 percentage 

points lower in benchmark villages in years 2 and 3, though only the year 2 differences are statistically 

significant. We use our micro data on exactly which farmers adopt to provide more direct evidence in 

favor of the learning model we postulate. For example, we document larger and more sustained gains 

in adoption in complex contagion villages for the subset of farmers for whom returns to this 

technology are likely high (given their land-type), and in villages where farmers were initially 

uninformed about the technology, as predicted by the micro-foundation of the theory. By testing 

multiple predictions of the threshold model, we argue that - taken together –  the evidence suggests 

there is a meaningful number of farmers who face a threshold above one, and for whom targeting 

information is important.  

Even the low-cost geography-based targeting strategy generates some gains in adoption 

relative to the benchmark. However, physical proximity does not appear to be a good proxy for social 

connections in this context.  Developing other low-cost proxies for social network structure would be 

a useful avenue for future research.4 As a first step, we develop an intuitive algorithm to identify 

productive extension partners that can be implemented with a small number of interviews, and 

simulations on our data show that this method would generate large gains in technology adoption.5  

                                                            
4 For example, promising results in Banerjee et al. (2019b) imply that households know who is central in their village, and 
this type of information may be easily elicited from a random sample of people.  Kim et al. (2015) use a related elicitation 
mechanism based on friends-of-friends, and conduct an experiment to distribute public health coupons in a sample of 32 
villages.  Breza et al (2019) provide a method for collecting aggregated relational data from a sample of individuals to 
feasibly estimate network statistics.  
5 A variety of other papers test the ability of local institutions, such as nominations or focus groups,  to identify useful 
partners: Kremer et al (2011) identify and recruit ‘ambassadors’ to promote water chlorination in rural Kenya, Miller and 
Mobarak (2015) first markets improved cookstoves to ‘opinion leaders’ in Bangladeshi villages before marketing to 
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The literature has shown that more extensive diffusion takes place when entry points are more 

central (Banerjee et al. 2013 in the context of microfinance in India; Banerjee et al. 2019b in the context 

of immunization in India; Kim et al. 2015 looking at health behaviors in Honduras). Our experiment 

examines whether network theory has predictive power6 to speed up the diffusion of a policy-relevant 

technology, and features a test of threshold models that improve our understanding of the diffusion 

process.     

The rest of the paper is organized as follows.  We present the theoretical model, and its micro-

foundation, on which the experimental design is based in Section 2.  Section 3 explains the 

experimental setting and design, along with details on the implementation of the intervention. Section 

4 describes the data. Section 5 discusses the empirical results, including the village-level experimental 

results and heterogeneity analysis. Section 6 uses simulations on our data to explore cost-effective and 

policy-relevant alternatives to the data-intensive network-theory based procedures we experiment with 

in this paper.  Section 7 concludes. 

 

2. Theoretical model  

The intuition for the importance of the threshold model can be seen using the example 

network below. In this thought experiment, we train two seed farmers in period 0 such that they are 

fully informed about a new technology. Diffusion occurs as farmers become informed in subsequent 

periods.  

                                                            
others, and BenYishay and Mobarak (2018) incentivize ‘lead farmers’ and ‘peer farmers’ to partner with agricultural 
extension officers in Malawi.    
6 In contrast, Carrel et al (2013) offers a cautionary tale that data-driven attempts to manipulate social interactions do not 
have predictive power to design optimal classrooms. 
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Suppose that farmers in this network become fully informed of a new technology if anyone 

they are connected to has been fully informed. This is what we call simple contagion. In this network, 

the ideal seed farmers will be farmer 6 and then either farmer 1, 2 or 3. With any of these 

configurations, all farmers are informed in period 1. Essentially, farmer 6 is central in his part of the 

network, and he will inform farmers 4, 5, 7 and 8 all in the first period. Since farmers 1, 2 and 3 are all 

connected to each other, training any of them will be sufficient to guarantee they are all informed at 

the end of the first period. In general, quickly diffusing information about the new technology will be 

easy: in 70% of all possible seed pairings, all farmers will be fully informed by the end of the second 

period.  

However, if farmers need to know two other farmers before they have sufficient information 

to be fully informed, the diffusion process looks very different. Consider seeding farmers 5 and 8. 

During the first period, farmer 6 will become informed. In the second round, farmers 4 and 7 are 

informed. The diffusion process then stops with 3 out of a possible 6 non-seed farmers informed. 

There are 4 seed pairings which can achieve this 50% adoption rate, but it is not possible to get any 

higher. Moreover, without a focus on targeting, there is a good probability that there is no diffusion: 

in 40% of seed pairings, there is no diffusion whatsoever.  

2.1 A micro-foundation for the threshold model of diffusion  

The linear threshold model (Granovetter 1978, Acemoglu et al. 2011) is one of the seminal 

descriptions of diffusion processes. This model posits that an agent will adopt a new behavior once at 
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least 𝜆 of his connections adopt the technology. We base our experimental design on this class of 

models for three reasons. First, the threshold model is built on a very natural insight about how social 

learning might affect adoption decisions: a farmer learns from the behavior of each connection she 

has, and depending on the farmer’s priors, it may take more or fewer connections to motivate her to 

change behavior. The threshold formulation is therefore more naturally micro-founded with a model 

of learning, relative to other canonical diffusion models such as the SI (Susceptible-Infected) model.7 

Second, the threshold model has served as an important building block for diffusion theory.  The 

original paper that introduced this formulation (Granovetter 1978) has been cited about 5000 times 

on Google Scholar. Third, the formulation is consistent with some key empirical patterns about 

technology diffusion in agriculture. For example, the number of contacts acting as a key driver of 

adoption decisions can explain the well-known S-shaped diffusion pattern for new technologies (e.g. 

Griliches 1957).8   

There is little consensus on the underlying behavioral mechanisms generating thresholds in 

the model. This section therefore formally derives the threshold model as the outcome of optimizing 

behavior of microeconomic agents, so that we can take some clear predictions to the experiment and 

the micro data. We develop this micro-foundation by extending a framework presented in Banerjee et 

al. (2016) (hence: BBCM).  One key insight in BBCM is that the majority of members of a social 

network may not have access to any useful signal when they are confronted with an entirely new 

                                                            
7 Both simple and complex contagion formulations are related to Bayesian learning models.  In simple contagion, a 
single contact can induce adoption, suggesting that a person’s prior (to not adopt) is not very strong. In contrast, 
complex contagion suggests that additional observations of adoption are necessary to move most people’s priors.  We 
will use this simpler version rather than a formal Bayesian learning model as those models quickly become intractable in 
real world networks (Chandrasekhar, Larreguy and Xandri 2019). 

8 The slow rate of diffusion in early stages can be explained by not many people in a network having multiple contacts 
who have adopted when a technology is new, but the probability of having multiple adopter contacts increases more 
rapidly as the technology spreads through the network. In general, both this intuition and examples of threshold 
modeling have been unspecific as to whether the threshold is in the number of contacts, or the fraction of contacts. The 
micro-foundation we develop below produces a threshold in the number of contacts. 
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technology.  Thus, there are two parts to the learning problem for new technologies: acquiring a signal 

in the first place (becoming informed) which may be costly, and forming a revised belief on the 

profitability of the new technology based on the signals received from informed connections.  

Optimizing farmers adopt a new technology only if their beliefs change, and they are convinced by 

others that this would be more profitable than alternatives.9 

There are three key phases of decision-making in our model: (1) the farmer has to decide 

whether to acquire information10, (2) she has to combine the new information with her priors, and (3) 

she then decides whether to adopt the new technology. We will present and solve the model 

backwards, starting with the third phase. 

The farmer will choose to adopt the new technology in phase 3 if she believes that adoption 

will be profitable. Suppose farmer j knows the technology will cost her 𝑐௝ to adopt and believes the 

new technology has either profit 𝜋ത or  𝜋ഫ ൫𝜋ഫ ൏  𝑐௝ ൏ 𝜋ത൯.11 Since the technology is new and farmer j is 

initially uninformed, she has a uniform prior as to whether the technology is profitable or not.  She 

can aggregate signals given by her connections to update her prior and make an informed adoption 

decision.   

We adopt the same learning environment modeled in BBCM: first, informed farmer i 

disseminates a binary signal, 𝑥௜ ∈ ሼ𝜋ഫ,𝜋തሽ, which is accurate with probability 𝛼 ൐ ଵ

ଶ
.  Uninformed 

                                                            
9 A very different micro-foundation for a similar model is explored in Jackson and Storms (2018).  In that model, 
thresholds become relevant as individuals face greater payoffs from conforming to the behavior of their connections.  
Since coordination incentives for smallholder adoption of new agricultural technologies adoption seem likely to be low, 
we pursue instead a model based on learning and individual optimization. 

10 There is a growing literature on how agents decide whether to seek out information. Banerjee et al. (2019a) – which 
builds on theoretical work by Chandrasekhar, Golub and Yang (2019) – demonstrate in the context of India’s 
demonetrization that some agents choose to remain uninformed in order to avoid shame.  BenYishay et al. (2020) show 
that agents may choose not to receive agricultural information if the sender is a woman.  

11 Here for simplicity we follow BBCM in assuming that the distribution of profits is binary and known.  In practice, 
there will be uncertainty over a wider range of profits due to the potential performance of the technology under different 
agroclimatic conditions and different weather realizations.  While posterior distributions will be much more complicated 
under more realistic depictions of uncertainty, the key intuition driving the threshold model will be unchanged. 
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farmers do not disseminate a signal.  Second, farmers follow DeGroot learning (DeMarzo et al. 2003).  

DeGroot learning can be interpreted as a boundedly rational version of Bayes learning, and suggests 

that farmers aggregate signals from their connections without attempting to calculate the inherent 

correlation structure between those signals. That is, if farmer j sees a signal of 𝜋ത from both farmers i 

and k, she interprets that as two positive signals without decomposing the likelihood that farmer i and 

k are disseminating information obtained from the same source.12  Once farmers have observed signals 

from their informed connections, they aggregate those signals via Bayes’ rule. 

This framework suggests the following for the second phase of the farmer’s learning problem: 

suppose farmer j has 𝐷௝ informed contacts.  If farmer j decides to learn about the new technology 

from her informed contacts, and if H of those contacts provide the signal 𝑥 ൌ 𝜋ത, then the farmer’s 

posterior probability that 𝜋 ൌ  𝜋ത is given by13 

𝐸௝ሾ𝜋 ൌ  𝜋തሿ ൌ
𝛼ଶுି஽ೕ

𝛼ଶுି஽ೕ ൅ ሺ1 െ 𝛼ሻଶுି஽ೕ  
 

Denote 𝜋ത෨ ൌ 𝜋ത െ 𝜋ഫ and 𝑐ఫ෥ ൌ 𝑐௝ െ 𝜋ഫ. With that posterior, the farmer would adopt the 

technology if  

௖ೕ̃
గഥ෩
൑ ఈమಹషವೕ

ఈమಹషವೕାሺଵିఈሻమಹషವೕ
൑ ఈವೕ

ఈವೕାሺଵିఈሻವೕ
  (1) 

This model highlights a potential challenge to diffusing new technologies: when few other 

farmers are informed, then there is a ceiling on how much a new farmer’s priors would move even if 

they receive unanimously positive signals from the informed.  At early stages in the diffusion process, 

𝐷௝ may be small for most farmers. 

                                                            
12 Chandrasekhar, Larreguy and Xandri (2019) provide laboratory evidence in support of DeGroot learning over Bayes 
learning in India.  Additional citations in favor of this boundedly-rational approximation can be found in BBCM. 

13 A simple proof is given in BBCM. 
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Last, we consider the first phase of the farmer’s learning problem, which is her decision to 

acquire signals and become informed.  Here, we depart from BBCM to suggest that there may be a 

small cost to receiving a signal 𝜂.  This cost could be interpreted as “shoe leather” costs of acquiring 

information (which are not necessarily trivial in villages in rural Malawi as households may be fairly 

far apart), or as stigma from seeking information (e.g. Banerjee et al. 2019a).   

Thus, the farmer j with informed degree D୨  has an objective given by 

max
ୢஸୈౠ

෍
1
2
൮ൣα୦ሺ1 െ αሻୢି୦൫πഥ െ c୨൯ ൅ ሺ1 െ αሻ୦αୢି୦൫πഫ െ c୨൯൧ ቌIቆ

αଶ୦ିୢ
αଶ୦ିୢ ൅ ሺ1 െ αଶ୦ିୢሻ ൐

c෤

πഥ෩ቇቍ൲ െ ηd
୦ஸୢ

 

When η ൌ 0, the dynamics of learning are explored by BBCM.  However, when η ൐ 0 the 

dynamics are slightly different.  In that case (for small η), farmers will only become informed if   

αీౠ
αీౠାሺଵିαሻీౠ

൐
ୡ෤ౠ
πഥ෩   (2) 

In other words, farmers only choose to seek information if they have a large enough number 

of informed connections, such that it is possible that an informed decision would lead them to adopt.  

In this case (and for small η), farmers will choose to seek information when they have only one 

informed connection if 

α
αାሺଵିαሻ ൐

ୡ෤ౠ
πഥ෩   (3) 

In general, they will choose to become informed with 𝜆 informed connections if  

αλ
αλାሺଵିαሻλ ൐

ୡ෤ౠ
πഥ෩   (4) 

This implies that farmers choose to become informed about new technologies if expectations 

about the net benefits of technology are high (i.e., low costs and high potential gains), or if signals 

from individual other farmers are highly accurate. Under certain parameter values, just a single 

informed contact may be sufficient to induce farmers to seek information. That is the diffusion 
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process that Centola and Macy (2007) refer to as a “simple contagion.” They demonstrate that some 

types of information – for example, job opportunities – spread in this way. On the other hand, if the 

expected upside of the technology is more modest relative to costs, or if signals from other farmers 

have low accuracy, then farmers may only be persuaded to seek information when there is sufficient 

information to be gained from their network.14  In that case, for many farmers the lowest 𝜆 satisfying 

equation (4) may be larger than 1, and information diffusion follows a process termed “complex 

contagion” in the literature.15    

Our interpretation of the microeconomics of the threshold theory is that the thresholds result 

from an underlying process of farmers deciding whether to learn, given their information environment. 

This motivates an experimental design in which we seed new information in a network to improve 

the overall information environment, which can change incentives to learn and jump-start the 

technology diffusion process.  

Given that the econometrician is unlikely to observe signal accuracy ሺ𝛼ሻ, the threshold 

required for adoption of a specific new technology is an empirical question.  As a numerical example, 

consider a technology with 30% potential returns (so that 𝜋ത෨ ൌ 1.3 𝑐ఫ෥).  If signals are more than 77% 

accurate, farmers will choose to become informed if they have a single informed connection, and 

diffusion will follow a simple contagion.  If signal accuracy falls in the range 65% - 77% accurate, then 

farmers will only become informed if they have 2 informed connections, and learning will follow a 

complex contagion.  If signals are less than 65% accurate, then farmers will need at least 3 informed 

                                                            
14 Though not explicitly considered here, minimal thresholds for learning will also be higher if 𝜂 (the cost of information 
acquisition) is larger. 

15 Several theory papers have explored the implications of this model. In contrast to the “strength of weak ties” in labor 
markets proposed by Granovetter (1978), strong ties may be important for the diffusion of behaviors that require 
reinforcement from multiple peers. Centola (2010) provides experimental evidence that health behaviors diffuse more 
quickly through networks where links are clustered, consistent with complex contagion. Acemoglu et al. (2011) 
highlights that when contagion is complex, highly clustered communities will need a seed placed in the community in 
order to induce adoption. Finally, Monsted et al. (2017) provide experimental evidence generated by twitter-bots that 
twitter hashtag retweets follow a process which more closely resembles complex than simple contagion. 



12 
 

connections to make an adoption decision.   In general, agents will face higher thresholds in contexts 

where signals are noisier, a point with implications for external validity which we return to in the 

concluding remarks. 

2.2 Model predictions and implications for the experiment 

The micro-foundation of the threshold model suggests that the model would need to be tested 

using the diffusion of a truly new technology, where would-be adopters are ex ante uninformed about 

the technology and face an important adoption decision. A corollary is that the threshold model should 

fit the data better in locations where the technology is more novel. A good empirical setting to test 

the model is also one in which agents are receiving noisy signals from the network.  

If thresholds exist and are above one, then seeding the network with multiple sources of 

information who are clustered in the same part of the network will achieve very different diffusion 

patterns than seeding the network with the same number of information sources spread more 

diffusely. Our experimental design will take advantage of this insight. When thresholds are above one, 

the information environment only induces learning when initial nodes share some connections, which 

we test using micro data on technology diffusion patterns.   

The model highlights that farmers will become informed when they have sufficiently many 

informed contacts.   However, conditional on being informed, they will only adopt the technology if 

the realization of signals from their connections are sufficiently positive.   These two facts suggest two 

different tests of the model. 

PREDICTION 1:  If most farmers in a village have a threshold 𝜆̅, then people who are 

connected to at least 𝜆̅ informed farmers should become informed themselves.  
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PREDICTION 2: Adoption should increase most strongly among farmers who have high net 

benefits of adoption, who would adopt with a broader range of received signals.16  

3. Field experiment 

3.1 Setting 

Our experiment on technology diffusion via an agricultural extension system takes place in 200 

villages randomly sampled from 3 Malawian districts with largely semi-arid climates (Machinga, 

Mwanza, and Nkhotakota).  Approximately 80% of Malawi’s population lives in rural areas (World 

Bank 2011), and agricultural production in these areas is dominated by maize:  97% of farmers grow 

maize, and over half of households grow no other crop (Lea and Hanmer 2009).  Technology adoption 

and productivity in maize is thus closely tied to welfare. 

The existing agricultural extension system in Malawi relies on Agricultural Extension 

Development Officers, henceforth extension agents, who are employed by the Ministry of Agriculture 

and Food Security (MoAFS).  Many extension agents are responsible for upwards of 30-50 villages, 

which implies that direct contact with villagers is rare.  According to the 2006/2007 Malawi National 

Agricultural and Livestock Census, only 18% of farmers participate in any type of extension activity.  

Extension agents cope with these staff shortages by relying on a small number of lead farmers, who 

are trained but not incentivized to disseminate knowledge via social learning.17  Against this backdrop 

of staff shortages, maximizing the reach of social learning in the diffusion process may be a cost-

effective way to improve the effectiveness of extension.  

                                                            
16 For clarity, the model assumed that the potential net benefits of production were known to the farmer before deciding 
whether to become informed about the technology.  In practice, farmers may or may not be aware that their private net 
benefits to adoption are high before becoming informed.  Only when a farmer is ex ante aware that she has relatively high 
net benefits will we see greater adoption associated with a greater propensity to become informed.    

17 The lead farmer model may additionally help farmers learn by facilitating frequent conversations. Banerjee et al. 
(2019a) show that informing a subsample of individuals may lead to greater diffusion compared to broadcasting general 
information, because it creates opportunities for follow-up conversations.  
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3.2 Experimental design 

We partner with the Malawi Ministry of Agriculture to select the appropriate technologies to 

promote and engage extension staff to train exactly two seed farmers in each study village. Our 

experimental variation only changes how those seed farmers are chosen and holds all other aspects of 

the training constant. We identified the farmers in each of the study villages who would be the 

“theoretically optimal” choices as seeds under alternative formulations of the threshold model, where 

our objective is to maximize diffusion in the village over a 4-year horizon. Our four treatment arms 

randomly vary which theoretically optimal pair of seeds is trained in each village, as follows:18  

1. Simple Contagion: Simple diffusion (λ=1) model applied to the network relationship data 

2. Complex Contagion: Complex diffusion (λ=2) model applied to network relationship data 

3. Geo Treatment: Complex diffusion (λ=2) model applied to network data constructed using only 

geographic proximity  

4. Status Quo Benchmark: Extension worker selects the seed farmers based on his local knowledge  

To implement this procedure, we first collected social network relationships data (to be 

described in detail in section 4) on the census of households in all study villages. The social network 

structures observed in these data allow us to construct network adjacency matrices for each of the 200 

villages.  Next, we conduct technology diffusion simulations for all villages using these matrices, where 

each individual in the village draws an adoption threshold τ from the data, which is normally 

                                                            
18 In other words, we randomly assign “theories” or “threshold model formulations” to different villages. Randomization 
was stratified by district, and implemented using a re-randomization procedure which checked balance on the following 
covariates: percent of village using compost at baseline; percent village using fertilizer at baseline, and percent of village 
using pit planting at baseline. Randomization was implemented in each district separately. 
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distributed19 N(λ, 0.5) but truncated to be strictly positive. We conduct simulations with λ=1 and λ=2 

in all villages to evaluate simple and complex contagion respectively.  

In the simulations, when an individual is connected to at least τ individuals who are informed, 

she becomes informed in the next period. Once an individual is informed, we assume that all other 

household members are immediately also informed. We also assume that becoming informed is an 

absorbing state.  As seed farmers are trained by extension agents, we assume all assigned seed farmers 

become informed. 

We run the model for four periods.20 Given the randomness built into the model, we simulate 

the model 2000 times for each potential pair of seeds in the village, and create a measure of the average 

information rate induced by each pair. We designate the pair that yields the highest average three-

period information rate in our simulations as the two “optimal seeds” for each village for that particular 

model (simple contagion, λ=1 or complex contagion, λ=2). Armed with the identities of the optimal 

seeds under each model, we then randomly assign different villages in the sample to the treatment 

arms. The optimal seeds identified through the simple contagion (λ=1) simulation are trained on the 

technology in some randomly chosen villages assigned to treatment 1. Optimal seeds identified 

through the complex contagion (λ=2) simulation are instead trained in other villages that were 

randomly assigned to treatment 2.  

To determine seeds for villages in the Geo treatment arm, the simulation steps are the same 

as in the Complex Contagion case, except that we apply the procedure to a different adjacency matrix. 

To capture the idea that geography may be an easy way to capture key features of a social network, we 

                                                            
19 Heterogeneity in the model comes from variation across individuals in the net benefits realized by adopting pit 
planting. This affects the threshold number of connections an individual would need to have in order to get enough 
signals to be induced to adopt.  

20 We collected data for up to three agricultural seasons after the interventions were implemented, so our theoretical set-
up matches our empirical research design. With knowledge of the value of λ, a policymaker could use the model to 
maximize adoption over any timeframe they cared about, either more short-term or more long-term. 
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generate an alternative adjacency matrix by making the assumption that two individuals are connected 

if their plots are located within 0.05 miles of each other in our geo-coded location data. We chose a 

radius of 0.05 miles because this characterization produces similar values for network degree measures 

in our villages as using the actual network connections measures.  

The fourth group is the status-quo benchmark, where extension agents were asked to select 

two seed farmers as they normally would in settings outside the experiment.  This benchmark 

constitutes a meaningful and challenging test for the simple and complex contagion treatments since 

the extension agents were able to use valuable information not available to researchers, such as the 

individual’s motivation to take on the role. The benchmark treatment is similar to what the Malawi 

Ministry of Agriculture and other policymakers would normally do, so this is the most relevant 

counterfactual.21 

Note that the Simple, Complex, and Geo seed farmer selection strategies were simulated in all 

200 villages, so we know – for example – who the optimal simple contagion seed farmers would have 

been in a village randomly assigned to the complex contagion or the geo treatment.  We label the 

counterfactual optimal farmers as “shadow seeds” or “shadow farmers”. 

3.3 Agricultural technologies 
 

In this section, we describe the two technologies introduced to seed farmers and in appendix 

section A1 we analyze data on crop yields to give further insights into the benefits of the technologies. 

 

 

                                                            
21 Normally the Ministry only trains one “Lead Farmer” per village, not two. In most villages, the Lead Farmer will 
already be established, except for villages in which there hasn’t been an extension officer assigned to the village for a 
long time. The extension agents would have had to select a second seed farmer in benchmark villages due to the 
experiment. 
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Pit planting 

Maize farmers in Malawi traditionally plant seeds in either flat land or after preparing ridges. 

Ridging has been shown to deplete soil fertility and decrease agricultural productivity over time 

(Derpsch 2001, 2004).  In contrast, pit planting involves planting seeds in a shallow pit in the ground, 

in order to retain greater moisture for the plant in an arid environment, while minimizing soil 

disturbance.    In our sample, pit planting was not widely practiced at baseline: 9/4,004 farmers (0.22%) 

planted with pits the year prior to treatment. The technique is practiced more widely in the Sahel, and 

has been shown to greatly enhance maize yields both in controlled trials and in field settings in East 

Africa, with estimated gains of 50-113% in yields (Haggblade and Tembo 2003, BenYishay and 

Mobarak 2019). In appendix section A1, we present evidence that pit planting increased yields by 44% 

(a treatment on the treated estimate) for our trained seed farmers.  The enhanced productivity is 

thought to derive from three mechanisms: (1) reduced tillage of topsoil, which allows nutrients to 

remain fixed in the soil rather than eroding, (2) concentration of water around the plants, which aids 

in plant growth during poor rainfall conditions, and (3) improved fertilizer retention.   

Practicing pit planting may involve some additional costs.  First, only a small portion of the 

surface is tilled with pit planting, and hand weeding or herbicide requirements may increase, though 

focus groups undertaken by the authors suggest that weeding demands were reduced substantially 

relative to ridging. Second, digging pits is a labor-intensive task with large up-front costs. However, 

land preparation becomes easier over time, since pits should be excavated in the same places each 

year, and estimates suggest that land preparation time falls by 50% within 5 years (Haggblade and 

Tembo 2003). BenYishay and Mobarak (2019) find that in Malawi, labor time decreases while the 

change in other input costs are negligible in comparison.  Labor costs are minimized when pit planting 

is used on flat land. 
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Crop residue management 

Seed farmers were also trained in crop residue management (CRM), a set of farming practices 

which largely focus on retention of crop residues in fields for use as mulch. Alternative practices 

commonly used by farmers include burning the crop residues in the fields and removing them for use 

as livestock feed and compost. The trainings emphasized the value of retaining crop residues as mulch 

to protect topsoil, reduce erosion, limit weed growth, and improve soil nutrient content and water 

retention.  There is little experimental evidence on the impacts of CRM on soil fertility, water retention, 

and yields in similar settings.   

3.4 Seed farmers: descriptive statistics, training, and take up 

The procedure described in section 3.2 generated a list of two seed farmers to train in the simple, 

complex and geo villages, plus shadow farmers. Extension agents chose the seed farmers in the 

benchmark villages. In 50% of villages, there was at least one seed who was selected as optimal in 

more than one (simple, complex or geo) model. Appendix table A1 provides some summary statistics 

describing how the chosen seeds differ along observable characteristics.  The analysis includes both 

actual seeds and counterfactual seeds (i.e. shadow farmers) to maximize sample size.22  The most 

striking pattern in Table A2 is that the farmers selected as seeds under the geographic treatment are 

significantly poorer than other seeds. This is because many households live on one of their plots in 

Malawi. Households who are geographically close to lots of people will mechanically have less land, 

and these households tend to be poorer overall. In terms of position within the network, seed farmers 

selected through the complex contagion simulations are the most “central” across all measures of 

network centrality we compute, including degree, between-ness and eigenvector centrality (columns 

                                                            
22  Table 1 is not demonstrating balance in the randomization of villages across treatment arms. Note that there are only 
100 benchmark farmers since we never observe shadow benchmark farmers. 
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3-5).23 Simple seeds have similar betweenness centrality as complex seeds, but lower eigenvector 

centrality.  

Essential to the experimental design, we observe that there are more households connected to 

both seeds in complex contagion villages than in other treatment arms. 35% of our random household 

sample has a connection to a simple seed, and 6% are connected to both simple seeds. By contrast, 

18% of households are connected to two complex seeds. For the geo-based seeds, 10% of households 

are connected to two seeds. Appendix table A3 displays the distribution of how far - in social distance 

- households are from the seeds in the different treatment arms. 

In addition to the names of the two seed farmers, we provided extension agents in 

experimental arms 1-3 with replacement names if either of the first two refused to participate. Refusal 

was uncommon: extension agents trained24 93% of the selected seeds or their spouses. We conduct 

intent-to-treat analysis using the original seed assignment.  

The seed farmers received a small in-kind gift (valued at US$8) if they themselves adopted pit 

planting in the first year. There was no gift or incentive provided on the basis of others’ adoption in 

the village or the seeds’ own adoption in subsequent years. Appendix table A4 demonstrates that the 

training (and incentive) was effective at inducing adoption, but not perfectly. Seed farmers, relative to 

the shadow farmers, are more likely to know how to do pit planting and more likely to adopt pit 

planting during the first agricultural year.25  30% of seed farmers adopted pit planting during year 1, 

                                                            
23 Eigenvector Centrality is weighted sum of connections, where each connection’s weight is determined by its own 
eigenvector centrality (like Google page-rank). Betweenness centrality captures that a person is important if one has to go 
through him to connect to other people. Therefore it is calculated as the fraction of shortest paths between individuals in 
the network that passes through that individual. See Jackson (2008) for more details. 

24 As the technologies themselves were new, the extension agents were themselves trained by staff from the Ministry’s 
Department of Land Conservation.   

25 Seed farmers are also more likely to adopt crop residue management (CRM) in year 1. However, by year 2 there is no 
longer a meaningful gap in the CRM adoption rate, and in fact the adoption rate among shadow farmers is declining 
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compared to 5% of shadow farmers (p<.01). Moreover, the adoption rate among seed farmers is the 

same across all treatment arms: complex, simple, geographic, and benchmark. 

Knowledge and adoption rates of pit planting increase among the shadow farmers over time 

while it remains more or less constant among seed farmers. This reduces the size of the knowledge 

and adoption gap with trained seed farmers in years 2 and 3, but there remains a statistically significant 

difference. The appendix A.2 and the notes to appendix table A4 provide the details on the 

econometric specification used for these results.  

 

4 Data 

After training the seed farmers, we collected up to three rounds of household survey data.  

Appendix Figure A1 shows the timeline of these data collection activities. We describe each major 

data source in turn. 

Social Network Census Data 

Targeting based on different network characteristics requires relatively complete information 

on network relationships within the village (Chandrasekhar and Lewis 2016). We reached more than 

80% of households participating in the census in every sample village.26   

The main focus of the social network census was to elicit the names of people each respondent 

consults when making agricultural decisions. General information on household composition, 

socioeconomic characteristics of the household, general agriculture information, and work group 

membership was also collected.  Agricultural contacts were solicited through several prompts.27  These 

                                                            
over time. Given this pattern, and the fact that CRM was not a “new” technology in this area, we focus our analysis on 
the adoption of pit planting. We include CRM adoption results in Appendix table A7.  

26 We interviewed at least one household member from 89.1% of households in Nkhotakota, 81.4% in Mwanza and 
88.6% in Machinga. We interviewed both a man and a woman in about 30% of households. 

27 We first asked in general terms about farmers with whom they discuss agriculture. To probe more deeply, we also 
asked them to recall over the last five years if they had: (i) changed planting practices; (ii) tried a new variety of seed, for 
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responses were matched to the village listing to identify links.  Individuals are considered linked if 

either party named each other (undirected graph), and all individuals within a household are considered 

linked.  

Sample Household Survey Data 

We collected survey data on farming techniques, input use, yields, assets, and other 

characteristics for a sample of approximately 5,600 households in the 200 sample villages.  We 

attempted to survey all seed and shadow farmers in each village, as well as a random sample of 24 

other individuals, for a total of about 30 households in each village.28  In villages with fewer than 30 

households, all households were surveyed.  Three survey rounds were conducted in Machinga and 

Mwanza in 2011, 2012 and 2013, and two survey rounds were conducted in Nkhotakota in 2012 and 

2013.29 The first round asked about agricultural production in the preceding year—thus capturing 

some baseline characteristics—as well as current knowledge of the technologies, which could reflect 

the effects of training. Since the data was collected at the start of a given agricultural season, but after 

land preparation was complete, we observe three adoption decisions for pit planting for farmers in 

Mwanza and Machinga, and two decisions for farmers in Nkhotakota. Since crop residue management 

                                                            
any crop; (iii) tried a new way of composting; (iv) changed the amount of fertilizer being used for any crop; (v) tried a 
new crop, such as paprika, tobacco, soya, cotton, or sugar cane; or (vi) started using any other new agricultural 
technology. If they responded affirmatively, we asked respondents to name individuals they knew had previously used 
the technique in the past and whether they had consulted these individuals. Finally, we asked them if they discussed 
farming with any relatives, fellow church or mosque members, or farmers whose fields they pass by on a regular basis, or 
if there are any others with whom they jointly perform farming activities. We also elicited their close friends and contacts 
with whom they share food, though we did not include these contacts as agricultural connections for the purposes of 
our network mapping. 

28 In Simple, Complex and Geo villages there were 6 (2x3) seed and shadow farmers to interview, while in Benchmark 
villages there were 8 (2x4) seeds and shadows. Recall we do not observe Benchmark farmers in Simple, Complex and 
Geo villages. 

29 Unanticipated delays in project funding required us to start training of extension agents and seed farmers in 
Nkhotakota in 2012 instead of 2011 as we did in Mwanza and Machinga. 
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(CRM) decisions are made the end of an agricultural season after harvest, we observe CRM decisions 

for two agricultural seasons in Mwanza and Machinga, and one in Nkhotakota. 

Randomization and Balance 

Appendix Table A5 shows how observable baseline characteristics from the social network 

census vary with the treatment status of the village. The table also shows p-values from the joint test 

of all treatment groups. The table notes provide details on the specification used. Few differences 

across treatment groups are statistically significant. Overall, the joint test reveals no differences for 10 

out of 12 variables. Farm size is the most concerning: farmers in the benchmark villages have larger 

farm sizes on average than farmers in simple and complex villages, and the joint test across the network 

treatment variables is significant at the 10% level. Additional analysis available from the authors 

controls for this variable in all specifications and finds that all results are robust to this control. 

5 Empirical Results 

 
A strength of our novel methodological approach is that we have a set of predictions on the 

behavior of villages under all four arms of the experiment. The following is a roadmap of how we 

present our empirical evidence. We start by providing evidence that our experiment induced diffusion 

within the social networks: first, we analyze whether individual farmers are more likely to have 

conversations about pit planting with trained seed farmers; and second, we ask if farmers who are 

socially closest to the seeds have more knowledge and are more likely to adopt pit planting in the 

initial years of the experiment. We then analyze village-level differences in adoption rates by treatment 

status. We present treatment effect estimates in the spirit of the standard approach in an impact 

evaluation. We also simulate the entire distribution of treatment effects in all four experimental arms 

under each theory, and compare the predictions against the distribution of treatment effects observed 

in the data. A key implication of the model is that targeting is only critical if the learning environment 
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is complex. Under simple learning differences between treatments (and the benchmark) are small.30 

The overall speed of diffusion, and in particular the percentage of villages with no diffusion, is an 

important data point in assessing the relevance of the complex contagion model. We finish the section 

with heterogeneity analysis, examining two dimensions of heterogeneity motivated by the theory. We 

argue that the data fits complex contagion theory best, after aggregating across the full range of this 

evidence, and not just on the basis of any single program evaluation result.   

5.1 Communication about pit planting 

In this sub-section, we use data on conversations about pit planting that respondents had with 

others in the village.  These conversations may arise from either the seed pushing information or from 

villagers seeking information. Each respondent was asked questions about seven other individuals in 

their village: whether they knew them, and what they had discussed. The seven individuals comprised 

of the two seed farmers, randomly selected shadow farmers, and a random sample of other village 

residents. To study whether the experiment led to social learning between the seeds and fellow 

villagers, we exploit the random variation from the experiment: for example, we compare the 

frequency of conversations with the complex seed farmers in complex contagion villages, to the 

frequency of conversations with complex shadow farmers in other villages.31  With this design, if the 

experiment was successful in activating social learning, then we should observe statistically significant 

increases in conversations in the diagonal elements of Table 1. 

                                                            
30 Our simulated results, presented in Table A5, suggest that geographic targeting should have generated the least 
diffusion under simple contagion, followed by the benchmark, followed by complex and simple contagion targeting who 
produce weakly more diffusion in short time intervals.  These distinctions are all small and often insignificant, in contrast 
to simulated results under complex contagion. 

31 We estimate regressions where the dependent variable is talking about pit planting with the simple (complex, geo) farmer.  
While all sample respondents in Simple treatment villages were asked about simple farmers, not all respondents in the 
remaining villages were, since we chose a random subset of shadow farmers. This is analogously true for complex and geo 
villages. Therefore in the analysis we flexibly control for the number of simple (complex, geo) farmers we asked 
respondents about. 
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Table 1 shows that the experiment indeed induced seed farmers to discuss pit planting with 

fellow villagers.  Columns (1)-(3) show that there are more conversations with trained seeds than with 

shadows.32 The simple contagion treatment led to more conversations with the simple partner, the 

complex contagion treatment led to significantly more conversations with the complex partner, and 

so forth.  

Column (4) examines whether the treatments increased the total number of conversations about 

pit planting in the village. The dependent variable is equal to 1 if a respondent discussed pit planting 

with either seed farmers or one of the randomly selected individuals within the village. We find that 

respondents in Complex villages have a slightly higher likelihood of a having at least 1 conversation 

about pit planting compared to Benchmark or Geo villages. We cannot statistically distinguish between 

Simple and Complex villages. 

5.2 Knowledge and adoption of farmers by social distance to seeds  

If adoption is a social contagion, individuals close to the seeds should be first to become 

informed and then adopt. To explore this, we estimate the following equation:  

𝑌௜௩ ൌ 𝛼 ൅ 𝛽ଵ1𝑇𝑆𝑒𝑒𝑑𝑠௜௩ ൅ 𝛽ଶ2𝑇𝑆𝑒𝑒𝑑𝑠௜௩ ൅ 𝛽ଷ1𝑆𝑖𝑚𝑝𝑙𝑒௜௩ ൅ 𝛽ସ2𝑆𝑖𝑚𝑝𝑙𝑒௜௩ ൅ 𝛽ହ1𝐶𝑜𝑚𝑝𝑙𝑒𝑥௜௩
൅ 𝛽଺2𝐶𝑜𝑚𝑝𝑙𝑒𝑥௜௩ ൅ 𝛽଻1𝐺𝑒𝑜௜௩ ൅ 𝛽଼2𝐺𝑒𝑜௜௩ ൅ 𝜃௩ ൅ 𝜀௜௩ 

1𝑇𝑆𝑒𝑒𝑑𝑠 is an indicator for the respondent being directly connected to exactly one seed farmer, and 

2𝑇𝑆𝑒𝑒𝑑𝑠 indicates the respondent was directly connected to two seefd farmers. Seeds and shadows 

are removed from the analysis. Since network position is endogenous, we also control for whether an 

individual is connected to one or two Simple, Complex or Geo (actual or shadow) seeds, but these 

coefficients are not displayed in the table.  Identification therefore comes from variation in closeness 

                                                            
32 We may observe a treatment effect on conversations with the Simple partner in Complex villages and conversations with 
the Complex partner in Simple villages for one of two reasons: (i) as mentioned above, often there is one individual who 
would be chosen as a seed in both the simple and complex versions of the model but (ii) this may also be the outcome of 
the diffusion process. It is challenging to disentangle these two alternatives.  
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to the seed generated by the experiment.  As an example, we can compare two farmers who are both 

connected to two ‘Simple seeds’, but where one farmer is in a village randomly assigned to the Simple 

treatment and his friend is trained, while the other was not.     

 In the theoretical model, individuals have to become informed prior to adopting. As an 

empirical matter, it is unclear what level of knowledge is associated with “being informed” as used in 

the model.  In table 2, we therefore consider three variables which represent increasing levels of 

information: whether the respondent has heard of pit planting; whether the respondent knows how 

to implement pit planting; and whether the respondent adopted pit planting (which implies not only 

knowledge but also that the signals that the respondent received were sufficiently positive). In season 

1, the training led to more information transmission to those directly connected to seeds. In particular, 

those who have a direct connection to both seed farmers had the most knowledge. This is true for 

both measures of “knowledge”: whether the respondent had heard of pit planting and whether they 

reported being capable of implementing it. Respondents with two connections are 8.4 percentage 

points more likely to have heard of pit planting than those with no connection to a seed. This 

represents a 33% increase in knowledge relative to the mean familiarity among unconnected 

individuals. This effect is also statistically significantly different from the effect of being connected to 

one seed (p=.02).  They are also 6.2 percentage points more likely to report knowing how to pit plant, 

a 108% increase over unconnected individuals and again significantly different from the effect of being 

connected to one seed (p = 0.072). These knowledge effects are suggestive – but not conclusive – of 

a complex contagion process ( = 2) rather than simple contagion.  The increased awareness of pit 

planting and knowledge of pit planting among households connected to two seeds persists into season 

2 (columns 2 and 5), and two connections is again significantly more advantageous than one 

connection (p=.04 and .095, respectively).  
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We see no effect on adoption in the first year (column 7) among individuals directly connected 

to either one or two seeds. However, we do observe an adoption effect in year 2. This temporal pattern 

of results is consistent with the set-up of our theoretical model: individuals become informed in year 

1 and then some choose to adopt in year 2. Column (8) shows that households with two connections 

to trained seeds are 3.9 percentage points more likely to adopt in the second season than those with 

no connections, which represents a 90% increase in adoption propensity. Though the point estimate 

of the effect of 2 connections is considerably larger than the effect of a connection to one seed (3.9 

pp compared to 1.2 pp), we cannot statistically reject that households with a connection to only one 

treated seed adopt less frequently (p=.16).  We also observe that individuals who are within path length 

2 of at least one seed (that is, a friend of a friend) are 2.2 percentage points more likely to adopt. 

The predictions of the model for which individuals learn about pit planting are weakened as 

time passes and knowledge diffuses through the network. In all three of our dependent variables, this 

diffusion can be observed through large increases in knowledge and adoption over time in our 

reference category: individuals with no direct connections to a seed.  Among this group awareness 

increases from 22% to 39% from year one to three, while “knowing how” to pit plant increases from 

6% to 15% and adoption increases from 1% to 4%.  In principle, this diffusion should reduce power 

on our exogenous variation, as the number of connections to informed individuals becomes less 

correlated with the number of signals available to farmers.  In practice, by year 3 we still see 

significance on the effects of two direct connections on one of our two knowledge variables (“knowing 

how” to pit plant, column 6), but we no longer see significant differences from direct connections in 

adoption or awareness of pit planting.  Consistent with the hypothesis that this loss in precision is due 

to diffusion in the network, we see that adoption increases among those at moderate distance to the 
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seeds in year 3: column (9) shows that households within path length 2 are more likely (3.7 pp) to have 

adopted over those who are socially more distant.33  

 In summary, analysis using individual-level data demonstrates that individuals who are initially 

close to the trained seeds are more likely to adopt than individuals with no direct connections – as one 

would expect if the experiment is inducing social network-based diffusion. The data also suggest that 

having two direct connections – and not just one – is important for diffusion. This is suggestive 

evidence in favor of the complex contagion model: farmers may need to know multiple informed 

connections before becoming informed, and then subsequently adopting, themselves.   

5.3   The advent of diffusion under simple and complex contagion  

In this section, we report experimental results on village-level outcomes across the four 

treatment arms. We measure technology adoption in our surveys, because (1) this is ultimately of most 

interest to policy and (2) adoption can be observed and measured more precisely than being informed.   

One key feature of the threshold model that helps distinguish complex from simple contagion 

is that for almost any choice of seed farmer, the diffusion process will start under simple contagion. 

However, if the diffusion process is complex, then many potential pairs of seeds would never generate 

any diffusion. This is because when two seeds are not proximate to each other in the network map 

and they don’t share any common connection, then no other individual is connected to multiple 

informed seeds, and the technology never diffuses. This leads us to focus on the advent of diffusion in 

our sample villages as a key outcome. We define ‘any adoption’ as an indicator for villages which have 

at least one household (other than the seeds) that adopted pit planting. Our models actually simulate 

being “informed” and not adoption directly, but in order to be parsimonious and tractable we compare 

                                                            
33 This is a lower power test of the model than the direct connections test as it is imperfectly correlated with the number 
of informed, indirect connections to seeds (which is unobserved). We do not see a significant effect of this variable on 
knowledge outcomes, though coefficients are positive. 
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the rates of being informed from the simulations to adoption rates in the data.34 The focus on ‘any 

adoption’ yields a sharp prediction to distinguish complex contagion from the other treatments: if 

complex contagion is the correct description of the diffusion process, then the indicator ‘any adoption’ 

should be significantly higher under the complex treatment than all other treatments.  

The left part of Figure 2 shows the predicted fraction of villages with ‘any adoption’ from 

simulating the model for all sample villages when λ=1 (Simple contagion) and λ=2 (Complex 

contagion).35  Since the goal is to compare these simulations to the actual data, we design the 

simulations to reflect the fact that we only observe a random sample of households in these villages.36  

The right part of Figure 2 shows the empirical counterpart: ‘any adoption’ rates in the data in years 2 

and 3.  

When the threshold is set to λ=1, diffusion is predicted to be widespread. In year 2, 85% of 

villages where Geo and Benchmark partners were trained are predicted to have some sampled 

diffusion, and that rate goes up to 94% with Simple and Complex partners. The predicted rates of 

‘any diffusion’ are even higher in year 3.  

The risk of no diffusion increases if the diffusion process is characterized by complex 

contagion. In that case, the model predicts that more than half of the villages assigned Simple, Geo 

                                                            
34 Simulating adoption in the model would require a number of additional assumptions, including estimates of signal 
accuracy, the distribution of net benefits, and any heterogeneity in prior beliefs which may exist. Being informed is 
necessary but not sufficient to adopt.  

35 These simulations exclude 12 villages where at least one of the extension worker chosen seeds (benchmark) was not 
observed in our social network census.  This occurred because the spatial boundaries of villages are not always clearly 
delineated in Nkhotakota.  

36 The simulations use the full social network to predict becoming informed, measured here through adoption.  We then 
sample from the full network to better mimic our data. In the model, the rate of any adoption is identical in years 2 and 
years 3. If there was no adoption by year 2, there is no way there will be any additional adoption taking place in year 3. 
The sampling process, however, generates the increase over time observed in the figure. If the rate of adoption is low, as 
is empirically the case, then a random sample may miss all adopters. As the number of adopters increases over time, the 
random sample is more likely to pick up an adopter and hence the rate of any adoption increases over time in the figure.  
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or Benchmark partners will not see any sampled diffusion at all in year 2.  In contrast, when complex 

seeds are trained, 70% of villages are predicted to experience some diffusion.  

Comparing the theoretical simulations to the data on the right side of Figure 2 shows that the 

data are more consistent with the patterns generated by a complex (rather than simple) learning 

environment in three distinct ways.  First, the simple contagion simulations suggest that we should 

observe a much higher fraction of villages with some adoption than is true in the data. Second, simple 

contagion predicts that the ‘any adoption’ outcome should not be very sensitive to the identity of the 

seed farmer who is initially trained.  In contrast, the identity of the seed farmer dramatically alters this 

outcome in the data. Finally, the complex contagion simulations predict that the complex partners will 

maximize the fraction of villages with some adoption, which is exactly what we observe in the data.  

The first two columns of Table 3 replicate the data panels on the right side of figure 2 in a 

regression framework. The propensity for ‘any adoption’ in season 2 in statistically significantly larger 

in villages assigned to the complex contagion treatment relative to Benchmark villages. The 25 

percentage point gap is large relative to the ‘any adoption’ rate of 42% in our Benchmark villages. The 

‘any adoption’ rate in complex villages is also 15 percentage points larger than in Geo villages (p-value 

= 0.10) and 10 percentage points larger compared to villages assigned to the simple contagion 

treatment (p-value = 0.30).  In season 3, Simple, Complex and Geo villages all attain a statistically 

higher rate of ‘any adoption’ than Benchmark villages.  85% of Complex villages had at least one non-

seed adopter, compared to 73% of Simple and Geo villages and 54% of Benchmark villages. 

5.4 Adoption rates across treatment arms  

We also look at the speed of diffusion, captured by the adoption rate. Columns (3) and (4) in 

Table 3 document treatment effects on the adoption rate, which is defined as the proportion of non-

seed farmers who adopted pit planting in each agricultural season. Both simple and complex contagion 
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villages have higher adoption rates relative to the benchmark in season 2. Compared to the benchmark 

rate of 3.8%, complex and simple villages both experience a 3.6 percentage point higher adoption rate. 

We cannot reject that the adoption rates are the same in Simple, Complex and Geo villages. The 

adoption rate increases across all four types of villages in season 3. The adoption rate increases in the 

benchmark villages, the reference category, from 3.8% to 7.5% from season 2 to 3. With the smaller 

sample size of 141 villages in season 3, we cannot reject that the adoption rate is the same across all 

treatment types, though the point estimate on Complex remains the largest, and is equal in magnitude 

to the effect size observed in season 2.  The adoption rate in complex villages in year 3 is 11%. 

Appendix Table A6 shows the results of analogous regressions on “data” generated from the 

theoretical simulations we conducted to create the left panels of Figure 2. Note that the simulated rate 

of becoming ‘informed’ about the technology is a worse proxy for the rate of technology adoption 

than what we used for ‘any adoption’.37 We therefore need to be cautious about comparing columns 

3 and 4 across Table 3 (the data) and Appendix Table A6 (the simulations). The simulations in 

Appendix Table A6 predict that the complex treatment should perform best both in terms of ‘any 

adoption’ and the adoption rate if the learning environment in reality is complex. If the learning 

environment is instead simple, then we should expect to see few statistical differences in diffusion 

across targeting strategies by season 3, since the choice of seed partners is relatively unimportant if 

the technology diffuses easily.   

In the data, we observe that the diffusion process is far too slow to be consistent with simple 

contagion.  However, our parameterization of =2 does not provide a perfect fit for the data. For 

example, the simulations in Appendix Table A6, columns 3 and 4 suggest that the complex treatment 

                                                            
37 The adoption rate is (# households informed/# households)* P(adopt|informed).  The ‘any adoption’ rate is 1-(1-
P(adopt|informed))^(# informed). As long as the number of informed households is sufficiently high, the latter will be 
informative of the true ‘any adoption’ rate. However, the adoption rate will always be scaled by a constant probability.  
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should produce a larger adoption rate than the simple treatment if the learning environment is 

complex.  In Table 3, we cannot statistically distinguish between these two treatments.  Overall, 

however, the empirical results in Tables 3 and in Figure 2 appear more consistent with a complex 

learning environment than with simple contagion. 

5.5  Heterogeneity in the learning environment  

Our theoretical micro-foundation suggests that the threshold model describes diffusion as a 

learning process where farmers need to aggregate signals and ultimately adopt if those signals are 

sufficiently positive.  Thus, we anticipate that our treatments will be most effective in inspiring 

adoption for farmers who are likely to receive positive signals. We use two different approaches to 

identify subsets of sample farmers for whom the signal about the technology’s profitability is more 

likely to have been positive, and we use such farmers to construct empirical tests. First, the Ministry 

of Agriculture recommends pit planting only for flat land, and labor costs of pit planting are lower on 

flat land.38  Focus group discussions in our sample villages confirmed that villagers thought pit planting 

was more suitable for flat rather than sloped land. We therefore expect more positive treatment effects 

for farmers who possess land that is flat and not sloped. 

Second, pit planting is in general a new technology in Malawi, but there is heterogeneity across 

villages in how novel it is.  In the median village, 4.3% of farmers reported having ever tried pit 

planting at baseline while 0.2% were currently practicing pit planting across all villages. The 

information environment should be most affected by our treatments when the technology is truly 

novel, both because each piece of new information will have a larger effect on posterior beliefs, and 

because the differences between treatments may become less stark if some farmers in the network are 

                                                            
38 Pit planting is possible on land with some slope, but in those cases, the pits need to be constructed differently, and our 
extension workers were not trained on that technique. 
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already informed about pit planting.39  For these reasons, we anticipate larger treatment effects in 

villages where the technology is truly novel. 

Table 4 explores the heterogeneity in treatment effects across these two dimensions, by 

interacting the randomized treatments with an indicator for “Farmer likely to receive a Good Signal”.  

This “Good Signal” variable is first defined as the farmer having flat land in columns (1) and (2), and 

then re-defined as “Village with lower-than-median familiarity with the technology at baseline” in 

columns (3) and (4). “Bad signal” refers to the converse of these characteristics. The equation 

estimated:  

𝑦௜௩௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑆𝑖𝑚𝑝𝑙𝑒௩ ∗ 𝐵𝑎𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅  𝛽ଶ𝐶𝑜𝑚𝑝𝑙𝑒𝑥௩ ∗ 𝐵𝑎𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅ 𝛽ଷ𝐺𝑒𝑜௩ ∗
𝐵𝑎𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅  𝛽ସ𝐺𝑜𝑜𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅  𝛽ହ𝑆𝑖𝑚𝑝𝑙𝑒௩ ∗ 𝐺𝑜𝑜𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅  𝛽଺𝐶𝑜𝑚𝑝𝑙𝑒𝑥௩ ∗

𝐺𝑜𝑜𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅ 𝛽଻𝐺𝑒𝑜௩ ∗ 𝐺𝑜𝑜𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 ൅ 𝛿𝑋௩ ൅ 𝜖௜௩௧  

The reference group comprises of farmers who are likely to receive a bad signal in Benchmark villages. 

Our hypothesis is that among those who receive a positive signal, we will observe more diffusion in 

Complex villages if the true model is Complex. 

Columns (1) and (2) show that adoption in year 2 is higher for farmers who have flat land in 

Simple, Complex and Geo villages compared to farmers with flat land in Benchmark villages. In year 

3, we see that Complex villages continue to have a larger adoption rate than Benchmark villages for 

farmers with flat land.   

Columns (3) and (4) show that the complex treatment performs best in villages where the 

technology was relatively novel. In this sub-sample, the adoption rate is statistically significantly higher 

in Complex Contagion treatment villages compared to both the Simple contagion and the benchmark 

treatments in year 3.   

                                                            
39 Given that there is approximately 0% adoption at Baseline, it is additionally unlikely that previously informed farmers 
are disseminating a positive signal about this technology. 
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To summarize, these heterogeneity tests indicate that targeting based on complex contagion 

is most effective precisely in the types of villages and for the types of farmers where we theoretically 

expect it to perform well. Just as importantly, we do not observe that targeting simple and complex 

seeds affects adoption patterns for farmers who are not likely to be influenced by additional 

information in the network.  We interpret these tests as strongly suggesting that the social learning 

environment about agriculture in rural Malawi is well characterized by complex contagion. The policy 

implications that stem from that observation are (a) the network position of who you initially target 

with the new technology matters, and (b) complex contagion-theory-based targeting can improve the 

speed and scope of technology diffusion relative to other forms of targeting.      

6. Cost-effective, Policy-Relevant Alternatives to Data-Intensive Targeting Methods 

While targeting based on the threshold model improves technology diffusion, eliciting the social 

network map to achieve these gains is expensive. Our geography-based treatment arm was an attempt 

to assess how much of the diffusion benefit derived from applying network theory could be achieved 

without having to resort to expensive data collection methods (since each household’s physical 

location is much easier to observe than network relationships).  This specific approach was not an 

unqualified success. Table A1 showed that geo seeds tended to have less land and were therefore 

poorer. Therefore, while the idea of using geography as a proxy for one’s network may be intuitive, 

the implications of geographic centrality may be context-specific, and inappropriate as a network-

based targeting proxy in some cases.  Even though the two Geo seeds are often clustered together, in 

this setting the seeds are poorer, and have fewer connections to others in the network. This limits the 

pace of diffusion. 

Combining our experimental results with research on other inexpensive procedures to identify 

the optimal seeds under complex contagion theory would make network-based targeting more policy 

relevant and scalable. In some contexts, relevant groups within the village may be well-known by 
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policy-makers, and our result would suggest that the critical goal for policy is to saturate individual 

groups with a few trained seeds.  For other contexts, we may need to infer more about the network, 

and a few recent papers have suggested promising, less expensive methods for inferring network 

characteristics.  Banerjee et al. (2019b) suggests that despite the implicit challenges in learning about 

network structure, the simple question of “if we want to spread information about a new loan product 

to everyone in your village, to whom do you suggest we speak?” is successful in identifying individuals 

with high eigenvector centrality and diffusion centrality, who ultimately improve the diffusion process.  

Breza et al. (2019) suggest that aggregate relational data collected from a smaller sample combined 

with a census can yield accurate estimates of network characteristics.  

While we cannot test the viability of either approach empirically, we can explore via 

simulations some alternate strategies that extension officers could use to identify useful partners.  We 

make use of the fact that – unlike other network statistics – “degree” of a network node (i.e. simply 

the number of direct connections it has to other nodes) can be estimated from a single interview 

(Chandrasekhar and Lewis 2016).  In this section, we simulate the effects of several potentially low-

cost strategies in our data, assuming a complex contagion learning environment.  

We suppose that an extension agent enters a village and randomly selects a small number of 

farmers to interview, and only asks one question from our social network census: “Do you discuss 

agriculture frequently with anyone in the village? What is the name of the person you speak with about 

agriculture frequently?” The response to this question generates a small list of names. The extension 

agent can then use the responses to the initial interviews to select any follow-up interviews. 

We simulate six candidate targeting strategies, discussed in more detail in appendix A.3.  While 

most do not perform competitively with the optimal complex contagion targeting, we find that 

strategies which leverage the highest degree respondent from the random sample can approach the 

performance of the optimal targeting. More specifically, if we train any two connections of the highest 
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degree respondent, we achieve 73% of the optimal adoption rate with just 2 total interviews. If the 

extension agent then identifies her two highest degree friends (which requires an additional 5 or so 

interviews to determine which connections are the highest degree), and trains those two, we simulated 

that those trained seeds would achieve 84-90% of the adoption under optimal complex.  The intuition 

is that in a complex learning environment, it is most useful to identify two seeds who have at least one 

connection in common, and who are fairly central in the network so that their connections have many 

connections.  Training two high degree friends of the highest degree farmer guarantees at least one 

high degree person will become informed, and generates a high likelihood of creating other 

connections in common.   

 These simulations therefore suggest that it is possible for us to learn about the relevant pieces 

of network structure to enhance technology diffusion under a complex contagion learning 

environment at modest cost.  

7. Concluding Remarks 

    This paper seeks to use a theory of social learning to increase diffusion of a new technology. 

We first develop a theory-driven methodology to select seed farmers who are predicted to maximize 

diffusion of information about a productive new agricultural technique in Malawi under different 

theoretical assumptions about the process of diffusion. We then implement those selections using a 

field experiment on agricultural extension conducted in partnership with the Malawi Ministry of 

Agriculture. This allows us to test whether (a) theory-driven targeting using detailed social network 

data can increase technology adoption relative to the status quo approach to agricultural extension 

services; (b) a less data-intensive approach can generate similar gains; and (c) whether the diffusion we 

measure follows a learning process similar to the one suggested by the threshold theory. 

 We have provided evidence that technology adoption is well-described by complex contagion 

theory using a set of predictions from the threshold model on the behavior of households in villages 
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under all four treatment arms. We also demonstrate that farmers who are connected to two seed 

farmers are also most likely to adopt pit planting in year 2, consistent with the fact that under complex 

learning, multiple connections to seeds should be predictive of adoption.  

Now the question may be: why does the data not look exactly like the prediction simulated 

under complex contagion? Our experimental design tests two possible scenarios: where either the vast 

majority of farmers had a threshold of one (simple) or where most had a threshold of two (complex). 

If in reality there is a mix of low and high threshold farmers, then the empirical adoption patterns 

would be in between our two simulations. Our heterogeneity analysis, which is motivated by our 

micro-foundation of the threshold model, is consistent with the idea that farmers within the same 

village may have different thresholds.  

Our paper suggests two key directions for future research.  First, we provide evidence that 

many farmers have a high threshold for adoption in a context of agricultural learning in Malawi and 

future research should explore which contexts generate these high thresholds. Our micro-founded 

diffusion model suggests a key dimension to consider when assessing if contagion is likely to be simple 

or complex: the noise of the signal. Rosenzweig and Udry (2020) highlight the importance of aggregate 

stochastic shocks in distinguishing the returns to agricultural investment, microenterprise investment, 

and human capital from large-scale survey data.  Farmers, entrepreneurs, and parents likely have access 

to far fewer data points then these large-scale surveys when they attempt to infer the returns to 

investments and schooling, which – together with our model – may suggest that high thresholds bind 

for a number of problems of interest to economists. However, in contexts in which agents are learning 

about concepts that are less noisy than returns – say the availability of microfinance, how to enroll in 

welfare, or whether a firm is hiring – simple contagion may be the right model.  Characterizing which 

productive investments should diffuse easily through social networks - and which need extensive and 

targeted diffusion - is crucial but beyond the scope of this paper.   
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  Second, while the methodological approach in this paper is not directly scalable for policy, 

given the high costs of collecting network data, our simulations suggest that with only about 10 

interviews per village, it may be possible to identify individuals who can trigger the diffusion process.  

Further research is needed on best practices for engineering diffusion in the context of thresholds: 

when is systematic targeting the best approach, compared to attempting to manipulate farmers’ 

thresholds or engineer new connections to overcome high learning thresholds? 
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Appendix 
 
A.1. Effect of Technology Adoption on Crop yields 

In order to estimate the returns of adopting the new technologies on yields, we compare seed 

farmers to shadow farmers. Appendix table A4 demonstrates that there were large differences in 

adoption rates between seeds and shadow farmers. To estimate the impact of adoption on yields, we 

estimate an ITT specification exploiting that random difference in take-up: 

𝑦௜௩௧ ൌ 𝛽𝑆𝑒𝑒𝑑௜௩௧ ൅ 𝛾𝑋௩ ൅ 𝛿௧ ൅ 𝜖௜௩௧  (1) 

where 𝑦௜௩௧ is log maize yields for farmer i in village v at time t, 𝑆𝑒𝑒𝑑௜௩௧ is an indicator for being 

the selected seed farmer, 𝑋௩ are control variables used during the re-randomization routine (see notes 

in table 3), village size, village size squared, district fixed effects plus baseline land size. 𝛿௧ are year 

dummies. We use data from seasons 2 and 3.  In the intent-to-treat specification in column (1), maize 

yields among seed farmers are 13% greater than the yields experienced by the shadow seeds. The fact 

that the technologies we promoted led to an increase in output strongly suggests that the information 

about pit planting that diffused through the networks was likely positive on average.  

Since only about 30% of seeds adopted pit planting, we also report the local average treatment 

effect using an IV regression in column (2) in which we instrument pit planting adoption with an 

indicator for being randomly assigned as the seed (rather than a shadow).  In this specification, pit 

planting adoption is associated with a 44% increase in maize yield.  However, we cannot rule out that 

CRM adoption also increased yields, potentially violating the exclusion restriction in the IV 

estimation.40 

 
A.2. Adoption rates among seeds (compared to shadow farmers) 

                                                            
40 We also cannot rule out any labor or other input use response to training which may have positively contributed to 
yields. Changes in other inputs makes it impossible for us to say that the yields increases map directly into increases in 
profits.  
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Appendix table A4 compares the technology adoption behavior of seed farmers to shadow 

farmers. We focus on this sub-sample because shadow farmers act as the correct experimental 

counter-factual for the seed farmers to capture the causal effect of the intervention, removing any bias 

due to the seeds’ position within their networks. We estimate the following equation, and Panel A 

displays the results: 

𝑦௜௩௧ ൌ 𝛽𝑆𝑒𝑒𝑑௜௩௧ ൅ 𝛿௩ ൅ 𝜖௜௩௧   (1) 

where the dependent variable is an indicator for adoption, and 𝛿௩ are village fixed effects. Column (1) 

shows that trained seeds are 52% more likely in year 1 to know how to pit plant than shadow farmers. 

Columns (4)-(6) show that seed farmers who are trained on pit planting adopt at a rate of 31-32% in 

all three years, compared to the low 5% adoption rate of shadow farmers in year 1.  

Panel B of Table A3 restricts the sample to only seed farmers (and drops all shadow farmers) 

and compares knowledge and adoption among seeds across the four experimental arms as follows: 

𝑦௜௩௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑆𝑖𝑚𝑝𝑙𝑒௩ ൅  𝛽ଶ𝐶𝑜𝑚𝑝𝑙𝑒𝑥௩ ൅ 𝛽ଷ𝐺𝑒𝑜௩ ൅ 𝛿𝑋௩ ൅ 𝜖௜௩௧  (2) 

where X୴ include the re-randomization controls (listed in table notes), village size, the square of village 

size, and district fixed effects. Standard errors are clustered at the village level. Column (1) shows that 

in the first year, Benchmark seeds are most likely to say they know how to pit plant, while all other 

seeds are similar. The extension agents evidently chose seed farmers carefully to ensure that their 

chosen extension partners receive the initial training from them. However, in years 2 and 3, Simple 

and Complex seeds catch up and have similar levels of familiarity with pit planting as Benchmark 

seeds. Geo seeds continue to display lower familiarity in subsequent years.  

Column (4) shows that there are no differences in adoption propensities across the four types 

of seeds in the first year. This implies that it is unlikely that any observed differences in village-wide 

adoption patterns across the four treatment arms that we will examine later, are driven by initial 

adoption differences inside the sub-sample of seed farmers. Columns (5) and (6) show that seed 
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farmers in simple contagion villages become relatively more likely over time to adopt the technology. 

This could be due to the technology diffusion process, or in other words, a consequence of the 

experiment.  Columns (7)-(8) show that there are no significant differences in adoption in seasons 1 

or 2 for crop residue management. 

 
A.3. Simulation of cost-effective targeting strategies 

For our simulations, we suppose that our extension agent starts with a random sample of 

candidate respondents, and is able to screen out individuals with less than 2 connections.  We suppose 

the extension agent starts with a list of 2-10 randomly selected farmers. 

Starting from that random sample of farmers, we solicit each farmer’s connections and 

calculate each random farmer’s degree.  We then focus on 6 candidate targeting strategies:  

A. Trains two randomly selected people from that list (used as a benchmark) 

B. Trains the two highest degree people from that list 

C. Select two random friends of the highest degree person from that list 

D. Trains the two highest degree connections of the highest degree farmer from the random 

sample (requires interviewing all connections of the highest degree respondent to 

determine their degree) 

E. Selects two farmers from that list at random; interviews two of their connections (selected 

at random) and trains two of connections’ connections41 

F. Trains the highest degree respondent and one of his connections (at random). 

For each of these five candidate strategies, we simulate adoption rates after 4 rounds of 

simulations against the seeds chosen by our complex contagion treatment. We find that Strategy A, 

                                                            
41 This “friends of friends” approach to identifying central people was inspired by Feld (1991), Christakis and Fowler 
(2010), and Kim et al (2015), who note that randomly selected connections tend to be more central than randomly 
selected nodes in a network.  We again assume that the extension agent is able to screen out potential trainees with less 
than two total connections. 
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selecting two farmers at random, achieves 57% of the adoption produced by the complex contagion 

treatment.  We can then view the other targeting strategies in terms of their performance above the 

random benchmark.  Strategy B is identical to random selection with only 2 initial interviews, and so 

similarly generates 57% adoption; however, as the extension agent interviews more people to identify 

these high degree individuals it performs somewhat better, achieving 70% of the complex contagion 

adoption with 10 total interviews.  Strategies C and D both leverage the highest degree respondent 

from the initial random sample.  These perform the best out of the strategies we consider.  Strategy C 

achieves 73% of the optimized adoption with just two total interviews, which increases modestly to 

76% of the optimized adoption as the number of interviews grows to 10 to better identify a high 

degree individual.   Strategy D, our best performing strategy, achieves 84% of the optimized adoption 

with 2 initial interviews (necessitating 8 total interviews as the connections are interviewed), and up to 

90% of the optimized adoption with 8 initial interviews (and 13 total interviews). Strategy E requires 

a total of 4 interviews, and achieves 69% of the optimized adoption.  Strategy F achieves 60% of the 

optimized adoption with 2 interviews, and up to 67% of optimized adoption with up to 10 interviews. 

Clearly the most effective strategies are those that identify a high degree farmer and train her 

connections.  Given the nature of the complex contagion learning process, the intuition is clear: 

training two high degree friends of someone who is high degree means that three people with many 

connections in the same part of the network will become informed.  With clustered networks, it is 

likely that others will as well.   

 





Conversation with: Simple 
Partner

Complex 
Partner

 Geo 
Partner

(1) (2) (3) (4)
Simple Contagion Treatment 0.085 0.043 0.009    0.034    

(0.026) (0.019) (0.016)    (0.026)    
Complex Contagion Treatment 0.055 0.097 0.011    0.052

(0.020)    (0.024)    (0.016)    (0.026)    
Geographic treatment -0.003    0.008    0.050 -0.021    

        (0.021)    (0.020)    (0.020)    (0.026)    

N       10354    10712    10585    11606    
Mean of Benchmark 0.176    0.189    0.152    0.370    
SD of Benchmark 0.381    0.391    0.359    0.483    
p-values for equality in coefficients:

Simple = Complex 0.209    0.023    0.9    0.414    
Complex = Geo 0.003    0    0.04    0.001    
Simple = Geo 0    0.083    0.044    0.016    

Season All All All All

Notes
1
2

3 All columns include controls used in the re-randomization routine (percent of village using compost at 
baseline; percent village using fertilizer at baseline; percent of village using pit planting at baseline); village 
size and its square; and district fixed effects.  Standard errors are clustered at the village level.

At least 1 
conversation with 
seeds or randomly 
chosen villagers

Table 1: Conversations other farmers report having about Pit Planting with Seed and Shadow Partners

Sample excludes seed and shadow farmers. 
In columns (1)-(3), we also include controls for the number of partner farmers (of the type asked about in 
the respective column) we asked about in the questionnaire by including a dummy variable for each number 
of partner farmers from 0 to 4.  In column (4) we also include controls for the number of seeds we asked 
respondents about and the number of randomly selected villagers. This varies by village treatment type, 
since we do not know observe shadow benchmark villages in non-Benchmark villages, and in those villages 
were asked about more randomly chosen villagers.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Connected to 1 seed 0.002    0.030    0.016    0.017    0.021    -0.031    0.008    0.012    0.004    

(0.024)    (0.022)    (0.029)    (0.016)    (0.017)    (0.023)    (0.011)    (0.015)    (0.017)    

Connected to 2 seeds 0.084 0.124 0.064    0.062 0.068 0.110 0.016    0.039 0.014    

(0.038)    (0.040)    (0.064)    (0.028)    (0.029)    (0.051)    (0.014)    (0.019)    (0.035)    
-0.018 0.016 0.067 0.005 0.022 0.028 0.013 0.022 0.037
(0.028) (0.027) (0.042) (0.018) (0.021) (0.028) (0.008) (0.013)    (0.021)    

Season 1 2 3 1 2 3 1 2 3
N       4155 4532 3103 4155 4532 3103 4203 3931 2998

Mean of Reference Group              
(No connection to any seed)

0.223 0.286 0.391 0.057 0.095 0.147 0.013 0.044 0.043

SD of Reference Group 0.416 0.452 0.488 0.232 0.293 0.355 0.113 0.206 0.203

p-value for 2 connections = 
1 connection 0.018 0.013 0.442 0.072 0.091 0.004 0.522 0.164 0.760

Notes
1

2

3

4

Table 2: Diffusion within the village

Within path length 2 of at 
least one seed

The reference group is comprised of individuals with no direct or 2-path-length connections to a seed farmer.

Sample excludes seed and shadow farmers. Only connections to simple, complex and geo seed farmers are considered (no connections to benchmark 
farmers included).

The dependent variable in columns (1)-(3) is an indicator for whether the respondent reported being aware of a plot preparation method other than ridging 
and then subsequently indicated awareness of pit planting in particular. In columns (4)-(6), the dependent variable is an indicator for whether the farmer 
reported knowing how to implement pit planting. The dependent variable in (7)-(9) is an indicator for the household having adopted pit planting in that 
season.

In all columns, additional controls include indicators for the respondent being connected to: one Simple partner, two Simple partners, one Complex 
partner, two Complex partners, one Geo partner, two Geo partners, within 2 path length of a Simple partner, within 2 path length of a Complex Partner, 
and within 2 path length of the geo partner. Also included are village fixed effects. Standard errors are clustered at the village level.

Heard of PP Knows how to PP Adopts PP



(1)    (2) (3)    (4)    
Simple Contagion Treatment 0.155    0.189 0.036 0.006    

(0.100)    (0.111)    (0.017)    (0.022)    
Complex Contagion Treatment 0.252 0.304 0.036 0.036    

(0.093)    (0.101)    (0.016)    (0.026)    
Geographic treatment 0.107    0.188 0.038    0.013    

(0.096)    (0.110)    (0.027)    (0.034)    

Year 2 3 2 3
N       200    141    200    141    

Mean of Benchmark Treatment 
(omitted category) 0.420    0.543    0.038    0.075    

SD of Benchmark 0.499    0.505    0.073    0.109    

p-values for equality in coefficients:
Simple = Complex 0.300    0.240    0.981    0.173    
Complex = Geo 0.102    0.220    0.937    0.491    
Simple = Geo 0.623    0.990    0.950    0.783    

Notes
1

2

3

4

Table 3: Village-Level Regressions of Adoption Outcomes Across Treatment Arms

The reference group is the Benchmark treatment.

All columns include controls used in the re-randomization routine (percent of village using compost at 
baseline; percent village using fertilizer at baseline; percent of village using pit planting at baseline); 
village size and its square; and district fixed effects.  Standard errors are clustered at the village level.

Any Non-Seed Adopters Adoption Rate

The "Any non-seed adopters" indicator in columns (1)-(2) excludes seed farmers. The adoption rate in 
columns (3)-(4) include all randomly sampled farmers, excluding seed and shadow farmers.  

Sample for year 3 (columns 2 and 4) excludes Nkhotakota district.



(1) (2) (3) (4)
-0.008    -0.036    0.019    -0.008    
(0.024)    (0.037)    (0.017)    (0.034)    
0.006    -0.027    0.013    -0.045    

(0.024)    (0.036)    (0.015)    (0.033)    
0.002    -0.068 0.031    -0.054

(0.031)    (0.031) (0.035)    (0.032)
-0.037 -0.062 -0.007    -0.064
(0.017) (0.024) (0.022)    (0.038)
0.064 0.029 0.054 0.021

(0.021) (0.020) (0.029) (0.020)
0.059 0.067 0.054 0.083

(0.018) (0.025)    (0.024)    (0.030)    
0.042 0.022    0.026    0.031    

(0.020)    (0.023)    (0.022)    (0.029)    

Good Signal Type Flat Land Flat Land
Unfamilliar 

Tech
Unfamilliar 

Tech
Year 2 3 2 3
N       3546    2645    3954    3023    
Mean of Bad Signal in 
Benchmark Treatment 

 

0.066    0.123    0.046    0.104    
SD 0.248    0.33    0.21    0.305    

Simple, Good = Complex, 
Good 0.828    0.113    0.986    0.032    
Complex, Good = Geo, 
Good 0.482    0.103    0.297    0.138    
Simple, Good = Geo, Good 0.364    0.755    0.351    0.680    

Notes
1

2

3
4

Table 4: Heterogeneity in Farmer-Level Adoption Decisions Across Treatment Arms

Bad Signal*simple

Bad Signal* complex

Bad Signal * geo

Good Signal

All columns include controls used in the re-randomization routine (percent of village using compost at baseline; 
percent village using fertilizer at baseline; percent of village using pit planting at baseline); village size and its 
square; and district fixed effects.  Standard errors are clustered at the village level.

Good Signal * Simple

The reference group is Bad signal recipients in the Benchmark treatment.

p-values for equality in coefficients:

Good Signal * Complex

Good Signal * Geo

In columns (1)-(2), households with any flat land are those who have Good Signal=1 and those with all sloped 
land have Good Signal=0. In columns (3)-(4), households in villages where less than 4.32% (the median) of 
households ever tried pit planting at baseline are those who have Good Signal=1.

Sample for year 3 (columns 2 and 4) excludes Nkhotakota district.
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        (1)    (2)    
Seed 0.126    
        (0.061)       
Adopted PP 0.443

(0.210)    
N       959    959    
Mean of Shadows       
Season 2,3    2,3

Notes
1

2 Agricultural yields were winsorized. The specification also controls for total farm 
size; controls used in the re-randomization routine (percent of village using compost 
at baseline; percent village using fertilizer at baseline; percent of village using pit 
planting at baseline); village size and its square; and district and season fixed 
effects.  Standard errors are clustered at the village level.

Sample includes only seed and shadow farmers.  Benchmark villages are excluded. 

Log of Agricultural Yields

Table A1: Agricultural yields of Seeds Relative to Shadow (Counterfactual) 
Farmers



Farm 
Size

Total Index 
(PCA)

Degree Betweenness 
Centrality

Eigenvector 
Centrality

(1) (2) (3) (4) (5)
Treatment arm:

Simple Contagion -0.152    0.113       0.455    156.009 0.009    
(0.19)    (0.23)       (1.03)    (67.93) (0.01)    

Complex Contagion -0.037    0.380       3.725 146.733 0.064
(0.19)    (0.23)       (1.02) (67.74)    (0.01)

Geographic -0.614 -0.740 -3.616 -90.204    -0.046
(0.19)    (0.23)       (1.03) (68.04)    (0.01)

p-values for tests of equality in seed characteristics
Simple = Complex 0.335 0.067       0.000    0.815    0.000    
Complex = Geographic 0.000 0.000       0.000    0.000    0.000    
Simple = Complex = Geographic 0.000 0.000       0.000    0.000    0.000    

N       1248 1248    1232    1232    1232    
Mean Value for Seeds in Benchmark Treatment 
(omitted category) 2.06 0.626

   
11.9

   
169

   
0.173

   

SD for Seeds in Benchmark Treatment 2.97    1.7    6.77    343    0.0961    

Notes
1

2

The sample includes all seeds and shadows. The sample frame includes 100 Benchmark farmers (2 partners in 50 villages), as we only observe 
Benchmark farmers in Benchmark treatment villages, and up to 6 additional partner farmers (2 Simple partners, 2 Complex partners, and 2 Geo 
partners) in all 200 villages.

Table A2: Characteristics of the Seeds Chosen by Each Treatment Arm
Wealth Measures Social Network Measures

Benchmark treatment seeds are the reference category.



(1) (2) (3) (4)
Path Distance to 

Closest Seed Simple Seed Complex 
Seed Geo Seed Benchmark 

Seed
1 38% 42% 24% 33%
2 50% 41% 46% 44%
3 9% 10% 20% 14%

4 + 4% 6% 10% 9%
N 4856 4856 4856 922

Appendix table  Table A3: Distribution of distance to Seeds

Notes: Includes only randomly selected (non-seed and non-shadow) respondents as 
well as the 6.5% of households in our sample (419) with zero measured 
connections



        
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
Seeds 0.518 0.367 0.245 0.258 0.230 0.182 0.137 0.047    
        (0.04)    (0.04)    (0.05)    (0.03)    (0.03)    (0.04)    (0.04)    (0.04)    

Seasons 1 2 3 1 2 3 1 2
N       659    735    503    686    672    489    686    467    
Mean of Shadows 0.165    0.187    0.291    0.0541    0.0929    0.139    0.32    0.207    
SD of Shadows 0.371    0.39    0.455    0.227    0.291    0.347    0.467    0.406    

Panel B
Simple Contagion -0.133 -0.067    0.108    -0.006    0.129 0.176 0.078    -0.097    

(0.07) (0.07)    (0.08)    (0.07)    (0.07)    (0.09)    (0.08)    (0.09)    
Complex Contagion -0.120 -0.058    0.007    -0.020    0.002    0.037    -0.001    -0.077    

(0.07) (0.07)    (0.08)    (0.08)    (0.07)    (0.08)    (0.08)    (0.09)    
Geographic -0.193 -0.255 -0.150    -0.095    -0.064    -0.003    -0.011    -0.075    

(0.07)    (0.07)    (0.09)    (0.08)    (0.07)    (0.08)    (0.08)    (0.10)    

Seasons 1 2 3 1 2 3 1 2
N       343    383    264    353    352    259    353    243    
Mean of Benchmark 0.824    0.653    0.547    0.337    0.276    0.238    0.442    0.339    
SD of Benchmark 0.383    0.479    0.502    0.476    0.45    0.429    0.5    0.478    
p-value for tests of equality in adoption rates across treatment cells:

Simple = Complex 0.872    0.904    0.242    0.862    0.0766    0.108    0.311    0.808    
Complex = Geographic 0.377    0.0155    0.111    0.36    0.358    0.625    0.886    0.977    
Joint test of 3 treatments 0.472    0.0206    0.0109    0.252    0.00846    0.049    0.235    0.795    

Notes
1

2

In Panel A, all columns compare seed farmers to shadow farmers. Village fixed effects are included, and standard errors are clustered at the village level.

In Panel B, the sample includes only seed farmers, and the reference group is Benchmark seed farmers. The specification also includes controls which were 
used in the re-randomization routine (percent of village using compost at baseline; percent village using fertilizer at baseline; percent of village using pit 
planting at baseline); village size and its square; and district fixed effects.  Standard errors are clustered at the village level.

Table A4: Seed knowledge and adoption

Knows How to Pit Plant Adopts Pit Planting Adopts CRM



Simple Complex Geo Benchmark N p value of 
joint test

(1) (2) (3) (4) (5) (6)
Housing (pca) -0.159 -0.036 0.023 0.106 14089 0.052

(0.05) (0.09) (0.21) (0.08)
Assets (pca) -0.059 -0.034 -0.040 0.005 14346 0.855

(0.07) (0.05) (0.06) (0.08)
Livestock (pca) 0.012 0.025 -0.087 0.014 14346 0.210

(0.06) (0.06) (0.04) (0.06)
Basal fertiliser (kg) 51.98 53.11 50.92 50.94 10427 0.970

(4.78) (3.14) (3.17) (2.23)
Top dressing fertiliser (kg) 49.82 49.49 50.28 52.11 10526 0.787

(3.33) (2.05) (2.53) (1.99)
# of Adults 2.305 2.316 2.299 2.306 14103 0.987

(0.02) (0.02) (0.03) (0.02)
# of Children 2.617 2.650 2.619 2.599 14346 0.847

(0.04) (0.05) (0.05) (0.04)
Farm size (acres) 1.624 1.676 1.764 1.808 14083 0.064

(0.08) (0.06) (0.09) (0.08)
Own land 0.904 0.907 0.903 0.913 14346 0.922

(0.01) (0.01) (0.02) (0.01)
Yields 304.20 290.46 303.54 300.77 13500 0.842

(18.63) (21.65) (20.71) (25.43)
Provided Ganyu 0.254 0.250 0.242 0.233 14078 0.599

(0.01) (0.02) (0.02) (0.02)
Used Ganyu 0.123 0.134 0.150 0.142 14078 0.115

(0.01) (0.01) (0.01) (0.01)

Notes
1

2

3

4 Ganyu is the term used in Malawi for hired wage labor on the farm. 

Table A5: Test of Balance across Randomized Treatment Arms

Housing, assets and livestock in the first three set of rows are pca scores. Housing includes information on: materials walls 
are made of, roof materials, floor materials and whether the household has a toilet.  Assets includes the number of bycicles, 
radios and cell phones the household owns. Livestock is an index including the number of sheep, goats, chickens, cows, 
pigs guinea fowl, and doves.
Columns (1)-(4) give the means and standard errors of the variable listed in the title column in each of the treatment arms. 
The seeds and the shadow seeds are excluded from the sample. The data is from the social network census.

Column (6) shows the p value of a joint test of significance of all treatment arms. Also included in the specification used 
for the test are controls used in the re-randomization routine (percent of village using compost at baseline; percent village 
using fertilizer at baseline; percent of village using pit planting at baseline) and district fixed effects.  Standard errors are 
clustered at the village level.



(1) (2) (3) (4)
Panel A: Simulations Assuming Farmers learn by Simple Contagion

Simple Treatment 0.095 0.036    0.026    0.090
        (0.043)    (0.037)    (0.024)    (0.052)
Complex Treatment 0.060    0.013    0.087 0.072

(0.048)    (0.045)    (0.029)    (0.063)
Geo treatment -0.050    -0.070    -0.022    -0.113

(0.053)    (0.054)    (0.027)    (0.057)

Year 2 3 2 3
N       187    138    187    138    
Mean Benchmark Partners 0.845    0.927    0.182    0.504    
SD Benchmark Partners 0.258    0.186    0.149    0.306    
Test: Simple = Complex 0.384    0.559    0.013    0.733    
Test: Complex = Geo 0.026    0.129    0.000    0.001    
Test: Simple = Geo 0.001    0.030    0.035    0.000    

Panel B: Simulations Assuming Farmers Learn by Complex Contagion
Simple Treatment -0.092    -0.109    0.001    -0.022    
        (0.056)    (0.077)    (0.012)    (0.040)    
Complex Treatment 0.257 0.275 0.047 0.162

(0.061)    (0.081)    (0.012)    (0.046)    
Geo treatment -0.028    -0.048    0.008    -0.032    

(0.060)    (0.083)    (0.011)    (0.038)    

Season 2 3 2 3
N       187    138    187    138    
Mean Benchmark Partners 0.436    0.541    0.038    0.138    
SD Benchmark Partners 0.341    0.39    0.0479    0.194    
Test: Simple = Complex 0.000    0.000    0.000    0.000    
Test: Complex = Geo 0.000    0.000    0.001    0.000    
Test: Simple = Geo 0.192    0.370    0.533    0.777    

Notes
1

Table A6: Simulation of Village Level Adoption Outcomes across all treatment cells, assuming 
Diffusion follows either Complex or Simple Contagion Pattern

Simulations only include control villages where we had both seeds in social network census.

Simulated 
Any Adopters

Simulated 
Adoption Rate



Any Non-Seed 
Adopters

Adoption 
Rate

(1)    (2)    
Simple Contagion Treatment -0.083    -0.037    

(0.062)    (0.027)    
Complex Contagion Treatment -0.064    -0.026    

(0.060)    (0.027)    
Geographic treatment -0.152 -0.054

(0.070)    (0.029)    

Year 2 2
N       141    141    

Mean of Benchmark Treatment (omitted category) 0.971    0.204    

SD of Benchmark 0.169    0.109    

p -values for tests of equality of coefficients…
Test: Simple = Complex 0.794    0.680    
Test: Complex = Geo 0.258    0.366    
Test: Simple = Geo 0.336    0.583    

Notes
1

2
3

Table A7: Village Level Adoption Outcomes for Crop Residue Management (CRM)

The "Any non-seed adopters" indicator in columns (1) excludes seed farmers. The 
adoption rate in column (2) include all randomly sampled farmers, excluding seed and 
shadow farmers.  
Analysis restricted to data from Mwanza and Machinga.
All columns include controls used in the re-randomization routine (percent of village using 
compost at baseline; percent village using fertilizer at baseline; percent of village using pit 
planting at baseline); village size and its square; and district fixed effects.  Standard errors 
are clustered at the village level.
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