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We consider a model of technological learning under which people “learn
through noticing”: they choose which input dimensions to attend to and subse-
quently learn about from available data. Using this model, we show how people
with a great deal of experience may persistently be off the production frontier
because they fail to notice important features of the data they possess. We also
develop predictions on when these learning failures are likely to occur, as well
as on the types of interventions that can help people learn. We test the model’s
predictions in a field experiment with seaweed farmers. The survey data reveal
that these farmers do not attend to pod size, a particular input dimension.
Experimental trials suggest that farmers are particularly far from optimizing
this dimension. Furthermore, consistent with the model, we find that simply
having access to the experimental data does not induce learning. Instead, be-
havioral changes occur only after the farmers are presented with summaries
that highlight previously unattended-to relationships in the data. JEL Codes:
D03, D83, 013, 014, 030, Q16.

I. INTRODUCTION

Many production functions are not known ex ante. Instead,
they are learned, from personal experiences (Arrow 1962; Gittins
1979; Foster and Rosenzweig 1995; Jovanovic and Nyarko 1996)
and from those of others (Banerjee 1992; Bikhchandani,
Hirshleifer, and Welch 1992; Besley and Case 1993, 1994;
Munshi 2004; Conley and Udry 2010). Although diverse, existing
learning models share a common assumption: the key input for
learning is informative data.

Many examples, however, defy this assumption. For many
years, doctors had the data that they needed to prevent operating
room infections, but the importance of a sterile operating room
was not recognized until the germ theory of disease was accepted
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(Gawande 2004; Nuland 2004). Indian textile manufacturers
failed to adopt key management practices, such as having an un-
cluttered factory floor, despite exposure to natural variation that
pointed to their importance (Bloom et al. 2013). Even experienced
teachers do not adopt the best teaching practices (Allen et al.
2011). These examples imply that learning is not just about the
data that you possess, but what you notice in those data. In fact,
we may not learn from the data that we ourselves generate.

In this article, we use Schwartzstein’s (2014) model of select-
ive attention to build a model of learning through noticing and
test its predictions in a field experiment with seaweed farmers.!
The model highlights an important constraint on learning. A
farmer planting a crop faces a slew of potential features that
might affect production—crop spacing, the time of planting, the
amount and timing of the water employed, the pressure of the soil
on the seedlings, and so on. He cannot possibly attend to every-
thing (Kahneman 1973): his attention is limited (or effortful),
while the number of potentially important variables is large.
Since he can only learn about the dimensions that he notices
(or attends to), this choice becomes a key input into the learning
process.

In the model, the farmer allocates attention in a “Savage
rational” way: he optimally chooses what to attend to as a
Bayesian, given his prior beliefs and the costs of paying attention.
Consistent with the foregoing examples, even with substantial
experience—and even with lots of readily available data—a
farmer may not approach the productivity frontier. Despite the
(subjective) optimality assumption, an interesting feedback loop
arises: a farmer who initally believes that a truly important di-
mension is unlikely to matter will not attend to it, and conse-
quently will not learn whether it does matter. This failure to
learn stems from not focusing on aspects of the data that could
contradict a false belief. When the technology is incongruent with

1. Although the model presented in this paper is specific to issues related to
technological use, Schwartzstein (2014) presents a general model of belief forma-
tion when agents are selectively attentive. The approach of modeling economic
agents as responding only to a subset of available information dates back to at
least Simon (1955). Nelson and Winter (1982) consider how bounded rationality
(or “evolutionary processes”) affect technological change. For more recent
approaches to modeling limited attention in economic settings, see Sims (2003),
Bordalo, Gennaioli, and Shleifer (2012, 2013), Koszegi and Szeidl (2013), and
Gabaix (2013).
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the farmer’s priors, the losses from such suboptimization can be
arbitrarily large.

Although other models of incomplete learning also accommo-
date the idea that people can persistently be far from the prod-
uctivity frontier, our model predicts where these failures should
occur. Learning failures should be concentrated on dimensions
where the farmers report ignorance, that is, where they cannot
answer key questions about what they precisely do (or have done)
along those dimensions. Most other theories of mistoptimization
(arising from overconfidence, false beliefs, unawareness, etc.)
have little to say about this “failure to notice” variable.

To test the model’s predictions, we conducted a field experi-
ment with seaweed farmers in Indonesia. Seaweed is farmed by
attaching strands (pods) to lines submerged in the ocean. As in
the model, a large number of dimensions affect yield. To look for
failures to notice, we directly asked farmers about their own pro-
duction techniques. Farmers are quite knowledgeable and have
clear opinions about many dimensions: almost all farmers had an
opinion about the length of their typical line, the typical distance
between their lines, the optimal distance between their knots
(pods), the optimal distance between lines, and the optimal
cycle length. On the other hand, most do not recognize a role
for one key dimension: about 85% do not know the size of their
pods and will not venture a guess about what the optimal size
might be.?

To test whether this apparent failure to notice translates into
a learning failure, we conducted experiments on the farmers’ own
plots, varying both pod size and pod (or knot) spacing. On pod
spacing, which almost all farmers had an opinion about, our find-
ings suggest that they were close to the optimum. In contrast, on
pod size—which few farmers had an opinion about—our findings
suggest they were far from it.

Further support for the model comes from examining farm-
ers’ response to the trial. The model suggests that simply parti-
cipating in the trials may not change the farmers’ behavior with

2. Many other dimensions might be important. For example, the strength of
the tide, the time of day, the temperature, the tightness with which pods are at-
tached, the strain of pods used, and so on could matter. In our analysis, we largely
focus on two or three dimensions for parsimony, but actual demands on attention
are much greater.
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respect to pod size.? Intuitively, the farmers’ own inattentive be-
havior generates an experiment of sorts every season—random
variation in pod sizing—and the trial presents farmers with simi-
lar data to what they already had access to but did not learn from.
Consistent with this idea, we find little change in pod size follow-
ing participation in the trial. However, the model suggests an
alternative way to induce learning: to provide a summary of the
data that explicitly highlights neglected relationships. Consistent
with this prediction, we find that farmers changed their produc-
tion methods after we presented them with the trial data on yield
broken down by pod size from their own plots.

Beyond the analysis of seaweed farming, we extend the model
to illustrate how greater experience with related technologies can
predictably increase the likelihood of learning failures and make
precise a notion of the “complexity” of the current technology that
can also induce failures. The potential costs of experience and the
role of complexity are consistent with folk wisdom and evidence on
technology adoption and use (e.g., Rogers 2003), but to our know-
ledge have largely remained theoretically unexplored.

The model also has broader implications for understanding
which types of interventions can help individuals learn. In most
learning models, providing more data induces learning. Our
model and experimental results, in contrast, suggest that
simply providing more data can have little effect on behavior if
data availability is not a first-order problem. Our findings shed
light on why some demonstrations or agricultural extension
activities are ineffective or only moderately effective in the long
run (e.g., Kilby 1962; Leibenstein 1966; Duflo, Kremer, and
Robinson 2008b). At the opposite extreme, our model and experi-
mental results show how one can induce learning without provid-
ing new data by simply providing summaries highlighting
previously unattended-to relationships in the agents’ own data.
This result aligns with growing evidence that interventions that
encourage agents to attend more closely to available data can
profitably affect behavior in diverse contexts ranging from car

3. Strictly speaking, this is a prediction of the model under the assumption
that merely being asked to participate does not, by itself, significantly alter farmers’
beliefs about the importance of pod size, which we had prior reason to believe would
be true (as we discuss later). It also relies on an assumption that it is not signifi-
cantly easier for the farmers tolearn relationships from the raw trial data than from
the data they are typically exposed to, which also seems plausible given the experi-
mental design.
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LEARNING THROUGH NOTICING 1315

manufacturing (Liker 2004), to teaching (Allen et al. 2011), to
shopkeeping (Beaman, Magruder, and Robinson 2014).

The article proceeds as follows. Section II presents the base-
line model of learning through noticing and develops the empir-
ical predictions. Section III describes the experiment, and Section
IV provides its results. Section V explores other potential appli-
cations and extends the model to develop comparative static pre-
dictions on the prevelance of failures to notice and resulting
failures to learn. Section VI concludes.

II. MODEL
II.A. Setup

We present a stylized model of learning through noticing
which builds on Schwartzstein (2014). We present it for the case
of a farmer to make it concrete, and reinterpret it for other con-
texts, such as management or education, in Section V. A farmer
plants the same crop for two periods, ¢ € {1,2}. He works on a
continuous sets of plots indexed by [ € [0, 1]. To capture the idea
that the constraint on learning comes from having many things to
pay attention to, his production technology has many dimensions
that might matter. Specifically, for each of his plots /, the farmer
chooses an N-dimensional vector of inputs, x = (x1,xe, ...xy),
where each x; is drawn from a finite set X;, and where we denote
the set of possible x by X.

Given the input bundle x € X, the dollar value of net yield
(total yield net of the costs of inputs) for the farmer from a plot [ at
time ¢ is:

N
(1) yir =F(XI0) + &1 = Y _ (10 + eue,
j=1
where 0 = (64, ...,0y) is some fixed parameter of the technology

(described later) and &; ~ N(0,02) is a mean zero shock that is
independent across plots of land and time.*

4. Note that / and ¢ appear symmetrically in equation (1). For the purpose of
forming beliefs about the underlying technology (0), it does not matter whether the
farmer learns through many observations across plots at a fixed time, or through
many observations over time on a fixed plot. Equation (1) also reflects a simplifying
assumption that the payoff function is separable across input dimensions, allowing
us to separately analyze the farmer’s decisions across dimensions.
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1. Beliefs. Since the model focuses on how inattention affects
learning, we assume that the farmer initially does not know
the parameters of the production function: he must learn
0 = (61, ..., 0N) through experience.

The farmer begins with some prior beliefs about 6, where we
denote a generic value by 6. We assume that although many di-
mensions could be relevant for production, only a few of them
actually are. To capture this, we assume that the farmer attaches
prior weight ; € (0, 1) to input j being relevant and the remaining
weight, (1- m;), to input j being irrelevant. Specifically, the farm-
er’s prior holds that:

0 if input j is irrelevant
~ 5 2
(2) fixjlo) = Qj(?CJ:) ~ N OV, if input j is relevant.
iidacrossz; € X;

We assume v?> 0 and that the prior uncertainty is independent
across dimensions, meaning that knowledge of how to set input j
does not help the farmer set input j/. Under these assumptions,
when input j is irrelevant, it does not matter how x; is set. When
input j is relevant, with probability 1 some particular level of x;
produces the greatest output. But the farmer does not initially
know which one because the exact 0; is unknown and must be
learned.

2. Costly Attention. To this standard learning problem, we
add limited attention. The farmer makes a zero-one decision
of whether to attend to a given input. Let a, € {0,1} denote
a vector that encodes which dimensions the farmer attends
to in period ¢, where a;,=1 if and only if he attends to dimen-
sion j in period ¢. For each input dimension he attends to, he
faces a cost e, reflecting the shadow cost of mental energy and
time.

Inattention operates in two ways. First, when the farmer
does not attend to input j, a “default action” is taken, which we
capture simply as a uniform distribution over the possible values
of that input: X;. Thus, the farmer’s actions are random in the
absence of attention. When a farmer attends to an input, he
chooses its level.

Second, if the farmer does not attend to an input, he also
does not notice the set level(s). Thus, in period 2, instead of

020z AInp €2 uo Josn saueiqr 1IN Ad 226/ 181/L LEL/E/6Z L AdEISAe-0jo1e/alb/Wwoo"dno-olwepeoe//:sdRy WOy papeojumod



LEARNING THROUGH NOTICING 1317

knowing the values x;;; which were actually chosen, he only
remembers:

A~ )Xn if aﬂ:l

(3) Xjin = { ij if aj) = 0.
Notationally, we write the full second-period history as
h = (y11, X11);¢p0,1» Which is what the farmer would recall if he
were perfectly attentive, and & = (y;1,%1),¢0,1) @s the recalled
history.®

In our seaweed application, if the farmer does not attend to
pod size, he both creates random variation by virtue of not focus-
ing on this dimension when cutting raw seaweed into pods and
does not know the know the specific pod sizes that were set,
making it harder for him to learn a relationship between pod
size and output.

3. The Farmer’s Problem. The farmer is risk-neutral and
maximizes the expected undiscounted sum of net payoffs—yield
minus attentional costs—across the two periods. To simplify the
presentation by allowing us to drop the I subscript, we restrict the
farmer to strategies that are symmetric across plots in a given
period, but allow him to mix over input choices. When it does not
cause confusion, we abuse notation and let x; both denote the
farmer’s choice along dimension j at time ¢ if he attends to that
input, and the default uniform distribution over possible input
levels when he does not attend.

This simple model captures a basic learning problem. In the
first period, the farmer makes choices that trade off the future
benefits of experimentation against maximizing current expected
payoffs. In the second period, the farmer simply chooses to maxi-
mize current expected payoffs.®

5. Under the interpretation that y measures the dollar value of yield net of
input costs, we are implicitly assuming that the farmer knows the total input costs
even if he does not attend to certain input choices. By analogy, we may know our
total monthly spending without knowing our spending by category, for example
food or clothing.

6. The model’s assumption of two periods but many plots implies that experi-
mentation will occur across plots in a fixed time period, rather than over time. Thus,
we can avoid tangential issues that arise in settings with multiperiod experimen-
tation, such as considering the degree to which agents are sophisticated in updating
given missing information (Schwartzstein 2014). That there are a continuum of
plots also simplifies matters by allowing us to abstract from noise in the learning
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II.B. Results

We first ask when the farmer will end up at the productivity
frontier. For a technology (0) and given cost of attention (e), let x}
denote a (statically) optimal input choice along dimension j. More
precisely, x} maximizes fi(x;10;) whenever dimension j is worth
attending to, that is, whenever the payoff from setting the opti-
mal input along dimension j and incurring the attentional cost to
do so, maxy, fj(x;|0;) — e, exceeds the payoff from not attending to
the input and thus randomly setting it, |X\ >« 1i(x}16;). Whenever
dimension j is not worth attending to, xf equals the default uni-
form distribution over X; (with an obvious abuse of notation). To
make the problem interesting, we assume that there is at least
one dimension that is worth paying attention to, because other-
wise the farmer will necessarily end up at the frontier.

To more broadly understand when the farmer ends up at the
productivity frontier, we focus on second-period choices.

ProrosiTtioN 1.

(1) When there are no costs of attention (e=0), the farmer
learns to optimize every dimension: in the second (ter-
minal) period he chooses xjo = x} for all ;.

(11) With costs of attention (e > 0),

(a) The farmer may not learn to optimize certain dimen-
sions: for every technology 0, there exists a collection
of prior weights 7; >0, i=1...,N, such that in the
second period he chooses xjp # x; for some input j.

(b) Losses from not optimizing are unboundedly large: for
every constant K € R, there exists a technology 6 and
collection of prior weights 7; >0, i =1...,N, such that
in the second period the farmer chooses x;o # x; for some
J and, by doing so, loses at least K.

(iii) The farmer does not learn to optimize a dimension only if
he did not attend to it in the first period: in the second
period he chooses xjp # x only if a;;=0.

process; in principle the farmer can perfectly learn the technology in a single period.
This will allow us to focus on how inattention, rather than incomplete information,
contributes to incomplete learning.
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Proof. See Online Appendix A for all proofs.

The first part of Proposition 1 replicates the standard result
of learning by doing models that, with no costs of attention, learn-
ing is primarily a function of experience and enough of it guar-
antees optimal technology use (e.g., Arrow 1962; Nelson and
Phelps 1966; Schultz 1975). This intuition is invoked (at least
implicitly) in arguments that learning by doing is not an import-
ant determinant of adoption for old technologies in which individ-
uals have abundant experience (Foster and Rosenzweig 2010).

The second part of the proposition in contrast shows that,
with costs of attention, failures to notice can lead to failures to
learn, and these failures can lead to big payoff losses. The basic
idea is simple: inattention is self-confirming (Schwartzstein
2014). If the farmer initially falsely believes an input is not
worth attending to, he will not notice the information that
proves him wrong and will continue not attending to the input
even if it is very important.” As the proof of Proposition 1 makes
clear, the farmer fails to learn to optimize dimension j when the
dimension matters, but he places sufficiently low prior weight r;
on it mattering. Resulting errors can be arbitrarily large: the
constant K need not be in any way proportional to the cost of
attention, so even very small attentional costs can produce
large losses. The final part of the proposition says that optimiza-
tion failures come directly from noticing failures in our model.
This makes the model testable by placing an empirically verifi-
able restriction that a farmer fails to optimize on a dimension j
only if X;; = ¥ on that dimension.®

Proposition 1 yields the following testable predictions:

Prepiction P1. Agents may fail to attend to some dimensions.

PrepictioN P2. Agents may persistently choose suboptimal input
levels along some dimensions.

7. The logic is similar to why individuals can maintain incorrect beliefs about
the payoff consequences to actions that have rarely been tried in bandit problems
(Gittins 1979) and in self-confirming equilibria (Fudenberg and Levine 1993), and
why these incorrect beliefs in turn support suboptimal decisions.

8. Similarly, under the assumption that farmers do not measure and conse-
quently randomly select inputs along dimensions they do not pay attention to,
identifying dimensions along which farmers persistently use a wide variety of
input levels will also predict failures to notice and resulting failures to learn.
Likewise, identifying dimensions along which farmers cannot recall the empirical
relationship between the input level and the payoff will predict such failures.

020z AInp €2 uo Josn saueiqr 1IN Ad 226/ 181/L LEL/E/6Z L AdEISAe-0jo1e/alb/Wwoo"dno-olwepeoe//:sdRy WOy papeojumod


http://qje.oxfordjournals.org/lookup/suppl/doi:10.1093/qje/qju015/-/DC1

1320 QUARTERLY JOURNAL OF ECONOMICS

PrepicTiON P3. Agents only persistently choose suboptimal input
levels along dimensions they do not attend to, which can be
identified by measuring recall.

To develop further predictions, remember that inattention
has two consequences: a failure to precisely set input levels and
a failure to notice and recall what they are. These two effects
work in different directions. Failing to remember clearly impedes
learning. However, failing to precisely set input levels can help
learning: when the farmer does not attend to an input, he inad-
vertently experiments and generates valuable data. Because he
does not notice these data, he does not capitalize on them. But
this distinction has an interesting implication.

Specifically, suppose that in period 2 a farmer could have
access to summary statistics about his own data from period 1,
for example because an extension officer calculates and presents
the farmer with such information. What effect would this have?
One way to model this is to suppose that, for each input j, the
farmer is told the level x xf e X; that achieved the greatest yield i 1n
period 1, as well as the correspondlng sample average y](x*)
Since the cost of tracking the input relative to yield on measure
1 of plots of land is e, it is natural to assume that the cost of
attending to a single statistic (y"j(oij’!‘),azj) is much lower, which
for simplicity we will take to equal 0. To emphasize the effect of
receiving a summary about data the farmer would generate on
his own, suppose that receiving it comes as a complete surprise:
when choosing how to farm and what to attend to in the first
period, he does not anticipate that he will later be provided
with this summary. However, suppose that he understands how
the summary is constructed, that is, he correctly interprets the

9. Specifically, letting L;(x;) = {I € [0,1] : x3; = x;} denote the set of plots of
land where the farmer uses input level x; in the first period, the sample average
payoff conditional on using that input equals:

T T £j10) + ) fr(xrin|Or) + endl
ILH) JieLi;) L) JrerLesy ™ / ; !
= F10) + Y fi(on1108),
k#j
where o1 € A(X}) denotes the distribution over input levels in X, implied by the
farmer’s first period strategy. 32;‘ is then defined as a maximizer of y;(-), where any
ties are arbitrarily broken.

Yilxs) = yndl =
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summary given his prior over 6 and the objective likelihood func-
tion of the summary.

ProrposiTion 2. If the farmer has access to summary information
(j(x7), % J]\i 1) prior to making second-period decisions, then
he learns to optimize every dimension j: he chooses xj3 = x;
for all ;.

_ The intuition behind Proposition 2 is simple: together with
h, ()7]-(32;),55;) is a sufficient statistic relative to the farmer’s
second-period decision along dimension j; that is, he will make
the same choice on that dimension whether he knows all of & or
just A and @j(ij),ij).

Proposition 2 demonstrates that in the model, learning
failures do not result from a lack of readily available data (or
from a doctrinaire prior that does not allow for learning), but
from a failure to attend to important details of the data.'®
Summarizing features of the data that the farmer had seen but
failed to notice can thus be useful.

The value of summaries relies on the farmer facing costs
of paying attention and not attending to some dimensions
on his own, as Proposition 1 demonstrates that the farmer
will otherwise learn to optimize independent of receiving a
summary. In fact, combining the two propositions yields the
simple corollary that the farmer will react to the summary
only along dimensions he does not attend to in its absence.
The model may thus rationalize certain extension or consult-
ing activities that do not help agents collect new data, but
rather record and highlight relationships in these data. For the
purpose of the main empirical exercise, we have the following
predictions:

PrepicTioN P4. Agents may fail to optimize along neglected di-
mensions, even though they are generating the data that
would allow them to optimize.

10. The stark finding of Proposition 2—that any failure to learn stems solely
from failing to extract information from available data, rather than from a lack of
exposure—relies on the richness of the environment, for example, that there is a
continuum of plots. The key point is more general: given the data that he generates,
the inattentive farmer could benefit from processing those data differently when he
did not attend to important input dimensions when forming beliefs.
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PrepIcTION P5. Summaries generated from the agents’ own data
can change their behavior.

II1.C. Comparison with Alternative Approaches

We briefly contrast our model with alternative approaches.
First, a model in which an agent exogenously fails to optimize
along certain dimensions would be simpler, but would problem-
atically be consistent with every kind of learning failure. In con-
trast, our model allows for testable predictions about when an
agent will fail to optimize, for example, when he cannot answer
questions about what he does. Second, a more extreme form of not
noticing—unawareness—could also produce failures to learn,
where unawareness means that an agent does not even realize
that a dimension exists. Conversely, our model predicts that an
agent may persistently fail to optimize along important dimen-
sions he is aware of when a technology is prior incongruent—
failures to learn come from not appreciating the importance of
variables instead of neglecting their existence entirely. For ex-
ample, in contrast to models of unawareness, doctors were dis-
missive of practices like hand-washing long after it was
hypothesized that there could be empirical relationships between
doctors washing their hands and outcomes like maternal deaths
(Nuland 2004). The germ theory of disease was important for
getting doctors to appreciate such relationships. Third, the pre-
dictions of our model are distinct from those of “bandit models”
(Gittins 1979), models of self-confirming equilibria (Fudenberg
and Levine 1993), or “local” models of learning by doing (Conley
and Udry 2010). Although such models also allow for persistent
failures to optimize, in those models a lack of data explains learn-
ing failures. When the binding constraint is instead a failure to
notice, the main bottleneck is not one of data collection but one of
data processing.

Finally, models of “rational inattention” (e.g., Sims 2003;
Gabaix 2013) also model attentional costs, but further assume a
form of rational expectations in which agents know what is worth
attending to, rather than having to learn what to attend to
through experience. This assumption implies that the size of
learning failures resulting from inattention is bound by atten-
tional costs. In contrast, Proposition 1 shows that potential
losses from not noticing are unboundedly large in our model:
our model can shed light on big deviations from optimality.
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II.D. Applying the Model

The analysis suggests an exercise with the following steps: (i)
find a multidimensional setting with experienced agents, (ii) pre-
dict or measure what agents attend to, (iii) assess whether agents
are optimizing, (iv) assess whether agents could achieve a higher
payoff given data available to them, and (v) conduct an “atten-
tional intervention.”

For (i), we prefer a setting in which the first-order reason
behind any incomplete learning is compellingly a failure to
notice rather than a lack of available information. Situations
with experienced farmers, using mostly old technologies (e.g.,
fertilizer) fits this description; situations in which a new technol-
ogy has just been introduced (e.g., hybrid seeds in the 1920s) may
be more fruitfully analyzed through the lens of more traditional
models of technology adoption and use.

For (i1), we would like to collect data that can be used to predict
or measure which dimensions of the production process agents
do or do not pay attention to. Such data can include survey re-
sponses detailing agents’ beliefs about how they have set inputs
along various production dimensions in the past (allowing agents
to reveal their knowledge on those inputs), their beliefs about what
constitutes best practices, and data on how they actually set
inputs.

For (iii) and (iv), we want to collect or generate data that can
be used to analyze whether agents are optimizing given data
available to them, and whether they do a poorer job optimizing
dimensions they appear not to pay attention to. To perform this
exercise, Proposition 2 suggests that it may suffice to analyze
data that the agent generates herself.

For (v), we want to perform an intervention that involves
presenting information in a way that helps agents learn relation-
ships that they would not learn on their own, and examine
whether the intervention affects agents’ behavior and resulting
payoffs. From Proposition 2, such an intervention can involve
providing a summary of how different input choices along un-
attended-to dimensions (identified by (ii)) have empirically influ-
enced the payoff-relevant output, given data agents in principle
have available to them.

The seaweed experiment, detailed below, follows the steps
laid out above and tests Predictions P1-P5. The model generates
testable predictions beyond Predictions P1-P5 that can be
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explored by following additional exercises. Section V details some
of these predictions and exercises.

III. THE SEAWEED EXPERIMENT
III.A. Setting

Our experiment takes place with seaweed farmers in the
Nusa Penida district in Indonesia. Seaweed farming exhibits
key features of an ideal setting discussed in Section II.D: it in-
volves experienced agents who have had many opportunities to
learn—they have grown seaweed since the early 1980s, with
many crop cycles in each year—but where the production tech-
nology involves many dimensions.

Most farmers in the area that we study follow what is called
“the bottom method”: in each plot, a farmer drives wooden stakes
in the shallow bottom of the ocean, and then attaches lines across
the stakes. He takes raw seaweed from the last harvest and cuts
it into pods.'* A farmer then plants these pods at a given interval
on the lines. After planting, farmers tend their crops (remove
debris, etc.). About 35 to 40 days later, they harvest the seaweed,
dry it, and then sell it to local buyers.

While seemingly straightforward, this process requires deci-
sions on many different dimensions along the way, ranging from
whether to use the bottom method or other methods, how long to
wait before harvesting, and even where and how to dry the sea-
weed. We focus primarily on three dimensions. We explore the
farmers’ decisions on the distance between lines and distance
between pods, which influence how much sunlight and nutrients
the pods have access to, as well as the degree to which they are
exposed to waves. Additionally, we look at the size of the pods the
farmers plant, which may influence the growth of the pods
for numerous reasons; for example, bigger seedlings may re-
sult in higher yields in still water, but may be more likely to
break (or be lost completely) in ocean locations that face signifi-
cant waves.

Seaweed farming shares essential features with farming
other crop types, where the many different decisions over

11. Most farmers initally grew a variety called spinosum, but some have moved
to a different strain called cottonii due to buyer advice as well as government and
nongovernmental extension programs.
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inputs add up to determine yields, making it plausible that in-
sights from our study could generalize. Prior to our study, there
were already indications that some farmers may not have been
optimizing, as their methods differed from local extension officers’
recommended practices.

III.B. Experimental Design

From dJune 2007 to December 2007, we administered
a survey that we use to elicit which dimensions of the sea-
weed production process the farmers pay attention to (see
Appendix Figure A.I for the project timeline). From a census of
about 2,706 farmers located in 7 villages (24 hamlets) commis-
sioned by us in 2006, we drew a random sample of 500 farmers for
the baseline survey, stratified by hamlet. Out of these, 489
were located and participated in the baseline survey (see
Appendix Figure A.II). The baseline survey consisted of two
parts: (i) a questionnaire that covered demographics, income,
and farming methods; and (ii) a “show and tell” where the enumer-
ators visited the farmers’ plots to measure and document actual
farming methods (see Section III.C for the data description).

From the list of farmers who participated in the baseline
survey, we randomly selected 117 to participate in an experimental
trial to determine the optimal pod size for one of their plots (strati-
fied by hamlet), as well as the optimal distance between pods for a
subset of those farmers. This trial allows us to analyze whether
farmers are optimizing, and whether they do a poorer job optimizing
dimensions they seem not to pay attention to. The trials occurred
between July 2007 and March 2008, shortly after the baseline was
conducted for each farmer. Each farmer was told that, with his as-
sistance, enumerators would vary the seaweed production methods
across 10 lines within one of his plots, and that he would be pre-
sented with the results afterward. All of the farmers we approached
participated in the trials and were compensated for doing so in two
ways. First, we provided the necessary inputs for planting the lines
and guaranteed a given income from each line so that the farmers
would at least break even. Second, we provided a small gift (worth
$1) to each farmer to account for his time.

Participating farmers were randomly assigned into one of
two treatments: sort (65 farmers) and weight (52 farmers). The
sort treatment was built around the idea that each farmer had
substantial variation in pod size within his own plot (see Figure I

020z AInp €2 uo Josn saueiqr 1IN Ad 226/ 181/L LEL/E/6Z L AdEISAe-0jo1e/alb/Wwoo"dno-olwepeoe//:sdRy WOy papeojumod



1326 QUARTERLY JOURNAL OF ECONOMICS

200

+ Small Bin = Large Bin

180
160 T

140 : - L
120 - .

100 | gt e IPPPLAL
80 oooooooooooo

60 Jrpaseset
40

20
0

1 6 11 16 21 26 31 36 41 46 sl 56 6l
Farmers in the Sort Treatment, Sorted by Minimum Weight in the Sort Treatment

Ficure 1
Within-Farmer Variation in Baseline Pod Sizes

This figure documents the within-farmer variation in baseline pod sizes.
For each farmer, it shows the average size within the small and large bins in
the sort treatment, where farmers are sorted according to the average size in
their small bin.

for the distribution of sizes within farmers’ own plots in this treat-
ment). Given this variation, we wanted to understand whether a
farmer could achieve higher yields by systematically using a spe-
cific size within the support of those he already used. Each farmer
was asked to cut pods as he usually would and then the pods were
sorted into three groups. Working with the farmer, the enumer-
ators attached the pods into the lines by group (three lines with
small pods, four lines with medium pods, and three lines with
large pods). The lines were then planted in the farmer’s plot.
Despite the wide range of pod sizes used within a given farm-
er’s plot, it is still possible that he could do better by moving to a
size outside that range. The weight treatment was designed to
address this issue by testing a broader set of initial pod sizes. To
generate variation, the pod weights were initially set at 40g to
140 g (in intervals of 20 g) for the first few trials. However, to
better reflect the ranges of weights used by the farmers, the
weights were changed to 90—180 g for spinosum and 90—210g
for cottonii (both in intervals of 30 g).'% The pods of different sizes

12. We ensured that the actual weights of the pods that were planted were
within 10 g of the target weight, so it is best to think of these as bins around these
averages. This adds some noise to the weight categories, biasing us against finding
different effects by weight.
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were randomly distributed across about 10 lines of each farmer’s
plot, with the enumerator recording the placement of each pod.
The farmers were present for the trials and saw where each pod
was planted on the lines.

In the weight treatment, we also tested whether farmers
optimized distance between pods. We compared two distances,
15cm and 20 cm, since the average distance between pods at
baseline was around 15cm and past technical assistance pro-
grams had suggested larger spacing.

All farmers were told to normally maintain their plots. The
enumerators returned to reweigh the seedlings twice while in the
sea: once around day 14 and again around day 28. Around day 35,
the seaweed was harvested and weighed for the last time.
Farmers had access to all of the raw data generated by the
trials: They saw or helped with planting, weighing, harvesting,
and recording the results.

From April to May 2008, we conducted the first follow-up
surveys, which were designed to test whether farmers changed
any of their methods as a result of trial participation. These
changes would have happened in the cycle after the trial: farmers
would have had time to incorporate anything they learned on
their own from the trial into the next cycle. Surveys were con-
ducted with a subsample of 232 farmers, which included all of the
farmers who participated in the trials, as well as an additional set
of farmers who were randomly selected from the baseline as a
control group; 231 farmers completed the survey.

From May to June 2008, the enumerators gave each farmer a
summary table that provided information on his returns from dif-
ferent methods and highlighted which method yielded the highest
return on his plot.'® The enumerators talked through the results
with each farmer, describing the average pod size that he typically
used and the difference between that size and his optimal one.
(Note that the optimal pod size for the sort trials was defined as
the average size of pods in the optimal group—small, medium, or
large.) Each farmer in the weight treatment was also told whether
his optimal distance between pods was 15 cm or 20 cm. Appendix
Figure A.III provides examples of summary tables.

About two months after we gave the results to the farmers
(July—August 2008), we conducted a second follow-up survey to

13. We worked with a local nongovernmental organization (NGO) to design a
simple, easy-to-understand table to summarize the trial results.
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learn if they changed their methods as a result of having received
their trial results, allowing us to examine whether presenting
farmers with summaries generated from data they had already
seen affects their behavior. Out of the original 232 farmers, 221
were found.

III.C. Data, Sample Statistics, and Randomization Check

1. Data. Baseline survey: The baseline consisted of two parts.
First, we presented each farmer with a questionnaire to collect
detailed information on demographics (e.g., household size, edu-
cation), income, farming experience, and current farming prac-
tices—labor costs, capital inputs, technologies employed,
difference in methods based on seasonality and plot location,
crop yields, and so on—as well as beliefs on optimal farming
methods. We additionally collected data on both “learning” and
“experimentation.” The learning questions focused on issues such
as where the farmer gains his knowledge on production methods
and where he goes to learn new techniques. The experimentation
questions focused on issues like whether the farmer ever experi-
ments with different techniques and, if so, with which sorts of
techniques, and whether he changes his production methods all
at once or via a step-wise process.

Second, we conducted a “show and tell” to document each
farmer’s actual production methods. During the show and tell,
we collected information on the types of lines used, the sizes of
arandom sample of pods, the distances between a random sample
of seedlings, the distances between seaweed lines, and so forth.

Experimental trial results: we compiled data from each of the
experimental trials, documenting plot locations, the placement of
pods within a plot, and pod sizes at each of the weighings. Thus,
we can compute the yield and the return from each pod.

Follow-up surveys: the two follow-up surveys (one conducted
after the trial and the other after providing the summaries) col-
lected information on farmers’ self-reported changes in farming
techniques. The surveys also measured actual changes in tech-
niques using the show and tell module.

2. Baseline Sample Statistics and Randomization Check.
Table I presents baseline demographic characteristics and base-
line seaweed farming practices. Panel A illustrates that most
farmers (83%) were literate. Panel B documents that, on average,
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TABLE I
BASELINE DEMOGRAPHIC CHARACTERISTICS AND FARMING PRACTICES

(1) (2) 3)

Mean Std. dev. N
Panel A: demographic characteristics
Monthly per capita expenditures (Indonesian Rph) 369,542 348,367 487
Age of HH head (years) 43.08 11.87 474
Number of assets 8.09 3.23 487
HH head is literate 0.83 0.38 480
Panel B: seaweed farming practices
Years farming seaweed 18.36 7.15 475
Learned to farm seaweed from parents 0.50 0.50 487
Has a loan from person to whom sells seaweed 0.28 0.45 353
Number of days in previous cycle 36.74 7.75 487
Mean distance between lines at baseline 15.47 1.96 486
(enumerator measured; cm)
Mean distance between pods at baseline 15.20 1.47 486
(enumerator measured; cm)
Mean pod size at baseline 105.74 28.72 487
(enumerator measured; grams)
Grows cottonii strand 0.34 0.47 487

Notes. This table provides sample statistics on the farmers’ demographic characteristics and seaweed
farming practices from the baseline survey.

the farmers had been farming seaweed for about 18 years, with
about half reporting that they learned how to farm from their
parents. Panel B also shows that, at baseline, the mean enumer-
ator measured pod size was about 106 g, while both the average
distance between pods and between lines was about 15 cm.

In Online Appendix Table I, we provide a randomization
check across the control and both treatment groups. We test for
differences across the groups on 10 baseline demographic and
farming variables. As illustrated in columns (4) through (6),
only 3 out of the 30 comparisons we consider are significant at
the 10% level, which is consistent with chance.

IV. EXPERIMENTAL RESULTS

IV.A. Results from the Baseline Survey and the Experimental
Trial

The theoretical framework suggests that some farmers
will not keep track of input dimensions that influence returns.
Table II presents baseline survey responses for 489 farmers.
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TABLE II
BASELINE SURVEY RESPONSES ON PROCESS AND PRACTICES

(1) (2)
% Unable to Perceived
provide answer mean

Panel A: self-reported current production methods

Typical pod size (g) 86 118.11
[57.01]
Typical length of line (cm) 2 5.05
[1.04]
Typical distance between lines (cm) 1 16.49
[3.14]

Panel B: self-reported optimal production methods
Optimal pod size (g) 87 148.26
[248.45]
Optimal distance between knots (cm) 2 15.97
[2.84]
Optimal distance between lines (cm) 2 16.39
[3.01]
Optimal cycle length (days) 1 37.43
[7.14]

Notes. This table provides sample statistics on 489 farmers’ responses from the baseline survey.
Standard deviations are in brackets. Column (2) provides mean responses conditional on answering.

Panels A and B document self-reported current and optimal
methods, respectively. Column (1) presents the percentage of
farmers who were unable to provide an answer, and column (2)
provides the means and standard deviations of self reports con-
ditional on answering.

ResurLt 1. Farmers Only Attend to Certain Dimensions of the
Production Function.

Consistent with Prediction P1, a vast majority of farmers
were inattentive to some input dimensions, particularly pod
size. Following equation (3), we measure farmers’ attention by
eliciting self reports on current practices. Eighty-six percent
could not provide an answer for their current pod size at baseline
(Table II, Panel A, column (1)), while 87% of farmers did not even
want to hazard a guess about what the optimal pod size should be
(Panel B).'* Since many farmers failed to notice key facts about

14. The enumerators reported to us that many farmers could not answer these
questions, even when probed.
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their pod sizes, it is perhaps unsurprising that a broad range of
sizes is observed both within (see Figure I) and across (see Figure
II) farmers.'®

On the other hand, farmers were more attentive to other
input dimensions. They appeared attentive to both the distance
between knots that secure the pods to a line and the distance
between lines. Unlike pod size, most farmers (98-99%) provided
an answer for their distance between lines (Panel A); similarly
many had an opinion about the optimal distance between both the
knots and lines (Panel B). Given that the farmers appeared rela-
tively more attentive to the distance between knots and lines
than to pod size, we might expect that the actual distances em-
ployed would exhibit less variance than the pod sizes. Indeed, the
coefficient of variation for the distance between lines (0.13) and
pods (0.10) is much smaller than that for pod size (0.27), indicat-
ing that the practices for these inputs were relatively less vari-
able across farmers.

ResuLts 2 AND 3. Farmers Are Not Optimizing, and Seem to Do a
Relatively Poor Job Optimizing Unattended-to Dimensions.

Predictions P2 and P3 hold that farmers may be off the prod-
uctivity frontier and that learning failures will be concentrated
along dimensions they do not attend to. Given the foregoing re-
sults, this suggests that farmers will be especially far from opti-
mizing pod size. For the 117 farmers that participated in the
experimental trials, we have data on optimal pod size. Table III
summarizes the predicted percentage income gain from switching
to trial recommendations.’® Panel A reports this estimate for
farmers in the sort treatment, providing information on both
the predicted gain a farmer could achieve by changing the size
of each pod from his baseline average to his best performing size
and the predicted gain by changing the size of each pod from his
worst performing size to his best among sizes used at baseline.

15. Online Appendix Figures IA and IB separately present the across-farmer
distribution of baseline pod sizes for cottonii and spinosum growers, respectively.

16. We do not have follow-up data on income or yields; we compute predicted
changes toincome based on results from the trials. To do so, we make several strong
assumptions. First, we assume that past seaweed prices are consistent with the
future ones, which may be unrealistic as the prices may fall if all farmers increase
their yields. Second, we assume that farmers do not change other methods (have
fewer cycles, harvest earlier, etc.) if their yields change. Thus, this evidence should
be viewed more as suggestive, rather than causal.
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TABLE III
ESTIMATED PERCENT INCOME GAIN FROM SWITCHING TO TRIAL RECOMMENDATIONS

1) (2)
95%
confidence
Median interval
Panel A: sort treatment group
Gain to moving from average to recommendation 7.06 [2.92, 14.19]
Gain to moving from worst to recommendation 23.3 [19.00, 28.18]
p-value from F-test of equality of coefficients .01
Panel B: weight treatment group
Gain to moving from average to recommendation 37.87 [23.60, 58.86]
p-value from F-test of equality of coefficients 0

Notes. In the sort treatment, the F-tests come from separate farmer-level regressions of yield on the
three size dummies (small, medium, large), where the null is that the coefficients on the dummies are
equal. The F-tests in the weight treatment are constructed analogously.

Panel A also provides information on p-values from F-tests of the
null that yield does not vary in pod sizes used at baseline for
farmers in the sort treatment. Panel B then presents the pre-
dicted income gain a farmer could achieve by changing the size
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of each pod from his baseline average to his best performing size
in the weight treatment, as well as information on p-values from
F-tests of the null that yield does not vary in pod sizes used in this
treatment. We provide the estimated median across farmers in
column (1), and provide the confidence interval of the estimate in
column (2).'7

On net, the results indicate that farmers are potentially
forgoing large income gains by not noticing and optimizing pod
size.'® In the sort treatment, the median estimated percentage
income gain by moving from the average to the best performing
size is 7.06%, whereas the median estimated gain by moving from
the worst to the best is 23.3% (Panel A). In the weight treatment,
the estimated gain by moving from the baseline average to the
best size is 37.87% (Panel B). The potential gains are comparable
to estimates of the gains to switching from the lower-yielding
spinosum to the higher-yielding cottonii strain, where many
farmers were induced to switch strains due to a combination of
buyer advice and extension services.'® The gains are also large
when compared to Indonesia’s transfer programs: Alatas et al.
(2012) find that the unconditional cash transfer program is
equivalent to 3.5-13% of the poor’s yearly consumption, while
the rice subsidy program is equivalent to 7.4%.

Given the wide heterogeneity in returns, illustrated in
Online Appendix Figure II, many individual farmers could even
potentially increase their incomes by much more than what is
typical across the farmers. Most strikingly, the gains from the
sort treatment suggest that farmers would have done much
better by systematically using a specific size within the support
of those they already used. This fact indicates that it is unlikely
that farmers’ failure to optimize purely reflects a failure of experi-
mentation and is consistent with Prediction P4 that farmers fail
to optimize given their own data when they do not attend to im-
portant dimensions.?’

17. Given the wide heterogeneity in the results, the median is likely a better
measure of what is typical than the mean.

18. In the sort treatment, about half the farmers were told that their most pro-
ductive bin was their largest bin, while about 30% were told that it was their
smallest. In the weight treatment, about 55% were told that they should increase
their initial sizes.

19. See, for example, http://www.fao.org/docrep/x5819e/x5819e06.htm, table 6.

20. However, comparing the gains-from-switching estimates across the sort
and weight treatments indicates that farmers may have done even better by
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Turning to the precision of these estimates, each trial had
around 300 pods per farmer, so we have a reasonable number of
observations to calculate these returns. In the sort treatment, we
estimated a regression of yield on size dummies (small, medium,
large) for each farmer separately, where the median p-value from
F-tests of the null that pod size does not matter among sizes used
at baseline—that is, that the coefficients on the dummies are all
equal—is .01 across farmers (Table III, Panel A). Figure III pre-
sents the distribution of these p-values across farmers. Although
there is some variability across farmers in the precision with
which we can reject the null that pod size does not matter
among sizes used at baseline, p-values bunch in the range [0,
.01]. The story is even clearer in the weight treatment, where,
for every farmer, we can reject the null that pod size does not
matter at a .01 significance level (Table III, Panel B). In fact,
for every farmer, the p-value from the F-test is estimated at 0
up to four decimal places.

Farmers appear to perform better in setting their distance
between pods—a dimension they seemed to notice at baseline.
Results from the weight treatment indicate that for 80% of farm-
ers, the optimal distance between pods was 15cm. Given that
most farmers were at 15cm to begin with, these data suggest
that very few farmers would do better by changing to 20 cm.2?

Overall, the findings suggest that many farmers failed to
notice pod size and were not optimizing size, while many farmers
noticed distance between pods and may have been optimizing
distance (at least within the support of distances that we
tested). These results—consistent with Predictions P2 and P3—
suggest that inattention contributes to a failure to optimize and
hinders learning by doing. We next analyze responses to the trial
to further examine Prediction P4 and to test Prediction P5.

IV.B. Results Following the Experimental Trial

The model suggests that farmers should respond more to
participating in the trial plus receiving the summary than to

moving to a size outside of the support of those already used, which can be inter-
preted as suggesting that a lack of experimentation also contributes to a failure to
optimize.

21. Also, given the apparent heterogeneity in the optimal size across farmers
(Online Appendix Figure III), this suggests that there is more heterogeneity across
farmers in the optimal size than the optimal distance between pods.
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participating in the trial by itself. In fact, consistent with
Prediction P4, we may not expect trial participation by itself to
have much of an effect on future behavior: farmers’ own behavior
generated an experiment of sorts every season—their failure to
notice size created random variation in pod sizing—and the trial
presents farmers with data that is similar to what they already
had access to, but incompletely learned from. Following
Prediction P5, farmers should be more likely to respond when
they are also presented with a summary of the trials’ findings,
as the summary is easier to process.??

22. The prediction that farmers will respond more to the trial plus the summary
than to the trial by itselfimplicitly relies in part on an assumption that simply being
asked to participate in the trial does not significantly draw farmers’ attention to pod
size—that is, being asked to participate does not lead farmers to significantly
update the probability they place on pod size mattering, r;,.. While similar assump-
tions may not hold in other contexts (e.g., Zwane et al. 2011), it appears reasonable
in this context. Few farmers in other parts of Indonesia previously took up NGO
advice on pod size. Indeed, this was one of the reasons we became interested in
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To explore these hypotheses, we estimate the following model
for each farmer i in hamlet v:

Yivt =Bo + B1F 1 + BoF2; + BsTrialy, + BaTrial;, - F1,
(4) + ﬂ5Trialiv F2t + oty + Nivty

where Y;,; is a production choice at time ¢, F1; is an indicator
variable that denotes the first follow-up after the experimental
trial, F'2; is an indicator variable that denotes the second follow-
up after the summary findings were presented to farmers, and
Trial;, is an indicator variable that denotes trial participation.
We also include a hamlet fixed effect, a,, as the randomization
was stratified along this dimension.?® There are two key param-
eters of interest: B4 provides the effect of participating in the trial
prior to obtaining the summary of the findings, and f5 provides
the effect after the summary is provided.

Table IV presents the regression results. In columns (1) and
(2), the outcome of interest is the self-reported measure of whether
the farmer has made any changes in his production techniques.
Column (1) reports the coefficient estimates from equation (4), and
column (2) reports the estimates from a model that additionally
includes farmer fixed effects. Columns (3) and (4) replicate the
analysis in the first two columns, but with the enumerator mea-
sured pod size as the outcome. We estimate all models using OLS
and all standard errors are clustered by farmer.

Resurts 4 anp 5. Farmers Do Not Respond to Simply
Participating in the Experimental Trials, but React to the
Summaries.

Consistent with Predictions P4 and P5, we find that simply
participating in the experimental trials had little effect on farm-
ers’ subsequent production decisions, while observing the sum-
maries was effective. We do not find a significant effect of trial

running the current experiment in the first place. In fact, very few farmers at
baseline (roughly 10%) indicated that they would change their farming methods
in response to an NGO or government recommendation or in response to advice
from a friend (Online Appendix Table II), whereas far more farmers (roughly 40%)
indicated that they would change their practices in response to results from other
plots. These results suggest a hesitation among these farmers to take advice at face
value.

23. The inclusion of a hamlet fixed effect does not significantly influence the
results.
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participation on self-reported changes to farming techniques,
prior to when farmers received the summarized results (Table
IV, column (1)). However, after receiving the summaries, about
16% more farmers reported changing a technique, which is about
one and a half times the mean of the dependent variable (column
(1)). Adding farmer fixed effects does not significantly alter the
coefficient (column (2)). Note, however, that a test comparing B4
and B5 fails to reject the null hypothesis of equality at conven-
tional levels (p-value =.1483 in column (1) and p-value =.2209 in
column (2)). It is possible that some of the results from this self-
reported measure may be driven by farmers wanting to please the
enumerators after participating in the trial, though this is un-
likely as the control group also received regular visits from enu-
merators to both survey and measure their farming practices. We
next turn to the enumerator-measured results, which are less
likely to suffer from this type of bias.

We do not find a significant effect of trial participation on
enumerator-measured pod sizes, prior to when farmers received
the summarized results (columns (3) and (4)).* After receiving
the summaries, however, members of the treatment group
increased their pod sizes by about 7g (on average) relative to
the control. This is significant at the 10% level in the basic spe-
cification (column (3)) and the positive sign is consistent with the
average trial recommendation. The coefficient estimate remains
roughly the same (7.3 g) when including farmer fixed effects, but
the significance level falls below conventional levels (p-
value=.14) due to an increase in the standard error (column
(4)). Nevertheless, we reject the null that the coefficients are
equal (By=P5) with p-values of .0033 (column (3)) and .0154
(column (4)). While farmers did not appear to attend to pod size
prior to the trials, providing summary information on their opti-
mal size seems to have changed their behavior.?®

24. There is a statistically significant negative coefficient on “After Trial” and
“After Summary Data” in columns (3) and (4), suggesting that on average, control
farmers used larger pods at baseline. Common shocks to productivity could be re-
sponsible for such a trend. For example, since pods are cut from raw seaweed from
the previous harvest, it is possible that common shocks led to high yields in the
harvest before the baseline, which in turn led to bigger pods even if farmers did not
attend to—nor precisely measure—them.

25. In Online Appendix Table III, we disaggregate the results by whether farm-
ers were told to increase or decrease their pod size in the follow-ups. To do so, we
interact the interaction of the treatment and follow-up variables with an indicator
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We next separately explore the impact of participating in the
sort and weight treatments. Specifically, we modify the basic
model to include separate dummy variables for participating in
the sort and weight treatments and interact these variables with
the indicators for follow-up status. Table V presents the results.
In columns (1) and (2) the outcome of interest is the self-reported
measure of whether the farmer has made any changes in his pro-
duction techniques, in columns (3) and (4) it is enumerator-mea-
sured pod size, and in columns (5) and (6) it is enumerator-
measured distance between pods (recall that we only experi-
mented with this distance in the weight treatment). The results
in columns (1)—(4) are similar to what we found in the model that
did not distinguish between the treatments: simple participation
in the trial had little effect on farmers’ decisions, whereas par-
ticipation plus receiving the summary affected both self-reported
production techniques (columns (1) and (2)) and enumerator-
measured pod sizes (columns (3) and (4)), though the last effect
is statistically significant only in the sort treatment.?®

Finally, we find no effect of either simple trial participation
or receiving the summaries on enumerator-measured distance
between pods (columns (5) and (6)). This is consistent with the
model: unlike pod size, farmers appear to have previously noticed
distance, had beliefs on the optimal distance, and tended to be at
the optimum (at least within the support of distances tested in the
trial). As a result, we would not expect large changes in distance
from either participating in the trial or receiving its results. Note,
however, that although this result is consistent with the model,
the insignificant result on distance could also be driven by the
smaller sample size.

variable denoting whether the farmer was told to increase the pod size. We observe
that farmers who were told to increase pod size did so both after the first and second
follow-up. However, it is possible that this is simply capturing the fact that if farm-
ers are randomizing with respect to pod size, those who “should go bigger” are those
who had abnormally low draws of their pod sizes at baseline. Thus, in expectation,
those farmers would in fact go bigger the next period even if they continue to ran-
domize, making these results difficult to interpret.

26. We also tested whether treatment effects differed by years of seaweed farm-
ing (experience) or education, and we do not observe differences. However, one
possibility is that we do not have sufficient variation in these variables or sufficient
power size to adequately test for such heterogeneous treatment effects.
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LEARNING THROUGH NOTICING 1341

IV.C. Alternative Explanations

Although the experimental findings track the theory, other
explanations are possible. First, perhaps we missed important
costs and the farmers’ pod size strategies are optimal. For ex-
ample, perhaps carefully cutting pods to a particular size is
costly in terms of labor effort. However, if farmers believed that
they were at the optimum, there would be no reason for them to
react to the treatment. Their reactions suggest that they felt that
they were not opimizing based on the trial data.

A second explanation is that maybe the farmers are simply
innumerate or face computational constraints. They could not
learn from participating in the trial—or even from the natural
data variation—because they could not perfom the neccessary
calculations.?” However, 83% of farmers are literate. The fact
that they perform well on distance also suggests that numeracy
is not the main constraint or it would be problematic along this
dimension as well.

Third, perhaps the variation in size is too small to detect (at
least without a measuring technology, e.g., a scale). This also
seems unlikely: pod size variation is large, where the average
range of sizes used by a given farmer in the sort treatment is
39 g, or roughly a third of the average size. This is roughly equiva-
lent to the size of 8 nickels or 19 grapes. Such variation is likely
detectable by sight or feel, especially considering the acuity
required for many agricultural tasks, like applying fertilizers or
pesticides.?® Variation in yield across the range of sizes typically
used is similarly large, as indicated by the large implied percent-
age income changes presented in Table III. Converting these
numbers into percentage gains in grams, the median percentage
gain to moving from the worst to the recommended size is over
30% in the sort treatment, for example. Finally, we saw that
farmers do not react to the data generated by the experimental

27. Recent experimental evidence suggests that computational constraints can
impede learning in laboratory games, providing another rationale for why summa-
ries can be effective (Fudenberg and Peysakhovich 2013).

28. Indeed, research on perception indicates that people can detect much smal-
ler differences. For example, laboratory evidence on weight perception suggests
that people can detect changes that amount to at least 2% of an initial weight. As
an illustration, people can accurately detect the difference between 100 g and 102 g
and the difference between 200 g and 204 g (Teghtsoonian 1971).
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trials, even though they were present for (and helped with) the
weighing and recording of results.?®

Perhaps the biggest stumbling block for these (and other)
explanations is the link between failures to learn and self-re-
ported knowledge. The theory makes a clear prediction: failures
to learn will be centered on dimensions that individuals lack
knowledge of, as in the case of pod size. Although other explan-
ations may explain learning failures—even from experiments
that people participate in—it is less clear why those failures
would be linked to what is noticed. Limited attention appears to
be the most plausible explanation of this key fact.

V. EXTENSIONS
V.A. Other Applications

Though the model was cast as one of farming, it applies more
generally to tasks where agents learn which input choices x maxi-
mize a payoff-relevant output y. In this section, we sketch a few
other applications. The goal is not to argue definitively that the
model explains a particular set of stylized facts, but to highlight
facts consistent with the model and suggest how future experi-
ments or data collection exercises could test our interpretation.
Note that a prerequisite to applying a model of noticing is to be
more precise about the possible granular decisions that go into
production. The use of fertilizer cannot be summarized by “dol-
lars spent on fertilizer.” Rather, the individual choices that need
to be made, such as when it is applied, how to space applications,
and so on, need to be specified. A model of noticing only matters
when there are details to notice.

1. Management. To maximize product quality (y), the man-
agerial process involves many nuanced choices (x): exactly how
to monitor worker effort, what to look for to determine whether a
machine needs preventive maintenance, whether to worry about

29. While farmers knew they would be presented with the summary informa-
tion—which would have attenuated any incentive to attend to the relationship
between pod size and yield in the raw trial data—they also knew there would be
alaginreceiving the summary, meaning that they still had some incentive to attend
if they thought pod size mattered, as this could allow them to improve their prac-
tices in the interim.
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the cleanliness of the shop floor, and so on. Bloom et al. (2013)
examine managerial choices for a set of Indian textile plants.
They give free consulting advice to a randomly selected subset.
The advice is interesting because it does not suggest any new
physical technology, but simply helps managers think about
their production processes differently. In the simplest economic
frameworks, where firms optimize given available technologies
(at least given sufficient experience), we would expect this type
of advice to have little to no effect. Instead, Bloom et al. (2013)
find a 17% increase in productivity in the treated plants.

Why does consulting help so much? This puzzle is magnified
considering that much of the advice appears aimed at getting
firms to act on readily available data. One piece of advice, for
example, was to record defect rates by design. Another was to
clean up trash from the shop floor, where floor cleanliness natur-
ally varies over time and the relationship between cleanliness
and output could have been gleaned from the plant’s own data.
Our interpretation is that managers could have acted on such
relationships, had only they known to look. The managers were
stuck in noticing traps.3®3!

A simple twist on this experiment, suggested by Proposition
1, would allow for a test of this interpretation. In seaweed, the
tell-tale sign was that farmers did not even know their pod size.
One could similarly ask managers questions about the features
suggested in the consultation, prior to providing the advice. For
example, does the manager know how often the factory floor is
cleaned? Our model suggests that optimization failures are con-
centrated on dimensions where the answer is “I don’t know.” This
approach would also allow the analyst to predict heterogeneity of

30. The well known Toyota problem-solving system also appears to be based on
the idea that managers often do not notice important relationships in existing data
(Liker 2004). The “father” of the Toyota system, Taiichi Ohno, required trainees to
stand in a circle drawn on the floor of a plant and observe highly routinized jobs (e.g.,
install a headlamp) over and over again until they could devise improvements. This
is arguably all about attention: the “Ohno circles” do not encourage workers to
gather new data, but to extract more information from already available data.

31. A question is why consultants could not simply tell managers what to pay
attention to. Indeed, Bloom et al. (2013) find that giving recommendations is not as
effective as also having implementation phases, in which some of the recommended
practices are also demonstrated. Trust may explain this result if people fear decep-
tion or believe that the consultants do not understand the complexities of produc-
tion. Theory suggests a role for simple communication (to influence =), but only
when receivers trust the advice enough so that it substantially moves their beliefs.
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treatment effects of the consulting advice, since plant managers
may not have the same priors and thereby fail to notice different
features.

2. Education. A teacher who aims to maximize student
achievement (y) needs to consider many variables (x): the inten-
sity with which he covers various subjects, the ways in which he
tests students, how he interacts with students, and so on. Here
also, recent studies show that even experienced teachers are not
on the educational production frontier. In an evocative study by
Allen et al. (2011), teachers review video recordings of their own
classes, with an expert pointing out various details. This simple
intervention showed large effects on measured student achieve-
ment in the year following completion of the intervention. The
magnitude of the effect is equivalent to moving a student from the
50th to the 59th percentile in test scores.

Our interpretation is that this intervention pointed out rela-
tionships in the teachers’ own data that they failed to notice.?”
For example, a teacher might have neglected how the precise way
he handles students’ questions affects their engagement.
However, in the process of reviewing video tapes, experts may
have also communicated new information (such as “other tea-
chers do this”). A way to extend the intervention to test whether
inattention underlies the original failure to optimize would be to
first survey teachers about their own class behaviors. One could
then videotape teachers both pre- and post-intervention, code
their practices on various dimensions, and see whether the inter-
vention improves their teaching on the dimensions that they
appear not to attend to as measured by the pre-intervention
surveys.

3. Extension. Agricultural extension services demonstrate
profitable technologies on farmers’ own plots to encourage adop-
tion. Duflo, Kremer, and Robinson (2008b) demonstrate how in-
effective extension services can be. They find that farmers who
observed a fertilizer trial on their own plot or a neighbor’s plot

32. Allen et al. themselves describe a major part of the intervention as having
teachers “observe [video clips of] his or her behavior and student reactions and to
respond to consultant prompts by noting the connection between the two” (2011, p.
1035).
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initig%ly showed modest increases in fertilizer use, but this did not
last.

In our framework, a problem of extension is that farmers
may not know what to notice while watching demonstrations.
We illustrate this with a simple extension of the model in
Online Appendix B. The result is that farmers can (correctly) be-
lieve from the demonstration that the technology is profitable but
falsely believe that they learned how to use it. Indeed, they may
not notice the dimensions necessary for proper use. The result
can be a pattern of adoption and decay, like that found in the
Duflo, Kremer, and Robinson (2008b) study.?* Farmers give up
on using fertilizer because it does not produce the yields they
thought it would. The model suggests a way of testing this mech-
anism: by eliciting farmers’ beliefs about the demonstrator’s ac-
tions along various input dimensions. The model predicts a
greater decay effect when farmers do not accurately recall what
the demonstrator did along essential dimensions.

4. Surgery. A final example comes from considering a surgeon
who aims to maximize the postoperation health of a patient (y)
through a multitude of choices (x), including her effort (e.g., how
hard she concentrates, how much time she spends on the sur-
gery), her alertness (e.g., the time of day the operation is sched-
uled, how many surgeries she does in a row), and how she
interacts with the rest of the operating team (e.g., does she
make sure everybody knows each other’s name, do they discuss
the case prior to operation). It is natural that she may not attend
to some important factors.

The evidence suggests that introducing checklists can reduce
the incidence of complications. For example, Haynes et al. (2009)
find that introducing a 19-item surgical safety checklist in eight
hospitals reduced the rate of death in the 30 days following non-
cardiac surgery from 1.5% before the checklist was introduced to
0.8% afterward, and more general inpatient complications from

33. Note that fertilizer use appears to be profitable in this setting (Duflo,
Kremer, and Robinson 2008a).

34. Similar patterns of adoption then decay following demonstration trials have
been found for other technologies as well, such as improved cooking stoves (Hanna,
Duflo, and Greenstone 2012).
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11% to 7%. Checklists surely deal with simple forgetfulness:
people forget a step they know they should take. However, they
may also help counteract selective inattention. Take a common
checklist item: asking surgeons to ensure that all team members
are introduced by name and role prior to skin incision. This can
facilitate team communication, but when faced with more direct
“medical” details, it is easy to imagine that surgeons undervalue
and fail to notice this one. The checklist can force attention on this
detail. To explore this hypothesis, it would be useful to measure
surgeons’ beliefs about the importance of the differing checklist
items. The model suggests that benefits of the checklists in part
stem from including items that surgeons may believe are less
important than they turn out to be.

V.B. Predicting Learning Failures

Our approach has been to bring empirical rigor to the model
by exploiting the prediction that failures to optimize should go
hand in hand with measured failures to notice. This largely
leaves open the question of how we might ex ante predict failures
to notice and resulting failures to learn based on features of tech-
nologies or environments. In the context of seaweed farming, for
example, could we have ex ante predicted that farmers would
notice the distance between pods but not pod size? Here we
sketch some possible ideas.

First, agents’ past experiences with technologies can create
blinders. Online Appendix B considers an extension of the model
where the farmer sequentially uses different technologies and his
beliefs about whether an input dimension is likely to be important
depends on his experiences with earlier technologies. The key
result is that experience has a potential cost: previous experience
with a similar technology may “teach” the farmer to attend to the
“wrong” things.?® In the context of seaweed farming, for example,

35. Rogers (2003) presents an example on the introduction of tractors in north-
ern India, taken from Carter (1994). Tractors replaced bullocks as a way to power
farms and provide transportation, but these tractors typically broke down quickly.
Farmers did not perform routine maintence, such as cleaning air filters and repla-
cing oil filters. Moreover, they placed blankets over the tractors’ hoods in cold wea-
ther, which can lead the engines to overheat. They did this despite a foreign
consultant who advised the farmers on maintainence routines. One possibility for
the farmers’ persistent (mis)behavior is that they transferred knowledge from their
prior experience: bullocks did not require air filters to be cleaned or oil filters to be
changed, but they did need to be protected from harsh winter weather. The model
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other agricultural experiences may have played a role in why
farmers attend to distance between pods but not pod size: it
could be that the size of a plant’s seed typically does not affect
yield, while the distance between seeds does.

Second, the complexity of the technology—which we equate
with the the number of dimensions N—creates greater demands
on noticing. Suppose technologies are drawn from some distribu-
tion where a given input j matters with independent probability
p>0. Furthermore, suppose the agent’s priors are drawn from
some distribution such that the farmer believes input j is likely
to be important (7; = 7l € (0,1)) with independent probability
g<1 and likely to be unimportant (7; = n* < #f') with the remain-
ing probability. Then, the likelihood that the farmer initially be-
lieves that some important input is unlikely to matter is
[1— (pg + (1 — p))V], which is increasing in N and tends toward
1 as N — oo. Intuitively, the agent will miss at least one import-
ant input as the number of inputs increases.

Third, greater noise in the relationship between an input and
the outcome can make the person less likely to attend to the input
since any given observation is less informative about the syte-
matic part of the relationship. The empirical work above
suggests more heterogeneity in optimal pod size than optimal
distance between pods across farmers. While slightly outside
the formal model that abstracts from social learning, such
“noise” implies a lower value of attending to data from neighbors’
plots3 émd a greater attentional cost of learning the importance of
size.

Finally, the person may be more likely to attend to inputs
that are naturally recorded and to relate those inputs to the out-
come. Indeed, some dimensions need neither attention nor
memory to recollect. For example, even at the time of harvest,
the distance between pods is still easily observable. The original
pod size, however, can no longer be recovered simply by looking
at the lines at harvest time. The farmer would have to remember

makes the further prediction that all else equal, farmers would have been more
likely to learn to properly use tractors if they did not previously use a different
technology, like bullocks, as a source of power.

36. Although greater noise can also matter in standard learning models since it
affects the speed with which relationships can be learned (e.g., Munshi 2004), it
may matter much more when people are inattentive: greater noise can completely
shut down learning by making it (subjectively) not worthwhile to attend.
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the pod’s size from the start of the season to relate it to the
outcome.

VI. CONCLUSION

In this article, we propose an alternative hypothesis for
learning failures: they stem not only from insufficient data but
from people insufficiently attending to key features of the data
that they possess. This perspective has important implications for
how we think about the role of experience in learning, particu-
larly challenging the standard intuition that experience guaran-
tees effective technology use: while experience with a technology
leads to improved performance along noticed dimensions, it can
have little effect along other dimensions that are important but
neglected. Experience with a related technology can even have
detrimental effects on learning when the input dimensions that
are important across the technologies fail to overlap. The model
similarly provides insights into educational interventions, sug-
gesting they are useful not only for new technologies but also
for existing technologies when there are indications that people
are insufficiently attentive to key aspects of production. It also
suggests ways of improving these interventions: there can be
large benefits from moving away from just providing more data
to helping individuals understand the relationships in the data
they already have.

We test the model in the context of seaweed farming,
showing that the farmers fail to optimize along input dimensions
they do not notice, but that helping them “see” relationships
along those dimensions affects their input choices. Looking
forward, the model provides a framework for future empirical
work in this area. It highlights the benefits of studies aimed at
better understanding what predicts inattention to some dimen-
sions while suggesting factors to look for, including previous ex-
perience with incongruent technologies. Similarly, research could
further explore what gets people to start noticing important di-
mensions, for example, the conditions under which communica-
tion between asymmetrically informed parties leads to better
outcomes.

At the broadest level, the article suggests a more nuanced
view of human capital. Human capital is not summarized by ex-
posure to data or experience: embodied in individuals is informa-
tion about what to notice and what to neglect.
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Sample Design
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