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Abstract

Economists have recently argued that time inconsistency may play a central role in explaining inter-

temporal behavior, particularly among poor households. However, time-preference parameters are typ-

ically not identified in standard dynamic choice models and little is known about the fraction of in-

consistent agents in the population. We formulate a dynamic discrete choice model in an unobservedly

heterogeneous population of possibly time-inconsistent agents motivated by specifically collected infor-

mation combined with a field intervention in rural India. We identify and estimate all time-preference

parameters as well as the population fractions of time-consistent and “näıve” and “sophisticated” time-

inconsistent agents. We estimate that time-inconsistent agents account for more than half of the pop-

ulation and that “sophisticated” inconsistent agents are considerably more present-biased than their

“näıve” counterparts. We also examine whether there are other differences across types (e.g. in risk and

cost preferences) and find that these differences are small relative to the differences in time preferences.
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1 Introduction

One of the constitutive tenets of standard neoclassical economics is that individuals pursue constrained

utility maximization. In models where agents take decisions over time, it is usually assumed that indi-

viduals maximize expected future utility flows under an intertemporal budget constraint. Such models

have provided invaluable insights in understanding economic decisions such as savings, asset allocation or

investment in health and education. On the other hand, a number of studies have proposed alternative

models to explain behavior that is hard to reconcile with standard models of individual optimization. Ex-

amples of such behavior are addiction, preference reversals in intertemporal choices and under-investment

in activities with apparent low cost and high expected returns.1 In several cases, insights from psychology

and behavioral economics have suggested that such behavior may be better explained by models where

individuals exhibit self-control or time inconsistency problems.

These theories have played an increasing role in explaining “inefficient” choices among poor indi-

viduals in developing countries, a context where such choices may have particularly dire consequences

(Mullainathan, 2004). In recent work, non-standard preferences displaying bias towards the present have

been proposed to explain poverty traps (Banerjee and Mullainathan, 2010), the existence of demand for

commitment devices in savings or health-protecting technologies (Ashraf et al., 2006; Tarozzi et al., 2009,

2011) and low demand for immunization and fertilizer (Banerjee et al., 2010; Duflo et al., 2010).

Present bias is typically modeled assuming that preferences are characterized by “hyperbolic discount-

ing” (Laibson, 1997). In such models, utility is modified so that, at each time t, future utility at time

s (> t) is discounted not by the usual geometric factor δs−t but by a factor βδs−t. As a consequence,

while δ is the only discount factor entering the intertemporal rate of substitution between any two future

periods, the rate of substitution between current time t and any future period also depends on β. This

model generates a declining rate of time preference and has been used to explain the “preference reversal”

that is commonly observed in laboratory experiments: individuals choose a reward at date t over a larger

one at date t+ s, but instead choose the later reward if the two dates are shifted forward by an equal time

period.2 Such choices are not consistent with standard expected utility models.

A consequence of hyperbolic preferences is that an individual who maximizes intertemporal utility at

time t will have an incentive to deviate from this solution at time t+ 1, when present-bias will induce an

increase in consumption relative to what was previously decided. While such models promise to help in

explaining the often observed inability of the poor to save or invest even when the budget constraint would

allow it, structural estimation of the discount factors that characterize hyperbolic preferences is non-trivial.

In fact, time preference parameters are generically not identified in standard dynamic choice models

(Rust, 1994; Magnac and Thesmar, 2002). In this paper, we propose a dynamic discrete choice model

with unobserved types and time varying utilities, and provide identification results for all time preference

parameters. We overcome the previous non-identification results in the literature by (i) adding more

information in the form of elicited beliefs about state occurrences and elicited responses to time preference

questions and (ii) designing a product appealing to particular types of agent and offering it for sale in a

field intervention.

1See Frederick et al. (2002) and DellaVigna (2009) for reviews.
2See Andreoni and Sprenger (2010) for an alternative explanation for these findings.
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We first show that the model is identified and then estimate it to test several hypotheses of interest.

First, we ask whether time-inconsistent preferences provide a better fit for the data than alternative pro-

posed explanations. In particular, we examine alternative explanations that stress differences in per-period

utilities3 as well as information-based explanations. We find that while per-period utilities do vary across

agent types,4 they are not substantively important in explaining outcomes in our sample. Second, we also

identify and estimate the distribution of types in the population which provides a quantitative measure of

the importance of time-inconsistent agents in the economy. We estimate that approximately 40% of the

population from which our sample is drawn is time consistent, while 50% are “näıve” inconsistent and the

remaining 10% are “sophisticated” inconsistent. Further, we find that “sophisticated” agents are consider-

ably more present-biased than “näıve” agents. This finding is possible because we show identification for

separate hyperbolic parameters for each type. In particular, we find that “näıve” agents have a hyperbolic

parameter close to 1 and that in a set of counterfactual simulations, “näıve” agent choices are similar to

those made by consistent agents.

Finally, we evaluate to what extent “sophisticated” agents are more likely to choose specially designed

(commitment) products by comparing the type distribution among product purchasers to that in the

general population. We find that commitment products are not particularly appealing to “sophisticated”

agents and that the purchase of these products is in fact higher among wealthier (and even “naive”)

households. Note that this finding contradicts a deterministic mapping from the take-up of commitment

products into agent type. In this latter framework, the choice of a commitment product reveals an agent to

be “sophisticated.” One of our key identification results allows product choice to only imperfectly predict

type which in turn allows for a much richer analysis of preferences.5

In drawing links to the extensive literature on time-inconsistency and on structural estimation with

unknown types we restrict ourselves here to work that is closest in spirit to our approach.6 Our work is

closely related to Fang and Wang (2010) who outline methods for estimating time preference parameters

by imposing exclusion restrictions on the standard model (in our context, elicited beliefs are a natural

candidate for such restrictions). Our approach differs from theirs in that we allow for unobserved agent

types who differ in both time-preference as well as per-period utility parameters (though we do not allow for

partially “näıve” agents). Van der Klaauw (2000) and van der Klaauw and Wolpin (2008) use information

about expected future choices to improve precision in the context of a structural dynamic model. Our

work instead uses expectations about state transitions and focuses on using this information to achieve

identification. Our identification results are also closely related to Kasahara and Shimotsu (2009), who

consider an environment with unknown agent types. However, our approach differs in that we achieve

identification by imposing an exclusion restriction (by requiring a variable that affects type probabilities

3e.g. Banerjee and Mullainathan (2010), propose a model without hyperbolic time preferences as an alternative to standard
models of time-inconsistency

4See p.10 for a description of the types of agent considered. Briefly, “näıve” inconsistent agents do not take their fu-
ture present-bias into consideration while formulating their dynamic plans. In contrast, “sophisticated” inconsistent agents
incorporate their future present-bias in their planning.

5Previous work (e.g Fang and Silverman, 2009; Paserman, 2008) does not address these questions directly since agent type
heterogeneity is typically ruled out by assumption. In these models agents usually have identical (“sophisticated” inconsistent)
preferences. Fang and Wang (2010) also deal with identical preferences across agents but allow for partially “näıve” agents.

6See Aguirregabiria and Mira (2010) or Arcidiacono and Ellickson (2011) for a recent survey of work on dynamic discrete
choice structural models.
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but not the choice probabilities). In contrast, Kasahara and Shimotsu (2009) place assumptions on the

length of the panel available to the researcher. Our approach is also similar to Ashraf et al. (2006) as we use

elicited time preferences to predict behavior and we design a product that should appeal to “sophisticated”

inconsistent agents. In addition, our estimation can be viewed as a structurally based field version of the

laboratory approach of Andersen et al. (2008) since we jointly estimate discount and utility curvature

parameters based on multiple price lists as well as elicited risk preferences.7

The paper is organized as follows. Section 2 provides an overview of the project design and data

collected. Section 3 outlines the basic elements of the dynamic discrete choice model with different types

and describes the model primitives in some detail. Section 4 provides the identification results for the model,

first for the simple case where observables reveal type completely and then for the more realistic case where

type is only imperfectly observed. Section 5 reports the results from a series of Monte-Carlo simulations

detailing the finite sample properties of the estimation methods that follow from the identification strategy.

Section 6 outlines the estimation on the intervention data and reports the results. Section 7 reports the

results of a set of counterfactual exercises and Section 8 concludes.

2 Data

The data used in this paper have been collected as part of the evaluation of a large-scale randomized

controlled trial (RCT) carried out in the Indian state of Orissa between spring 2007 and winter 2009. The

main purpose of the study was the evaluation of alternative mechanisms of providing insecticide treated

nets (ITNs) on health and socio-economic outcomes of potential users (see Tarozzi et al., 2011). The

broader project has been conducted in 166 villages in five districts in Orissa: Bargarh, Balangir, Keonjhar,

Kandhamal (Phulbani), and Sambalpur. Figure 1 shows the location of the districts within India. Orissa

is the most malaria endemic state in the country: despite containing less than 4% of India’s population,

Orissa accounts for 25% of reported malaria cases, 40% of P. falciparum malaria cases, and 30% of malaria-

related deaths (Kumar et al., 2007, citing figures from the Indian National Vector Borne Disease Control

Programme). Study locations were selected randomly from a list of 878 villages provided by our local

partner, Bharat Integrated Social Welfare Agency (BISWA), a micro-lender with a large presence in Orissa

and elsewhere in India.8 This paper uses data collected in a randomly determined subset of 47 villages

where, in the fall of 2007, BISWA offered all its clients the opportunity to purchase high quality ITNs on

credit, with repayment over one year.

A baseline, pre-intervention survey of 627 randomly sampled households was carried out in March-April

2007. Households were selected from client rosters provided by BISWA. In each village, up to 15 households

were selected at random from these lists, while interviews were attempted with all households in villages

with fewer than 15 listed clients. Between September and November, 2007, all villages were exposed to a

short but intensive community-based information campaign (IC) about the importance and rationale for

ITN use, advice on proper use and retreatment, and a clear explanation of the micro-loans offered for ITN

purchase. BISWA clients were offered the opportunity to purchase as many ITNs as they wished, choosing

7The risk preferences measures are based on Holt and Laury (2002). This “dual elicitation” is referred by Andreoni and
Sprenger (2010) as the Double Multiple Price List approach.

8For more information about BISWA see www.biswa.org.
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one of two alternative loan contracts (described in detail below). Net distribution and recording of loan

contracts for BISWA members who decided to purchase were completed 2–3 days after the IC. The time

interval between the IC and the purchase decision was introduced to ensure that the households had an

opportunity to consider the offer carefully. A second visit was scheduled approximately one month later,

and nets were offered again with the same contracts. No further ITNs were offered after this second visit

was completed. The first net re-treatment was completed approximately six months after the ITN sale, in

March–April 2008, while the second and final retreatment took place approximately another six months

later, in September–November 2008.

Two alternative contracts were offered to BISWA clients. With the first offer (referred to as C1

henceforth), single (double) nets were sold on credit for Rs. 173 (223), and repaid with twelve monthly

installments of Rs. 16 (21).9 Nets were immediately treated with insecticide, with a chemical concentration

that makes re-treatment optimal after approximately six months. Survey personnel would re-visit the

villages after six and twelve months and offer retreatment for Rs. 15 (single) or Rs. 18 (double). With

the second offer (referred to as C2 henceforth), the household purchased not only the treated net but also

a sequence of two re-treatments. The price in this case was Rs. 203 (259), to be paid as twelve monthly

installments of Rs. 19 (23). With this second option, no cash payment would be required for re-treatment

as the price of the chemicals was already included in the loan amount. In all cases, the interest rate was the

standard annual 20 percent charged by BISWA. BISWA microcredit operations are based on group lending:

loans are offered to borrowers organized in small self-help group averaging 15 members. Each member is

responsible for the repayment of all loans granted to the group, which diffuses responsibility to all group

members. There is no collateral for the loans, but (as is standard in micro-finance) defaulting borrowers

were informed that they would be denied further loans from BISWA. Default is only determined at the

end of the loan period, so clients are allowed some flexibility in the repayment schedule. For instance, a

borrower may miss a few monthly repayments during the “lean” agricultural season while paying current

and past dues after the harvest, and early repayments are allowed.

Table 1 show summary statistics for the households sampled from the 47 villages where ITNs were

offered on credit. Mean monthly total expenditure per head is approximately twice as large as the official

poverty line for rural Orissa in 2004–5.10 Existing net ownership was not uncommon, with a mean of

one bednet for every three persons, although one third of households did not own any nets. Treated net

ownership was minimal, with only 0.06 ITNs per head on average. 16% of individuals slept under a net

the night before the survey, and the corresponding figure was 3% for ITNs. Reports about bednet use the

night before the interview are unlikely to suffer from significant recall bias. On the other hand, the baseline

survey was completed during the hot and dry season, when mosquitoes are less of a nuisance and malaria

rates are relatively low. For this reason, we also asked about bednets use in periods of high mosquito

activity. During such periods, more than half of the members were reported as sleeping “regularly” under

a bednet. Note, however, that the vast majority of nets in the area were not treated with insecticide,

so that even during the mosquito season the protective power of the available nets remained suboptimal.

9For perspective, daily wages for agricultural labor in the area were around Rs. 50 and the price of one kilogram of rice was
approximately Rs. 10. The official rural poverty line for Orissa in 2004–5 was Rs. 326 per person, per month (Government of
India, 2007).

10Household expenditure was measured asking about usual consumption of eighteen broad item categories, including self-
production.
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Fingerprick blood testing was also completed for a sample of household members and the results show high

prevalence of malaria (11 %) and anemia (46 %), with the latter defined here as occurring when hemoglobin

levels were below 11g/dl.11 Given that the baseline survey was completed during the dry season, malaria

prevalence was expected to be even higher during the rainy and post-monsoon season, a result confirmed

in the winter 2008–9 follow-up survey. The next rows of Table 1 show that respondents were aware of the

role of mosquitoes in transmitting malaria as well as of the high economic cost of malaria episodes.

Awareness about the protective power of bednets is also reflected in the beliefs elicited directly from

respondents. This was done by asking respondents to hold up a number of fingers increasing in the

perceived likelihood that an event will happen, with no fingers representing “no chance” and ten fingers

indicating certainty. We then estimated subjective probabilities by dividing the number of fingers held

by ten.12 Given that most respondents are illiterate and unfamiliar with the concept of probability, the

interviewer discussed first hypothetical examples of certain and uncertain events to explain the rationale.

At baseline, the survey instrument included questions about the probability for an adult, a child under the

age of six (U6) or a pregnant woman (PW) of contracting malaria in the next year depending on whether

the individual slept regularly under an untreated net, an ITN or no net.13

The graphs in Figure 2 show the distribution of elicited beliefs of falling sick with malaria within one

year for individuals who sleep regularly under a treated bednet (top row), an untreated net (middle) or

who do not use a net (bottom). Beliefs are very similar for individuals who belong to different demographic

groups. Importantly, both bednets and re-treatment with insecticide appear to be widely recognized as

very effective at reducing malaria risk. The histograms also show that a majority of elicited beliefs are

concentrated over the focal figures 0, 5 and 10. About three quarters of respondents believe that if nets

are not used one will certainly get malaria, and approximately the same fraction believes that regular use

of treated nets will virtually wipe out all risk. According to about half of respondents, there is instead a

50% chance of developing malaria if an untreated net is used. On the other hand, there remains a degree

of variation in the beliefs which can be exploited in the structural model outlined in Section 3.

The baseline survey instrument also included twelve questions intended to gauge respondents’ intertem-

poral preferences and the extent of time inconsistency in these preferences. In a first group of four questions,

the respondent choose between an actual Rs. 10 sum to be paid one month later and an equal or larger

sum (Rs. 10, 12, 14 or 15) to be paid four months later. In a second group of questions the choice was

between Rs. 10 one month later and Rs. 10, 15, 20 or 25 seven months later. Finally, in a third set of

11Malaria infection and hemoglobin levels were measured via fingerprick blood specimens requiring less than 0.5ml of blood.
Consent was requested to measure malaria infection and hemoglobin levels for all pregnant women, all children aged 5 and
under (U5) and their mothers and one randomly selected adult (age 15-60). Malaria infection was determined using the Binax
Now malaria rapid diagnostic test (RDT). This RDT is well validated internationally in comparison to blood smears (Moody,
2002) and provides accurate diagnosis for current or very recent (2 to 4-week) malaria infection. The test is particularly
accurate for the most severe form of malaria, caused by P. falciparum, and it can distinguish the infecting Plasmodium species
to some extent. Hemoglobin levels were tested with the HemoCue 201 hemoglobin analyzer (a portable, accurate system
for measuring hemoglobin). Results are available within about 15 minutes for these tests and communicated directly to the
participants.

12Note that we do not attempt to measure ranges of probability, so that our data do not allow to identify the degree of
uncertainty around the reports.

13For instance, one question asked: “imagine first that your household [or a household like yours] does not own or use a bed
net. In your opinion, and on a scale of 0-10, how likely do you think it is that a child under 6 that does not sleep under a bed
net will contract malaria in the next 1 year?” Questions for different demographic groups and bednet use were asked using
analogous wording.
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questions the same rewards described for the first group were offered, but with time horizons shifted by

three months.14 Standard expected utility models imply that if a respondent prefers, say, Rs. 15 four

months later to Rs. 10 paid a month from today, s/he should also prefer Rs. 15 paid seven months in the

future to Rs. 10 paid three months in the future. We interpret preference “reversals”, whereby the former

is true but the choice is reverted for the later rewards, to signal a form of inconsistency in time preference

consistent with hyperbolic discounting.15 In Table 2 we summarize the findings. As expected, in each

group of four questions, the fraction of individuals who prefers the earlier and lower reward decreases when

the time horizon of the later reward remains the same but the reward increases. Approximately one fourth

of respondents exhibit at least one “hyperbolic preference reversal.”

Table 3 includes a summary of the results of the ITN sale, completed in September–November, 2007.

Slightly more than 50 percent of sample households purchased at least one net on credit (330 of 621).

Of these, 153 chose to purchase only ITNs, while 165 opted for the “commitment” product whose price

also included the cost of two re-treatments. Only twelve buyers purchased contracts of both types and we

omit them from the analysis. Among the buyers, the mean number of ITNs purchases was close to two,

regardless of the contract type chosen. Panel (B) of Table 3 shows that fewer than 3% chose to purchase

ITNs for cash rather than on loan and we will not focus on these purchases.

3 Model

The agent chooses three actions over the time period of the project. In the first period, the agent chooses

whether to purchase a net, and if so the type of contract. In the second period, the malaria status of the

household is realized following which the agent chooses whether to re-treat the net. Then, in period three

malaria status is realized and then the agent chooses whether to re-treat again. Period 4 is the terminal

period and the agent takes no action in that period. We begin by defining and placing standard assumptions

on the state space, the action space, the transition probabilities, the class of acceptable decision rules and

finally the preferences and objective function the agent maximizes.

3.1 Primitives

State Space: St
The state space St can be partitioned as St ≡ (Xt, Et) where the first element denotes the domain of the

observed (to the researcher) state variables and the second element denotes the domain of the unobserved

state variables. In the empirical work we allow for a rich observable state space (including income, prices

and other characteristics), but to focus attention on the key parts of the identification argument we simplify

14Interviewers told respondents that one of the twelve chosen rewards, selected at random, would be paid by our micro-lender
partner BISWA at the chosen time horizon. In practice, to avoid logistical difficulties, we decided to pay immediately the
selected reward at the end of the interview (we find no evidence that the responses varied for households interviewed later
during the day). Note also that all options entailed rewards to be paid at least one month later. This was done so that choices
would not depend on issues of trust, issues which were also likely to be made less relevant by the fact that all respondents
belonged to households with at least one BISWA client.

15However, see Rubinstein (2003) or Andreoni and Sprenger (2010) for an alternative view.
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the state space in the exposition to the bare minimum.16

In period 1, x1 ∈ X1 is a binary variable equal to one if the respondent reported at least one case of

malaria in the household in the past six months. In periods 2 and 3, xt ∈ Xt takes on six possible values.

We denote the possible values by (nm, nh, bm, bh, cm, ch) where the first lower case letter in each state

value records whether the agent did not purchase a net (n), purchased a net using the first type of contract

C1 (b) or purchased a net using the commitment contract C2 (c). The second letter captures whether

anyone in the agent’s household suffered from malaria in the last six months, with m denoting someone

had malaria and h (“healthy”) denoting that no-one contracted malaria.17 In the sequel, it will be useful

to define the sets XC ≡ {ch, cm} and XB ≡ {bh, bm} that partition Xt depending upon the first period

purchase decision.

As commonly assumed in dynamic discrete choice models, the vector of unobservables εt ∈ Et has

dimension equal to the number of actions available to the agent in period t. Such variables will represent

a stochastic, choice-specific component in the utility function that is known to the agent but unobserved

by the econometrician. In addition, we assume that the support of each element of εt is the entire real line

although in the notation below we are somewhat informal and imply positive point probabilities for εt.

We can allow for a much richer discrete state space where, for instance, we keep track of the fraction of

household members that are healthy in each period. The identification arguments remain the same and are

presented in detail in Appendix B but for ease of exposition we present a simplified version of the model

in the text.

Action Space: At
The action space in period one (A1) has three elements denoted by (n, b, c), which are defined as above.

In periods 2 and 3 (t ∈ {2, 3}), the action space is At = {0, 1}, where 0 denotes that the agent did not

re-treat a net and 1 denotes that an agent did re-treat the net. Note that if an agent did not purchase a

net in period 1, she cannot take any more actions. Finally, we do not observe the state of the world in the

terminal period and the agent takes no action in this period.

In Appendix B, we generalize the model to allow for more than two or three actions in each period.

This would be useful for instance if we viewed the decision as being about the number (or fraction) of

household members that can be covered with an ITN. The general arguments in this case are very similar

and so we discuss the simpler action space in the main text.

Transition Probabilities: P(st|st−1)

Let P(st|st−1) denote the distribution function of the random vector st conditional on st−1 and refer to it as

the transition probability distribution. We make the standard assumption that the transition probabilities

are Markov (see e.g. Aguirregabiria and Mira, 2010) in the sense that

16Appendix B contains details on the identification argument with a general discrete state space and Appendix D contains
details on the construction of the state space for the empirical model.

17The state space can be easily extended so that agents keep track of their entire history of malaria. The current specification
is a convenient short-cut and is also undertaken for tractability since in the sequel we will consider a first-step non-parametric
estimator at each point of the state space.
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ASSUMPTION 1.

P(st|st−1, ..., s1, at−1, ..., a1) = P(st|st−1, at−1) (1)

where P(st|st−1, at−1) is the conditional distribution of the random variable st given st−1 and at−1. This

assumption, along with the simplest definition of the state space described above, rules out for instance

the possibility that the probability of malaria infection in period 3 depends on malaria status in the first

period given malaria status in the second period and the retreatment decision in period 2. Incorporating

such dependencies is straightforward by suitably redefining the state variable at t to contain the complete

malaria history up to t.

In addition, we assume (as is standard) that the vector of unobservables εt is independently distributed

across time. This rules out serially correlated unobserved heterogeneity, such as if agents’ decisions were

driven by shocks (to income for instance) whose effects last for multiple periods. We mitigate this limitation

in two ways. First, we allow for considerable heterogeneity across time and across agents by permitting

time- and type-varying preferences (see below for details). Second, we include a number of observed

variables, such as income, in the state space. The hope is that these two approaches (expanding the state

space and allowing for unobserved types with flexible time-varying utility) will minimize the extent of

serially correlated unobserved heterogeneity.

We also assume that εt has a known distribution and is independent of the whole path of observable

state variables {xt}Tt=1 and also independent of {as}t−1
s=1. This rules out for instance direct feedback from

current shocks to future state variables: for instance, if a positive shock today leads to the household not

only purchasing nets but also investing in other health improving technologies that reduce the likelihood

of malaria incidence in the future. We deal with this limitation by including a comprehensive set of state

variables directly modelling their evolution over time (see Appendix D for more details).

ASSUMPTION 2.

P(xt, εt|xt−1, εt−1, at−1) = P(xt|xt−1, at−1)P(εt), (2)

where the distribution of the vector εt is absolutely continuous on the real line (w.r.t. Lebesgue measure),

known and has mean zero. The dimension of εt is equal to the number of elements in At.

Beliefs

Our data contains detailed information on subjective beliefs about the risk of contracting malaria elicited

from respondents. Specifically, for each household we elicit the perceived probability of malaria infection

within a year for a person never sleeping under a net, sleeping regularly under an untreated net, and

sleeping regularly a treated net. Let these perceived probabilities be denoted by π, π − φ and π − φ − γ
respectively so that φ and φ+ γ measure the perceived reduction in malaria risk offered by nets and ITNs

respectively. Define the vector of beliefs z ≡ (π, φ, γ).

In addition, we also collected post-intervention beliefs in the follow up survey. These allow us to directly

evaluate the extent of belief evolution and to incorporate it into the model. This is potentially important

since it allows us to explicitly incorporate issues about learning into the dynamic choice process. The em-

pirical section describes our approach to modelling the evolution of beliefs in greater detail. However, to

simplify exposition and focus attention on the key elements for identification, we assume here that agents’

beliefs stay constant over time. This is only a convenient simplification and the identification results remain
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unaffected if we abandon it in favor of time-varying observed beliefs. In this special case, we can construct

individual level transition probabilities P(xt|xt−1, at−1) for each period using just baseline beliefs. In the

sequel, we denote the transition probabilities as P(xt|xt−1, at−1, z). For instance, the probability of malaria

infection in t = 3 for an individual who had malaria in the previous period and who is using regularly

a treated net purchased with contract b, is P(x3 = bm|x2 = bm, a2 = 1; z) = π − φ − γ. However, the

transition probabilities could be represented by more complex functions of the beliefs z, depending on the

richness of the state space. For instance this would be the case if x3 denoted the fraction of members with

malaria in a household.

Decision Rules: dt

The decision rule in period t, dt, is a mapping from St to At. Note that we do not allow history dependent

decision rules in the sense that we do not allow decision rules to be mappings from
∏t−1
s=1(Ss,As) × St to

the action space. However, given the Markov property for the transition probabilities and the assumptions

on preferences below, the optimal decision rule will indeed be a deterministic function only of the current

state.

Types and Preferences

As is standard, we assume that preferences are additively time-separable, and parameterize time inconsis-

tency using the tractable (β, δ) formulation described in Strotz (1955).18 Then, for a given sequence of

actions {at}3t=1, the utility of an agent of type τ is19 :

ũt(st, at, τ) + βτ

T∑
j=t+1

δj−tEt(ũj(sj , aj , τ)) (3)

We allow for 3 different types of agents. Following O’Donoghue and Rabin (1999), time consistent agents

(τ = τC) have βτC = 1, which corresponds to the standard case of exponential discounting. Such agents

will maximize (3) using standard dynamic programming methods (backward induction in this finite horizon

case). We also allow for the existence of two types of time-inconsistent agents, for whom the hyperbolic

parameter β is below one. Both types of time-inconsistent agents are aware of their current present-

bias, but they differ in whether they recognize the present-bias their future selves will be subject to.

Time-inconsistent “sophisticated” agents (τ = τS) will use backward induction to solve the maximization

problem, but do so while recognizing their future present-bias. On the other hand, time-inconsistent

“näıve” agents (τ = τN ) ignore the present-bias of their future selves in their backward induction. For the

econometrician, these differences will generate key identification issues that we address below.

The formulation in (3) allows for time-varying type-specific per-period utilities ũt(·, τ). This flexibility

is important since it allows us to examine how much of the difference in behavior across types can be

attributed to different preferences over states and how much to the differing extent of present-bias (and its

recognition). In addition, the time- and type-varying formulation provides a mechanism for dealing with

serially correlated unobserved heterogeneity.

18This is certainly not the only possible formulation: see for instance Gul and Pesendorfer (2001, 2004). However, empirical
implementations of time-inconsistency have worked almost exclusively using the (β, δ) formulation.

19With the understanding that in the terminal period AT is the empty set.
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Note that this formulation nests the typical model where types only differ in the degree of present-bias

so that we can provide a quantitative judgement (using a standard goodness of fit test) of the relative

strength of the present-bias explanation for observed behavior. In particular, we can compare the hyper-

bolic explanations for observed behavior against alternative explanations in a coherent fashion. In sum,

types differ in their degree of present-bias, preference structure as well as in their solution to the utility

maximization problem and we can test to what extent these differences help explain observed behavior.

Finally, we assume that within each period, utility is additively separable in the unobserved state

variables. Formally, and recalling that no action is taken in period 4:

ASSUMPTION 3. For each type τ ∈ T where T = {τC , τS , τN} the utility function in period t ∈ {1, 2, 3}
is given by

ũt(st, at, τ) = ut(xt, at, τ) + εt(at)

and utility in the terminal period is given by u4(x4, τ).

In general, time-varying observed characteristics will be included as state variables. The transition prob-

abilities for such variables will be generated using elicited beliefs for variables for which we collected such

information (malaria incidence, income) and by invoking a rational expectation assumption for variables

for which we have no belief information. In addition to the state variables, per-period utility can also be a

function of time-invariant characteristics (e.g. education level of the household head) that we collectively

refer to as v. Since these play no role in the identification, we omit them as arguments in preferences. The

empirical section contains a discussion of which variables are included in v for the estimation.

3.2 Observed versus Unobserved Types

We consider both the case where types are directly observed as well as the case where types are not

observed. While the second model is more general, the identification arguments for it require showing

identification for the directly identified types case, so it is useful to discuss both cases.

In both cases, we use two important pieces of information from the intervention: first, we collect in-

formation about whether individuals exhibit preference reversals in a series of questions designed to gauge

the extent of consistency in time preferences. In previous work we have shown that these reversals are

important predictors (in a reduced form sense) of subsequent decisions about bednet retreatment (Tarozzi

et al., 2009). Agents who exhibited at least one preference reversal are referenced by the binary variable

r = 1 and agents who exhibit no preference reversals have r = 0. Second, we designed a contract that

should appeal to “sophisticated” time-inconsistent agents, and agents who purchased these contracts pro-

vide us some additional information on their type.

directly identified types

In the directly observed types case, we use both these pieces of information to directly identify three types

of agent. Agents with r = 0 are classified as time consistent and agents with r = 1 are classified as
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time inconsistent. Further, agents with r = 1 and who purchase the “commitment” product (a1 = c) are

classified as time-inconsistent “sophisticated” types and agents with r = 1 and a1 = b are classified as

time-inconsistent “näıve” agents. Time-inconsistent agents who do not purchase a net (a1 = n) can be

either “näıve” or “sophisticated”, but we cannot directly assign these labels to them. We discuss identifi-

cation of their type in greater detail in Section 4.3 below. Note that since the state variable xt for t > 1

includes the choice of product in period 1, “sophisticated” and “näıve” types will have mutually exclusive

state spaces which we denote by XC ≡ {ch, cm} and XB = {bh, bm} respectively.

unobserved types

In this case, the researcher does not directly observe the type of any individual. We assume instead that

the variables (r, a1) are only imperfect proxies, as is likely the case. For instance, an agent may choose

r = 1 due to an imperfect understanding of the choices offered rather than genuine time inconsistency.

Alternatively, an agent who expects sufficiently high income at the time of re-treatment may not choose

the commitment product regardless of time-inconsistency. In principle, the same decision not to commit

could also depend on low perceived benefits of re-treatment. However, we will show that this is not a

concern for identification to the extent that such perceptions are reflected in agents’ elicited beliefs.

We next discuss identification of the model in case where types are directly observed, and then for the

general case where types are unobservable.

4 Identification

4.1 Identification: Directly Observed Types

We observe an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w) where {a∗t , xt}T−1

t=1
20 are the optimal actions and realized

states of the world and w = (z, r, v) denotes a vector of agent specific variables measured at baseline. These

comprise the agent beliefs z ≡ (π, δ, γ) described in Section 3, the binary variable r equal to one in the

presence of preference reversals, and other household characteristics v.

The key starting point for identification are the type-specific choice probabilities Pτ (a∗t = a|xt, z). For

t > 1, for agents who purchase a product, these type-specific probabilities are directly identified from the

observed choice probabilities P(a∗t = a|xt, z, r) since the type is a deterministic function of the observed

variables r and the contract choice is an element of xt. Formally,

ASSUMPTION 4. Choice probabilities for types that purchase a product are directly observed. In par-

ticular, for a time consistent agent

PτC (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 0).

For a “näıve” time-inconsistent agent

PτN (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 1) for t > 1 and xt ∈ XB
20for the exposition here we set T = 4
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Finally for a “sophisticated” time-inconsistent agent (for t > 1)

PτS (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 1) for t > 1 and xt ∈ XC

4.2 Backward Induction

We discuss identification using a backward induction argument. Since no action is taken in period 4, we

begin by examining choice in period 3. In period 3, if the agent has previously purchased a net, s/he will

choose to re-treat it if the expected gains from doing so outweigh the costs, that is, if

ũ3(s3, 1, τ) + βτδ

∫
u(s4, τ) dF(s4|s3, 1, z) > ũ(s3, 0, τ) + βτδ

∫
u(s4, τ) dF(s4|s3, 0, z)

where dF(s4|s3, a3, z) denotes the distribution function for the state variable in period 4 (s4) conditional

on the state of the world s3, the action a3 and beliefs z ≡ (π, δ, γ). Recall that at time t = 3 the action a3

is binary and equal to one if the agent decides to re-treat the net. Under Assumptions 2 (independence),

3 (additive separability) and 4 (directly observed types) we can write

Pτ (a∗3 = 1|x3, z) = G∆

(
u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z))

)
G∆ is the distribution of ε3(0) − ε3(1) which by assumption is known and has support over the real line.

The expression dF (x4|x3, 1, z)− dF(x4|x3, 0, z) denotes the difference in the state probability functions as

a result of retreating the net (formally, it is a finite signed measure obtained by differencing the two action

specific measures). Note that we have assumed that the data is generated in period 3 by agents exhibiting

present-bias in the sense that the discount rate applied to the next period is βτδ. However, we allow for

time-consistent preferences as well, because in principle βτ could be equal to one for some sub-population

of agents. Next, we can invert this relation above to obtain the identified function (see Appendix C)

gτ,3(x3, z) = u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)). (4)

We then explore which of the unknown elements on the right hand side – the utility functions and the

discount rates – can be identified using knowledge of the function gτ,3(·). We use the specifics of the

study design to place more structure on the transition probabilities. This has the advantage that for the

application at hand we can obtain identification by making fewer (and more reasonable) normalizations.

However, all the results stated below can be derived without the additional structure on the transition

probabilities, and indeed all that is required is sufficient variability in the beliefs. In Appendix B we derive

the identification results for the discrete state space, finite horizon case with a general structure on the

transition probabilities. We omit that discussion here to focus on the empirical issue at hand.

ASSUMPTION 5. Let XB ≡ {bm, bh} and XC ≡ {cm, ch} be subsets of the state space Xt for t > 1.

Let a1 ∈ {n, b, c} denote the purchase decision in period 1. Then the transition probabilities from states t
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to t+ 1 can be written as:

P(xt+1 = nm|xt, a1 = n,wt) = π for xt ∈ {nm, nh}

P(xt+1 = x|xt, at, a1 ∈ {b, c}, wt) = π − δ − γat for (x = bm, xt ∈ XB),(x = cm, xt ∈ XC).

This assumption rules out changes in beliefs over time but, as we pointed out earlier, this is not important

for identification. We assume time-invariant beliefs as a simple starting point because first, we do not

directly observe beliefs at each point in time (only at two points) and second, observed time-varying beliefs

would in general strengthen identification since the assumptions on variation in beliefs (explicated below)

would probably be more credible.

However, we do observe beliefs at the end of the project (i.e. in period 3) and we use these two sets

of beliefs to estimate a (parametric) model for their evolution, which is therefore taken into account in

the empirical work. In particular, for our empirical example, changes in beliefs are important to incorpo-

rate into the analysis as agents may be learning about the efficacy of ITNs once they acquire them and

correspondingly updating their beliefs. Finally, note that no re-treatment is possible if a1 = n (i.e. the

no-purchase decision leads to an absorbing state) so that the model assumes that net ownership cannot

change after t = 1 (which is consistent with the data).

Using Assumption 5, the forward looking component of equation (4) (the integral) is a linear function

of the belief variable γ. This allows us to use particularly simple variation in beliefs to identify some of

the key unknown objects in (4). To ease notation, in what follows, given two sets A,B, B ⊂ A, let A\B
denote the elements of A that do not belong to B. Then:

ASSUMPTION 6. The distribution of γ conditional on (x3, w\γ) has at least two points of support.

This assumption requires that beliefs have sufficient residual variation even after conditioning on all state

variables. This assumption would fail if, for instance, beliefs were perfectly predictable using state variables.

In general, it seems most plausible when beliefs contain private information that affects (in this case) agents’

susceptibility to illness. In the context of the ITN study, elicited beliefs showed considerable variation even

after controlling for observables.

We can then state the first identification result directly.

LEMMA 1. Consider an agent of type τ solving at t = 1 the problem (3), and that Assumptions 1–6

hold. The researcher observes an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w). Then,

1. The utility differentials u3(x3, 1, τ)− u3(x3, 0, τ) are identified for xt ∈ XB ∪ XC

2. The object βτδ
∫
u4(x4, τ)(dF(x4|x3, a3 = 1, z)− dF(x4|x3, a3 = 0, z)) is identified.

This result describes sufficient conditions for the identification of the change in utility at time 3 associated

with retreatment. The proof is in Appendix A and the key insight is equation (4). The underlying

differences in latent utilities in this equation has a forward looking component that depends upon beliefs

(γ). This component is additively separable from the penultimate period utility differential which can then
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be identified by using the variation in beliefs.21 In addition, we assume (as is the case in our data) that at

least some of the time consistent agents purchase product b and further that the utility differential from

avoiding malaria in period 4 (conditional on exogenous household characteristics) is the same for both

“näıve” and time consistent agents. The last assumption is restrictive but we do allow for considerably

more variation in utilities by type than considered in the previous literature which usually assumes that

agents have the same per-period preferences for all time periods.

ASSUMPTION 7. Some time consistent agents choose to purchase product b and, in addition, u4(bh, τC)−
u4(bm, τC) = u4(bh, τN )− u4(bm, τN ).

This assumption, along with the previous results, allows us to identify the hyperbolic parameter for “näıve”

inconsistent agents. Note that one could carry out a similar exercise if some time consistent agents also

purchased the commitment product. However, we do not follow this approach since in subsequent sections

we will separately examine these agents as potentially distinct types. Although the equality of utility

differentials between the two types at time t = 4 cannot be tested, we show that separate differentials can

be estimated for t = 1, 2, 3, so that the restrictiveness of the assumption can be informally gauged looking

at these other identified differences.

LEMMA 2. Consider an agent of type τN solving at t = 1 the problem (3) and that Assumptions 1—7

hold. Then, the parameter βτN is identified.

We next consider identification of utility differentials in t = 2. The arguments here are very similar to

those in the previous step. In addition to the utility differentials, we also identify the exponential discount

rate (δ) as well as the remaining hyperbolic parameters (βτC , βτS ). First, using the same inversion argument

as before we can identify the type-specific function gτ,2(x2, z) where

gτ,2(x2, z) = u2(x2, 1, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ,3(s3, z)(dF(s3|s2, 1, z)− dF(s3|s2, 0, z)) (5)

and v∗τ (s3, z) is the type-specific value function (defined in Appendix A) incorporating the forward looking

aspect of the problem. The key to the identification argument, as before, is noting that beliefs (γ) enter

only the last part of the expression above (which in turn can be simplified considerably using the results

from Lemma 1 and Lemma 2). As usual, we will need to have sufficient variation in beliefs conditional on

other state variables and other agent characteristics. These assumptions can be verified directly so that

their appropriateness is easily judged. Formally,

ASSUMPTION 8. The distribution of γ conditional on (x2, w\γ) has at least two points of support

(denoted γ1 and γ2). Also,

1. For the identified quantity
∫
v∗τC ,3(s3, z) dF∆(s3|x2, z).∫

v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ2) 6=
∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ1)

21See Fang and Wang (2010) for identification in dynamic models with exclusion restrictions in the transition probabilities.
The explicit elicitation of beliefs here provides a natural candidate for exclusion restrictions, because beliefs do not enter the
per-period utility function.
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2. For the identified function H(x2, z)
22

H(x2, z\γ, γ1)−H(x2, z\γ, γ2) 6= 0

Next, we need to make a standard normalization and assume that utility in all states of the world is

known for a reference action (see e.g. Magnac and Thesmar, 2002). In particular, we assume that utility

levels when the net is not retreated are known for all types.

ASSUMPTION 9. We normalize utility levels by assuming that u3(x3, 0, τ) is known ∀x3 ∈ X3, τ ∈ T .

Alternative normalizations are possible and discussed in subsequent sections. We can then state the

identification result for utility differentials in period 2.

LEMMA 3. Consider an agent of type τ solving at t = 2 the problem (3) and that Assumptions 1–9 hold.

Then, the utility differentials u2(x2, 1, τ)− u2(x2, 0, τ) are identified for all x2 ∈ X2. In addition δ and the

hyperbolic parameter βτS are identified.

Therefore, under the assumptions stated above, we have now identified all the time-preference parameters.

To recapitulate, there are three key features in the study design that enable us to identify the exponential

parameter δ and the type-specific hyperbolic parameters {βτ : τ ∈ {τS , τN}} separately. First, we use

baseline responses to a time discounting question to classify agents as time-inconsistent. Second, the

experimental intervention offered a product designed to be attractive to “sophisticated” time-inconsistent

agents. Third, we elicit beliefs from agents about the probability of malaria incidence conditional on action

choice. These three key features allow us to separately identify type-specific hyperbolic parameters βτ as

well as the standard exponential discounting parameter δ.

4.3 Identification of Period 1 Utilities

There is a sharp distinction in period 1 relative to the later periods regarding direct type identification

for individual agents. In particular, we cannot directly sub-classify time-inconsistent agents who do not

purchase a product (i.e. agents with r = 1 and a1 = n) into “näıve” or “sophisticated” types. These agents

could either be “näıve” or “sophisticated” but their decision to not purchase a product is not informative

of their type. To compound the problem, these agents make no further decisions.

We approach this problem by first noting that the key object required for the inversion argument is the

type-specific choice probability Pτ (a1|x1, z). For t > 1 we identified Pτ (at|xt, z) for agents who purchased

a product (i.e for xt ∈ XB ∪XC) since the agent’s choice of product revealed his type perfectly (as ensured

by Assumption 4). However, at t = 1 we cannot proceed as earlier since the non-purchase decision (a1 = n)

does not reveal an agent’s type. Instead, we pursue an approach due to Kasahara and Shimotsu (2009) that

allows us to identify these type-specific choice probabilities even though we do not observe each agent’s

type. This approach requires us to impose a set of exclusion restrictions and the argument previews the

arguments in the next section on unobserved types.

As a starting point, consider the relationship between joint distribution of actions and states in the first

two periods and the type-specific choice probabilities. We use the distribution for the initial two periods

22The value functions v∗τ,3(·) is defined in equation (36), and H(·) in equation (31) respectively (all in Appendix A).
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(rather than just the first) because given the Markov assumptions, it provides more information (and hence

restrictions) on the unknown period 1 type-specific probabilities. For concreteness, consider the observed

joint probability that an agent purchases contract C1 and re-treats the net in the second period. This

probability is obtained by integrating the corresponding unobserved type-specific joint probabilities of the

same event:

P(a1 = b, a2 = 1, x1, x2|r, z) =
∑

τ∈{τC ,τN ,τS}

πτ (r, z)Pτ (a2 = 1, a1 = b, x2, x1|r, z) =

∑
τ∈T

πτ (r, z)Pτ (a2 = 1|a1 = b, x2, x1, r, z)Pτ (x2|a1 = b, x1, r, z)Pτ (a1 = b, x1|r, z) (6)

where πτ (r, z) denotes the probability that an agent with values (r, z) is of type τ and we refer to this as

the type probabilities. We next simplify the right hand side of (6) . First, given the Markov nature of the

state transition probabilities and the resultant optimal actions, we note that the conditioning set for the

second period choice should be (x2, r, z).

Next, we assume that conditional upon an agent’s type, the preference reversal information (r) is not

informative about choice. This is reasonable to the extent that one believes that r is only relevant for

actions because it proxies for type. This would be implausible in situations where r provides information

about other aspects of the decision process. For instance, if r = 1 indicates not just time inconsistency but

also reflects a lack of numeracy or other flaws in an agent’s cognitive processes, one might believe that it

has an independent effect on choice, even after conditioning on type.

Further, we assume that the period 2 state transition probability is independent of type (τ) and the

preference reversal variable (r). While this assumption is not directly testable, we can test for whether

subsequent transition probabilities vary by (τ, r) since in future periods, types are observed for the sub-

population that purchases a product. To the extent that future transitions are type invariant, there is

perhaps some reason to believe that this is credible for the second period transition as well. Finally, the

identification results only hold for states x2 that can be reached from a given state x1. In the assumptions

below, we assume that there exist a set of (a1, x2, x1, z, r) with positive probability such that the following

statements are true.

ASSUMPTION 10. (i) Pτ (a2|x2, z, r) = Pτ (a2|x2, z) (ii) Pτ (x2|a1, x1, r, z) = P(x2|a1, x1, z) 6= 0. 23

In what follows we suppress the dependence on beliefs z since variation in it plays no role in identifying

the type-specific choice probabilities. Under the assumptions above, we can use (6) to define the directly

identified quantities F as

F1,2
a,x1,x2,r ≡

P(a1 = a, a2 = 1, x1, x2|r, z)
P(x2|a1 = b, x1)

=
∑
τ

πτ (r)Pτ (a2 = 1|x2)Pτ (a1 = a, x1)

23Note that if z is continuously distributed, the statement should be modified to hold a.s..
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and correspondingly define

F1
a,x1,r ≡ P(a1 = a, x1|r) =

∑
τ

πτ (r)Pτ (a1 = a, x1)

F2
x2,r ≡ P(a2 = 1|x2, r) =

∑
τ

πτ (r)Pτ (a2 = 1|x2)

The objects of interest that we need to identify are the type-specific probabilities in period 1 {Pτ (a1 =

a, x1)}a∈{n,b,c},x1∈X1
and the type probabilities {πτ (r)}τ∈T . We define the period 1 object of interest as

the type-specific joint distribution of (a1, x1) since that allows the initial state to be type-specific. This is

important if, for instance, the past actions of “näıve” time-inconsistent agents makes them more likely to

have malaria at the start of the project.

We now outline how the type-specific choice probabilities in the first period are identified. Note that

some of these objects are identified by Assumption 4. Specifically the assumption implies that “sophis-

ticated” agents only choose between not purchasing a product and purchasing a commitment product,

and “näıve” agents only choose between no purchase and purchasing the standard contract. This was

critical for the identification arguments in the previous periods and we can impose them in the following

argument to ensure consistency. However, as an examination of the argument below reveals, these direct

restrictions are not used for identification of first-period type-specific choice probabilities.24 The inherent

unsatisfactoriness of these assumptions partly motivates the unobserved types model in the next section.

Using the notation above, consider the 3 × 3 directly identified matrix P1,r(a, x2, x
′
2, x1, x

′
1, r) (which

we abbreviate to Pa1,r

Pa1,r =


1 F2

x2,r F2
x′2,r,f

F1
a,x1,τ F1,2

a,x1,x2,r, F1,2
a,x1,x′2,r

F1
a,x′1,r

F1,2
a,x′1,x2,r

F1,2
a,x′1,x

′
2,r

 (7)

Then, we can write

Pa1,r = (La1)′VrL2

where Vr = diag(πτC (r), πτN (r), πτS (r)) and

La1 ≡

1 PτC (a1 = a, x1) PτC (a1 = a, x′1)

1 PτN (a1 = a, x1) PτN (a1 = a, x′1)

1 PτS (a1 = a, x1) PτS (a1 = a, x′1)

 L2 ≡

1 PτC (a2 = 1|x2) PτC (a2 = 1|x′2)

1 PτN (a2 = 1|x2) PτN (a2 = 1|x′2)

1 PτS (a2 = 1|x2) PτS (a2 = 1|x′2)

 . (8)

Next, note that L2 is directly identified by Assumption 4 for x2 ∈ XB ∪XC . If it is invertible (which we will

assume to be the case below), we can postmultiply both sides by its inverse. Next, the first row of Pa1,rL
−1
2

identifies (πτC (r), πτN (r), πτS (r)). We obtain further simplification since under the directly observed type

assumptions, πτC (1) = 0.25 Once the type probabilities are identified, the type-specific choice probabilities

24Specifically, Assumption 4 implies that PτS (a1 = b|x1) = 0 and PτN (a1 = c|x1) = 0. Note that this assumption cannot be
directly tested here since we use it to identify the type-specific choice probabilities for period 2.

25The case for r = 0 is not interesting since the directly identified types assumption implies that (πτC (0), πτN (0), πτS (0)) =
(1, 0, 0). We keep the more general motivation since it anticipates the notation in the next section.
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are also identified and the proof is relegated to the appendix. We record the additional assumption required

and the subsequent lemma below.

ASSUMPTION 11. The matrix L2 defined above is invertible for x2, x
′
2 ∈ X2.

We can then state the result for period 1:

LEMMA 4. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–11 hold.

Then, the first period utility differentials u(x1, b, τ)− u(x1, n, τ) and u(x1, c, τ)− u(x1, n, τ) are identified

for all x1 ∈ X1 and for all types τ . In addition the type probabilities {πτ (·)}τ∈T are also identified.

The lemma is useful for at least two reasons: First, we have now identified type-specific utilities for

each time period, which along with the identified time parameters, can form the basis for standard model

specification tests as well as conducting complete counterfactual analysis. Second, we also identify the

relative size of all three different types of agent in the population. This is important because it provides

us with the unconditional distribution of types whereas previous work (as well as the type classification

by observed product choice) provides at best only the distribution of types conditional upon take-up of

the offered product. To the extent that the purchase decision is affected by type (e.g. “näıve” agents may

be more likely to purchase nets than “sophisticated” agents because they down-weight the future costs of

retreatment in the present) the two distributions will be different. Further, this difference, ceterus paribus,

provides us with a measure of how attractive the commitment contract is for the different types of agents.

We explore each of these in the estimation section below.

4.4 Identification: Unobserved Types

We now turn to the case where agent type is not observed. This is reasonable to the extent that we believe

that agent observables do not completely reveal type. In particular, in the likely case that the survey

responses to the discounting questions and the choice of commitment product are not perfect predictors

for type it would be useful to have another approach to identify type-specific preferences.

The primary advantage of this approach is that it is relatively agnostic about the extent to which

observed time inconsistency (i.e. the survey responses to the discounting questions as well as the choice of

commitment product) map into agent types. Since it nests the perfectly observed types model, one can

also test whether the mapping of types in Assumption 4 is appropriate.

The main complication is that we first need to identify type-specific choice probabilities — the key

to identification in the previous section — from the observed choice probabilities. Each observed choice

probability is a mixture of all the type-specific choice probabilities.

We proceed by making the same kinds of arguments as we made for period one in Section 4.3, and

show that both the type probabilities and the type-specific choice probabilities in each period are identified.

Once these probabilities are identified we can recover preferences using the same arguments as in Section

4.2.

A key additional set of parameters is now the type probabilities. We define πτ (ru) ≡ πτ (r, a1) as the

probability that an agent is of type τ conditional on their response to the reversal question and their period
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1 choice.26 How information from (r, a1) is mapped to types will be obtained by imposing assumptions on

these probabilities which require imposing a sort of monotonicity (or monotone likelihood ratio) assumption

on πτ (ru)
πτ (r′u) .

One set of sufficient conditions for identification is that first, the set of agents with responses (r, a1) =

(1, c) are most likely to be “sophisticated” inconsistent agents and least likely to be time consistent agents.

Second, the set of agents with (r, a1) = (0, b) are most likely to be time consistent agents and least likely to

be “sophisticated” inconsistent agents. This implies an ordering on the ratios:
{
πτC (ru)

πτC (r′u) ≥
πτN (ru)

πτN (r′u) ≥
πτS (ru)

πτS (r′u)

}
for ru = (0, b) and r′u = (1, c). This assumption appears reasonable in our empirical framework but more

generally we only need the following weaker condition to hold (which in fact allows us to test the previous

set of conditions):

ASSUMPTION 12. For some ru 6= r′u, the three ratios
{
πτC (ru)

πτC (r′u) ,
πτN (ru)

πτN (r′u) ,
πτS (ru)

πτS (r′u)

}
can be ordered ex-ante.

Next, we examine the link between the observed choice probabilities and the type-specific choice prob-

abilities. Consider (for t > 1 and suppressing dependence on z)

P(at = 1, at+1 = 1, xt, xt+1|r, a1) =
∑
τ∈T

πτ (r, a1)Pτ (at+1 = 1, at = 1, xt+1, xt|r, a1)

We simplify the right hand side by assuming

ASSUMPTION 13. (i) Pτ (at = 1|xt, ru) = Pτ (at = 1|xt) ∀t > 1 (ii) The transition probabilities do not

vary by type and are independent of ru: Pτ (xt+1|xt, at, ru) = P(xt+1|xt, at).

The first part of the assumption asserts that conditional on the state and type, information about an

agent’s responses to ru are uninformative about actions. This seems reasonable to the extent that ru is

only informative about choices through its predictive power for agent type. Part of the assumption indeed

is trivial, since xt contains a1. If, however, ru provides information about other aspects of the decision

process this assumption would be implausible. For instance, if r = 1 indicates not just time inconsistency

but also reflects a lack of numeracy or other flaws in an agent’s cognitive processes, one might believe that

it has an independent effect on choice, even after conditioning on type. The second part of the assumption

states that the observed transition probabilities do not vary by agent type. Although this assumption

is not directly testable, we can examine the type-specific transition probabilities in the directly observed

types model to assess its plausibility.

We show identification in two steps. In the first step, we use the observed joint distribution P(at =

1, at+1 = 1, xt, xt+1|ru) and the restrictions in Assumptions 12 and 13 to identify the type-specific choice

probabilities Pτ (at|xt) and the type probabilities πτ (ru). The argument is similar to Kasahara and Shimotsu

(2009) with the primary difference that we exploit the exclusion restrictions (Assumption 13) that permit

identification with just two periods. In the second step, we recover the preference parameters from the

type-specific choice probabilities using results from the previous section.

26In terms of this probability, the previous section assumed that πτS (1, c) = 1, πτC (0, ·) = 1, and πτN (1, b) = 1. The
type-probabilities can also depend upon (z, v) but we ignore that dependence here since it is not used for identification.
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We first introduce the notation required to state two central assumptions for the first step in the

argument. Define the 3× 3 matrices containing the objects of interest as27

L2 ≡

1 PτC (a2 = 1, x2) PτC (a2 = 1, x′2)

1 PτN (a2 = 1, x2) PτN (a2 = 1, x′2)

1 PτS (a2 = 1, x2) PτS (a2 = 1, x′2)

L3 ≡

1 PτC (a3 = 1|x3) PτC (a3 = 1|x′3)

1 PτN (a3 = 1|x3) PτN (a3 = 1|x′3)

1 PτS (a3 = 1|x3) PτS (a3 = 1|x′3)

 (9)

ASSUMPTION 14. There exist (x2, x
′
2, x3, x

′
3) such that the matrices L2 and L3 defined above are in-

vertible.

This assumption requires that there is sufficient variation in the type-specific choice probabilities. It

formalizes the intuition that if optimal choice probabilities do not differ very much across types then it

will be difficult to identify them separately. In the context of the empirical section, it requires that the

consistent, “näıve” and “sophisticated” agents indeed have different choice probabilities. This assumption

is reasonable here to the extent that the model is only interesting if it is true.

ASSUMPTION 15. All types exist with positive probability for at least two values of ru: πτ (ru) > 0 τ ∈ T

This assumption requires that all types exist with positive probability conditional on ru. This is reasonable

since the motivation for the unobserved type model in the first place was that the proxies were imperfect

predictors of type. Moreover, this is a convenient assumption and specific departures from it can be

accommodated. For instance, the directly observed types model in the previous section does not satisfy

this assumption but the model is nevertheless identified (in fact, the identification arguments are much

easier).28

LEMMA 5. Under Assumptions 13 and 14, the choice specific probabilities Pτ (at = 1|xt) are identified

for all xt ∈ XB ∪XC and t > 1. In addition, the type probabilities conditional on r and first-period choice,

{πτ (ru)}τ∈T , are also identified.

LEMMA 6. Consider an agent of type τ solving the problem (3) and suppose that Assumptions 1–3 and

5–15 hold. We observe an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w). Then, we can identify

1. The type-specific utility differentials ut(xt, 1, τ)− ut(xt, 0, τ) ∀ τ ∈ T , xt ∈ XB ∪ XC

2. The exponential discount parameter δ and the hyperbolic parameters βτ ∀τ ∈ T .

The proof is a combination of applying Lemma 5 and the results from Section 4.1. These results have

several interesting sets of implications. First, since we identify the unconditional (on first period choice)

type probabilities we can make statements about the sizes of the different types in the population. This

is important since it provides us with a quantitative measure of how large a fraction of the population is

time inconsistent. Second, we also identify the conditional (on first period choice) type probabilities which

allow us to make statements about what the relative weights of the different types are when we stratify

27We identify the joint distribution of (a2, x2). An alternative specification would be to write this joint distribution as
Pτ (a2|x2)Pτ (x2) and then impose that Pτ (x2) = P(x2). We do not follow this approach here since it is somewhat less general.

28Importantly, we have assumed that the total number of types is known. In principle one could test this assumption using
the arguments outlined in Kasahara and Shimotsu (2009).
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by first period choice. This allows us to make statements about the relative appeal of the commitment

contract versus the regular contract for different types.

Second, since we allowed significant flexibility in type preferences we can evaluate the strength of

alternative explanations in explaining observed behavior. Concretely, we can compare a model in which

different types have identical per-period preferences (but differ in their time preference parameters) to a

model where agents are time consistent but differ along other dimensions of their preferences.

5 Monte Carlo Simulations

We illustrate the properties of these models with a set of Monte Carlo simulations, beginning with the

case where types are directly observed and then moving on to the unobserved types case. In order to focus

attention on the estimation of the time preference parameters, we provide a simple parametrization for

per-period utilities, imposing that they are common across types and are linear in the unknown parameters.

We begin by specifying utility in each period as a function of the state variables and actions taken.

• Period 4: x4 ∈ {0, 1}.

u(x4) = −θ4x4

• Period 3: x3 ∈ {bm, bh, cm, ch, nh, nm} ≡ {b, c, n} × {h,m} ≡ {0, 1, 2, 3, 4, 5} and a ∈ {0, 1}

u(x3, a) = −3I{x3 ∈ {1, 3, 5}} − θ5prI{x3 ∈ {0, 1}, a = 1}

where pr is the price of retreatment.

• Period 2: x2 ∈ {bm, bh, cm, ch, nh, nm} ≡ {b, c, n} × {h,m} ≡ {0, 1, 2, 3, 4, 5} and a ∈ {0, 1}

u(x2, a) = −3I{x2 ∈ {1, 3, 5}} − θ5prI{x2 ∈ {0, 1}, a = 1}.

• Period 1: x1 ∈ {h,m} ≡ {0, 1} and a ∈ {b, c, n}

u(x1, a) = −3I{x1 = 1} − θ5pbI{a1 = b} − θ5pcI{a1 = c},

where pb is the price of the no-commitment contract and pc is the price of the commitment contract.

We assume that the unobserved state variables εt are independent Type I extreme-valued so that we obtain

a simple characterization of the choice probabilities

Pτ (at = a|xt, z) =
exp(vτ (xt, a, z)∑S
s=0 exp(vτ (xt, s, z))

where the vτ (·) functions are constructed using backward induction. The results for the case where we

assume that types are directly observed are presented in Table 4 and those for the unobserved types case
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are presented in Table 5. We present results for a range of sample sizes. The tables provide evidence

that the model is identified and that at least for moderate sample sizes (300 and above) the estimators

are reasonably close to the true values. (we present both the median and mean for the point estimates).

In addition, examining the standard errors across sample sizes provides corroborating evidence that the

estimators converge at the parametric rate as hypothesized.

6 Estimation

We turn next to solving and estimating the model using data from the intervention. We begin by spec-

ifying preferences and then discuss the transition probabilities and other key ingredients of the dynamic

programming problem. As is standard in the literature, we assume that the unobserved components of

preferences have the Type I generalized extreme value (GEV henceforth) distribution.

The central difference from standard analyses of dynamic models in what follows is the presence of

the different types of time-inconsistent agents and the fact that these types are unobserved. These two

deviations alter the standard results and we highlight these differences below.

6.1 Preferences

6.1.1 Period 4

In period 4, the state variables are income and health (x4 = (y4, h4)) while v are household characteristics

that enter preferences. In the base specification v includes household size (at baseline), a measure of

households assets, and an indicator of risk aversion (v = (vhhs, vassets, vrisk)).
29 Preferences in period 4

are given by

uτ (x4; v) = C(x4)ατ (v) − cτ (x4, v)

where C(x4) is consumption in state x4 and the exponent ατ (·) captures risk aversion with respect to

consumption. The function cτ (·) is the direct disutility from malaria (i.e. not including the loss in utility

that arises from lower consumption due to potentially lower income when sick).

We allow for heterogeneity in the risk-aversion parameter along both observable (v) and unobservable

dimensions (τ):30

ατ (v) = Logit (α0,τ + α1vhhs + α2vassets + α3vrisk) (10)

Note that the intercept differs by type; in principle, one could allow the entire function to vary by type,

but the sample size requirements for such flexibility are onerous. We have also restricted the risk aversion

parameters to be between 0 and 1. The latter restrictions can easily be relaxed but we keep them because

they simplify estimation and are reasonable given the various empirical estimates in the literature.

29The survey based measure of attitudes towards risk is obtained by using an abbreviated version of the procedure proposed
in Holt and Laury (2002). See Appendix D for details of the variables used.

30where Logit(x)= exp(x)
1+exp(x)
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The malaria disutility function cτ (·) is also allowed to vary by agent type as well as observables v.

Specifically, we model the disutility as

cτ (x4, v) ≡ h4cτ (v) = I{h4 = m} exp(κ0,τ + κ1vhhs + κ2vassets), (11)

where h4 is an indicator equal to 1 if someone in the household contracts malaria in period 4. Note that

the survey based measure of risk does not enter the cost of malaria function and this exclusion restriction

is useful in identifying the two functions.

6.1.2 Periods 2 and 3

The state variables in period t ∈ {2, 3} are income (yt), health status (ht) and the choice of product in

period 1 (a1). We define utility in period t as

uτ (xt, at; v) = (C(xt)− pratI{a1 = b})ατ (v) − cτ (v)ht

where pr is the price of retreatment. Note that agents who have purchased the commitment contract do

not incur any additional cost in retreating the net.

6.1.3 Period 1

In period 1, preferences are given by

uτ (x1, a1; v) = (C(x1)− pbI{a1 = b} − pcI{a1 = c})ατ (v) − cτ (v)h1

where pb is the price of the ITN alone, and pc is the price of the commitment product.

6.2 Solving the Model: Period 3

Given a finite horizon model, we can solve for the optimal decision rule using backward induction. We

solve and estimate the model using the mapping between type-specific choice probabilities and type-specific

value functions (defined below). This is justified because even though we do not observe types, the type-

specific choice probabilities are identified using Lemma 5. Next, recall that in period 3 an agent who has

purchased an ITN will choose to re-treat his net if

uτ (x3, 1; v) + ε3(1) + βτδ

∫
u(x4; v) dF(x4|x3, 1; z) > uτ (x3, 0; v) + ε3(0) + βτδ

∫
u(x4; v) dF(x4|x3, 0; z)

which we rewrite as

ε3(0)− ε3(1) < vτ (x3, 1, z, v, βτ )− vτ (x3, 0, z, v, βτ ).

Recall that vτ (·) is the choice specific value function for type τ :

vτ (x3, a, z, v, βτ ) ≡ uτ (x3, a; v) + βτδ

∫
uτ (x4, v) dF(x4|x3, a, z) (12)
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We emphasize the dependence of these functions on the hyperbolic parameter β since it will be useful for

future manipulations. We assume that (ε3(0), ε3(1))/σ are i.i.d. standard GEV (to ease notation we set

σ = 1 in what follows). Under the GEV assumption, the type-specific choice probability is given by

Pτ (a3 = 1|x3; z, v) =
exp(vτ (x3, 1, z, v, βτ ))∑1
j=0 exp(vτ (x2, j, z, v, βτ ))

. (13)

6.2.1 Period 2 Choice

Under the GEV assumption on the errors, the choice probabilities are given as usual by

Pτ (a2 = 1|x2; z, v) =
exp(vτ (x2, 1, z, v, βτ ))∑1
j=0 exp(vτ (x2, j, z, v, βτ ))

(14)

For period 2, the vτ (·) functions are defined similarly as in period 3 except that the calculation of the

integral is more involved. As we show below, the form of these functions provides some insight into the

time inconsistency problem

vτ (x2, a, z, v, βτ ) ≡ uτ (x2, a; v) + βτδ

∫
v∗τ (s3, z, v) dF(s3|x2, a, z) (15)

where v∗τ (·) represents the utility (from the point of view of period 2) of behaving optimally in period 3,

given action a2 and state x2 and s3 = (x3, ε3). To make the notation for this function easier, define the

event

Aτk ≡ {vτ (x3, k, z, v, β̃τ ) + ε3(k) > vτ (x3, s, z, v, β̃τ ) + ε3(s) ∀s 6= k} (16)

which is the event that action k is optimal in period 3 given a τ agent’s future expected present-bias of β̃τ .

Next, define31

v∗τ (s3, z, v) ≡
J∑
s=1

(v(x3, s, z, v, 1) + ε3(s)) IAτs

31where IAτs is an indicator for the event Aτs
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Integrating with respect to the GEV error distribution yields

v∗τ (x3, z, v) ≡
∫
v∗τ (x3, ε3, z, v) dF(ε3)

=
J∑
s=1

∫
(vτ (x3, s, 1) + ε3(s))IAτs dF(ε3)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, z, v, 1) + E(ε3(s)|Aτs)

)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, z, v, 1) + E(ε3(s)|Aτs)

)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, z, v, 1) + γeuler − logP(Aτs)

)

where γeuler is Euler’s constant, and

P(Aτs) ≡
∫

IAτs (x3,ε3,z,v) dF(ε3)

=
exp(vτ (x3, s, z, v, β̃τ ))∑J
j=1 exp(vτ (x3, j, z, v, β̃τ ))

.

After simplification we obtain

v∗τ (x3, z, v) =
J∑
s=1

P(Aτs)

vτ (x3, s, z, v, 1)− vτ (x3, s, z, v, β̃τ ) + γeuler + log

 J∑
j=1

exp(vτ (x3, j, z, v, β̃τ ))


The first two terms in the brackets give the difference between the net value of taking action s assuming no

present-bias and the net value of the same action assuming a present-bias of β̃τ . For time consistent agents

who are not present-biased and know this, this term disappears and the expression reduces to the standard

expression for discrete choice models (see e.g. equation (12) of Aguirregabiria and Mira, 2010). For “näıve”

time-inconsistent agents this expression is also zero and reflects the fact that such agents do not take their

future present-bias into account while making choices. In this case such agents are ignoring their future

present bias in period 3 while making choices in period 2. In contrast, “sophisticated” inconsistent agents

recognize their future inconsistency and this expression is non-zero for them.

6.2.2 Period 1 Choice

The discussion is very similar to that for the previous period with the only substantive difference that

there are three possible actions in period 1 and the choice probabilities for an agent of type τ are given by

Pτ (a1 = a|x1; z, v) =
exp(vτ (x1, a, z, v, βτ ))∑2
j=0 exp(vτ (x1, j, z, v, βτ )

. (17)
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For period 1, the vτ (·) functions are

vτ (x1, a, z, v, βτ ) ≡ u(x1, a; v) + βτδ

∫
v∗τ (s2, z, v) dF(s2|x1, a, z), (18)

where v∗τ (·) is the value function for period 2 (for type τ).

As before, define

Aτk ≡ {vτ (x2, k, z, v, β̃τ ) + ε2(k) > vτ (x2, s, z, v, β̃τ ) + ε2(s) ∀s 6= k}, (19)

which is the event that action k is optimal in period 2 given an agent’s future expected present-bias of β̃τ

and where

vτ (x2, a, z, v, c) = uτ (x2, a; v) + cδ

∫
v∗τ (s3, z, v) dF(s3|x2, a, z), (20)

which is the choice specific value function in period 2 given an agent’s hyperbolic parameter c. Next, as

earlier

v∗τ (s2, z, v) =
2∑
s=0

(vτ (x2, s, z, v, 1) + ε2(s))IAτs ,

and as before, integrating with respect to the error distribution we obtain

v∗τ (x2, z, v) ≡
∫
v∗τ (x2, ε2, z, v) dF(ε2)

=

2∑
s=0

P(Aτs)(vτ (x2, s, z, v, 1) + γeuler − logP(Aτs)),

where

P(Aτs) =
exp(vτ (x2, s, z, v, β̃τ ))∑2
j=0 exp(vτ (x2, j, z, v, β̃τ ))

,

so that simplifying, we obtain

v∗τ (x2, z, v) =
2∑
s=0

P(Aτs)

vτ (x2, s, z, v, 1)− vτ (x2, s, z, v, β̃τ ) + γeuler + log

 2∑
j=0

exp(vτ (x2, j, z, v, β̃τ ))

 .
6.3 Estimation Method

Estimation is carried out in two steps. In the first step, we identify the type-specific choice probabilities

Pτ (at|xt, z, v) using the methods outlined in Lemma 5. In the second step, we use these probabilities

to conduct a minimum distance estimation exercises using equations (13), (14) and (17) as the mapping

between the identified type-specific choice probabilities and the type-specific probabilities predicted by the

model.

In the first step, we recover the type-specific choice probabilities for each state variable xt at each

value of the time-invariant exogenous variables (z, v). Note that the identification results require xt to

be discrete and so the state support comprises health status (binary valued), income levels (binary val-
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ued)32 and for t ∈ {2, 3} also includes period 1 choice. The time-invariant variables comprise (z, v) =

(vhhs, vassets, vrisk, π, δ, γ). Each such calculation follows the steps outlined in equations (40)–(43). Note

that though the state space support is required to be discrete, this is not the case for (z, v). However, given

the steps involved in the Kasahara and Shimotsu inversions and the sample size, we discretized (z, v) into

108 unique cells and implemented Lemma 5 in each cell to obtain three type-specific probabilities per cell.

In addition, we estimated the quantities defined in (37) and used in Lemma 5 using flexible logit specifica-

tions. This procedure yields type probabilities (the V matrix) that are functions of (z, v). However, these

were very imprecisely estimated within each cell, and so we averaged these weights over the distribution

of (z, v) to arrive at the type probabilities reported in the paper.

In the second step, we begin by calculating the model choice probabilities — the right hands side

of equations (13), (14) and (17) — for a given set of parameter values θ ≡ (δ, βτN , βτSα,κ). δ is the

usual exponential discounting parameter, (βτN , βτS ) are the hyperbolic parameters for the “näıve” and

“sophisticated” agents respectively, and (α,κ) are the parameter vectors characterizing risk aversion and

malaria disutility respectively, (see equations 10 and 11). These model probabilities are calculated for

each candidate value θ starting with the value functions for the last period and then working backwards

using equations (12), (15) and (18). In order to compute these value functions we also need estimates of

the transition probabilities dF(xt+1|xt, at) used by households in solving the problem. We obtain these

using the households’ elicited beliefs about the two stochastic components of this distribution (income and

health) along with information on the monetary costs of illness. Beliefs were elicited during the baseline as

well as in the follow-up survey. We estimated the model using both sets of beliefs as well as only using the

baseline beliefs, and the results were insensitive to the choice of beliefs.33 In what follows we present the

results using only baseline beliefs. Finally, we choose our estimate of θ0 to be the value of θ that minimizes

the distance between these model probabilities and the type-specific choice probabilities recovered in the

first step using the Kasahara-Shimotsu inversion.

6.4 Reduced Form Regressions

Before discussing the estimates of the structural model, we first present some descriptive statistics and

basic reduced form regressions intended to highlight the basic correlations in the data. In Table 6 we

predict product take up as a function of the period 1 state variables as well as the exogenous variables

listed above. In column 1 the dependent variable is equal to 1 if the household purchased at least one net

using either loan product (C1 or C2) while in column 2 we report the probability of choosing contract C1

restricting attention to the sub-sample that purchased at least one net. Finally, in column 3 we estimate

a multinomial logit with values of 0,1, and 2 for no purchase, C1 purchase and C2 purchase respectively.

The results suggest that being sick with malaria in the baseline makes households substantially more likely

(by seven percentage points or 16% of the take-up rate) to purchase one of the ITN products (p = .04).

Conversely, higher period income in period 1 (p = .09) and greater asset ownership at baseline (p = .07) are

both associated with substantial declines (8–10 percentage points) in the likelihood of purchasing a product

32see Appendix D for more details on variable construction.
33Households’ stated beliefs about the efficacy of ITNs decreased by about 10 percentage points over the course of the

intervention. The most significant change in beliefs was a 30% decrease in the probability of contracting malaria while
sleeping unprotected by a net.
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suggesting that poorer household were somewhat more likely to purchase a product. Greater beliefs in the

efficacy of ITNs (captured by the γ variable) were associated with higher propensity to purchase a product,

although in a non-linear fashion. Note that one implication of the forward-looking model is that the effect

of the beliefs in the efficacy of nets γ on take up in the first period will be non-linear (since these effects

will multiply each other due to the recursive nature of the value functions) and we use the quadratic form

as a convenient approximation.

In order to see whether these variables have greater predictive power for any one of the contract

choices, we next break down the dependent variable into three values and implement a multinomial logit.

The results suggest that beliefs are stronger predictors, both substantively and statistically, for contract

C2 which is consistent with the idea that households with stronger beliefs about ITN efficacy are more

likely to purchase contract C2. In addition, there is some evidence that poor households are more likely

to choose contract C1 (column 3a). Interestingly, net ownership (which was about 2/3 at baseline) is not

a strong predictor for take-up once we condition on beliefs. Finally, it is also interesting to note that the

survey measure of time-inconsistency is not strongly correlated with the choice of contract (although it

does have predictive power for retreatments as we discuss below).

In Table 7 we predict (using the logit) retreatment rates as a function of the state variables (includ-

ing contract choice) and time-invariant exogenous variables, restricting attention to the sub-sample that

purchased one of the two products. The most striking result (column 1) is that retreatment rates for

households that purchased contract the commitment product are much higher (in fact almost double) than

for households that purchased C1 and this remains true for the second retreatment as well.

Turning next to the determinants of retreatment among households who choose contract C1, we see

that the survey measure of time-inconsistency is highly significant: households that have at least one pref-

erence reversal are about 22 percentage points less likely to re-treat any ITNs (p = .02). These results

are consistent with a situation where some buyers are näıvely time-inconsistent. Turning next to determi-

nants of retreatment among purchasers of the commitment contract, we first note that the unconditional

retreatment rates are very high (over 90%) so there is relatively little variation in the dependent variable.

As was the case in the take-up regressions an increase in the beliefs about efficacy of ITNs is associated

with substantially higher retreatment rates for this sub-sample of households as well.

In sharp contrast to the results from the first period, malaria incidence in the past six months is

negatively associated with the decision to re-treat for both types of contract. In particular, the likelihood

of the second retreatment decreases by 13 percentage points if someone in the household contracted malaria

after the ITN purchase but before the first retreatment (p=.04). The sign remains the same for the second

retreatment (columns 4 and 5) although it is no longer statistically significant. Interestingly, for the second

retreatment, we find that the relationship between baseline beliefs and retreatment reverses for the two

kinds of contract purchasers. For C1 holders, the relationship between beliefs and retreatment is increasing

at high levels of belief while the relationship reverses for C2 holders. These relationships point to the need

to impose more structure on the data to understand the relationship between purchase, retreatment and

household characteristics.

The regressions in this section provide useful information about the importance of beliefs, past health

status and income in driving health decisions as well as some suggestive evidence about the potential
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importance of time-inconsistency in retreatment decisions. In the following section we attempt to quantify

these links in the context of the model described in section above.

6.5 Estimation Results

6.6 The Population Distribution of Time-Inconsistent Agents

We next report the results from the estimation exercise outlined in Section 6.3. We begin first with the

estimates of the type probabilities. We first discuss the type probabilities conditional only on the survey

responses r, {P(τ |r) : τ ∈ {τC , τN , τS}}, before further conditioning upon first period choice, {P(τ |r, a1) :

τ ∈ {τC , τN , τS}}. The former probabilities provide an estimate of the unconditional distribution of types in

the population, something that has not previously been estimated in the literature. The latter probabilities

estimate the distribution of types conditional on purchase and a comparison of these distributions provides

us with an estimate of how likely “sophisticated” agents are to choose commitment products. Recall that

we cannot observe agent types, so that direct choice probabilities are not informative about the selection

problem here.

Note that our identification assumptions only imposed a monotonicity condition (Assumption 12) on

the relationship between (r, a1) and types. Therefore, we can actually test whether the more conventional,

stronger, mappings hold. In particular, we can test whether (i) the sub-population with r = 1 has a greater

fraction of time-inconsistent agents and (ii) whether the sub-population that purchase the commitment

product (and had r = 1) is more likely to contain “sophisticated” time-inconsistent agents.

The results from Table 8 show that our estimate of the fraction of time consistent agents in the

population is about 40% and the bulk of the time-inconsistent agents (about 80%) are “näıve”. These

figures are approximately the same regardless of whether the sub-population exhibited preference reversals

(i.e r = 1). Assumption 12 is weak, in the sense that it does not require that the fraction of inconsistent

agents be larger in the sub-population with r = 1. In fact, we find that the fraction of time-inconsistent

agents is actually (statistically insignificantly) smaller in the sub-population with r = 1. These results

suggest that, at least in our sample, the conventional deterministic mapping of time-consistency to standard

time preference survey questions does not hold.

We next discuss the type probabilities conditional upon first period choice in Table 9 for each of the four

combinations of the conditioning variables (r, a1). First, as with the previous table, the questionnaire based

measures of time-inconsistency and the choice of commitment product do not perfectly predict agent type.

In fact, all three types of agent exist for every value of these variables. Recall that the directly observed

types model assumes that πC(0, ·) = 1, πN (1, b) = 1, and πS(1, c) = 1. Table 9 suggests that this is not the

case with our data. For instance, among the sub-population of agents who exhibit preference reversals on

discounting questions (and purchase either C1 or C2) around a third are estimated to be time-consistent

agents. Even more starkly, this fraction is about the same (in fact somewhat lower) in the sub-population

that did not exhibit any such preference reversals. In addition, across all combinations of of (r, a1), time-

consistent agents are a minority ranging roughly between 30 − 40%. “Näıve” inconsistent agents form

the bulk — approximately 70 − 80% — of the time-inconsistent agents. Note that in the context of the

model, preference reversals are an imperfect proxy for time-inconsistency and are affected by measurement

(misclassification) and cognitive issues as well as factors such as seasonality and other constraints.
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Finally, comparing results from Tables 8 and 9, we conclude that among households who purchased

the commitment product: (i) the proportion of time consistent agents is almost 30% lower in the sub-

population with r = 1 relative to the overall mean; (ii) the proportion of “naive” agents is 19% higher than

the overall fraction, while that of “sophisticated” agents is 22% higher.

6.7 Estimates of Time, Cost and Risk Preferences

Next, we describe the estimates of the preference parameters for each of the three types of agents, either

assuming equal risk preferences (Table 10) or allowing for heterogeneity in risk-preferences across types

(Table 11). It is comforting to note that the estimates for time-preference parameters remain stable across

the different utility specifications.

First, note that the two types of time-inconsistent agent have different rates of time preference. In

particular, in both specifications the“hyperbolic” parameters for the “sophisticated” agents are significantly

smaller — about 70% lower — than those for the “näıve” agent and this difference is statistically significant

at conventional levels. This result suggests that there is substantial heterogeneity across inconsistent agents

beyond that usually considered in empirical work on the issue. Second, the “hyperbolic” parameter for

the “näıve”-inconsistent type is quite close to 1, so that present-bias may be a relatively small problem.

These results suggest the hypothesis that agents with strong present-bias problems are likely to become

more aware of their problem and take actions to mitigate the problem (i.e. by becoming “sophisticated”).

Conversely, “näıve” agents are less likely to take actions to mitigate their present-bias problem because it

is relatively small.34

Finally, we deal with the hypothesis that types differ by more than just their time preferences. Specif-

ically, we allow different types to have different rates of risk aversion35 as well as different cost parameters

associated with illness. Table 11 shows that there are differences in risk attitudes for different types but

these differences are quantitatively small36 and, as we shall see subsequently, also substantively unimpor-

tant. The point estimates for the cost parameters follow this pattern as well. These results together suggest

that while there is some evidence that types differ in their attitudes towards risk or the disutility from

illness, these differences are small relative to the differences in time preferences documented above.

7 Counterfactuals

In this section, we carry out a series of counterfactual exercises using the estimated model to (i) assess

the effect of changes in the model’s exogenous parameters and (ii) evaluate the relative importance of risk,

cost and time preference parameters in explaining outcomes. We consider several exogenous changes in

the price of retreatment and report their effects on ITN take-up and retreatment rates. In addition, we

examine outcomes for the different types of agent and assess the relative importance of the four ways in

which agents differ — risk, cost, degree of present-bias and awareness of future present-bias — in generating

the variations in outcomes.

34There is relatively little work, theoretical or empirical, on self-control and learning. See Ali (2010) for a theoretical model
of a decision-maker who is only partially aware about his self-control problems and learns about them over time.

35In addition risk aversion varies by observables
36Recall the risk aversion is parameterized by equation (10).
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We first discuss the consequences of a known doubling in the price of retreatments (balanced by a

corresponding increase in the price of the commitment contract).37 Intuitively, the price change has several

effects. First, the increases will reduce contemporaneous demand for retreatment through a substitution

and income effect. Second, the price increase may reduce overall ITN adoption in the initial period, because

the dynamic nature of the problem implies that agents predict that the cost of enhancing the protective

power of the net with the treatment has increased. Third, a sophisticated hyperbolic agent who cares about

the retreatment may switch from the standard to the commitment contract, anticipating that the higher

cost of re-treatment will cause more temptation in the future. This latter effect is, however, moderated by

the effect of the corresponding increase in the price of the commitment product. In practice, which effect

dominates in the first period is an empirical question that the counterfactuals can answer.

7.1 Adoption and Retreatment: Averaging Across Types

Consider first a doubling of the retreatment price from Rs. 15 to Rs. 30. First, averaging across types,

demographics and states, we find that retreatment rates under contract C1 fall by about 74% (see Table 12).

These figures are large and incorporate the effects of prices via preferences (including time-inconsistency)

and beliefs on retreatment. They suggest a price elasticity of demand of −0.72. Second, not surprisingly,

we find no effect on retreatment decisions under contract C2, since retreatment price increases have no

effect on those who have committed to retreatment. However, it could be the case that the increased price

of retreatment increases demand for purchasing contract C2 in the first period. Weighing against this

effect is the corresponding increase (by Rs. 30) in the price of the commitment product so that the final

change in the demand of C2 is an empirical question. According to the model, demand for the commitment

product C1 declines by 5% while demand for C2 increases by a little under 2%. Given that slightly more

agents purchase C2 and retreatment rates for C2 remain unchanged, overall retreatment rates (averaging

across all contracts) decline by approximately 12%.

We next examine (also in Table 12) changes in take-up and retreatment when the price of retreatment

is halved (from Rs. 15 to Rs. 7.5). First, we find that retreatment rates for purchasers of contract C1 are

predicted to increase by 82% which is similar to the proportional change in the exercise when prices were

doubled. Further, we find that overall purchase of the standard contract increases by 17% while demand

for the commitment contract declines by 8%. Incorporating the differences in take-up of contracts we

find that overall retreatment rates averaged across the population increase by approximately 12% which is

again similar in absolute terms to the corresponding figure in the previous counterfactual.

We carried out similar analyses for other price changes and found similar results. Broadly speaking,

increasing retreatment prices generally leads to a significant decline in retreatment rates for households

that purchased contract C1 with an elasticity of approximately −0.7 to −0.8. Further, these price increases

also lead to some wealthier households switching towards the commitment contract, though this effect is

not very large.

37Counterfactuals without the corresponding increase in the price of C2 imply that demand for C2 increases unambiguously.
We omit these results here.
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7.2 Adoption and Retreatment: Type Differences

Households differ in their time preferences, risk and cost preferences as well as awareness about their future

present-bias. The structural model combined with the estimates from the previous section allows us to

understand the relative contributions of each of these differences in explaining take-up rates. Concretely,

in this sub-section we seek to use the structure to understand why even wealthy “sophisticated” households

do not find the commitment contract appealing.

As might be anticipated from the empirical results, the commitment contract does not seem to appeal

exclusively to “sophisticated” inconsistent agents. In particular, wealthier households are much more

likely to purchase the commitment product (regardless of time preferences). Second, even among wealthy

households, “sophisticated” households are actually less likely to purchase the commitment contract. We

explore the reasons for this using the structural estimates, varying each of the model elements (time and

risk preferences, costs, and awareness of future present-bias) systematically.

The results suggest that the primary reason for the lower adoption of contract C2 by “sophisticated”

households is their degree of present-bias βS . We find evidence for this in two ways. First, we carry out

counterfactuals for a model where all types have the same risk and cost preferences but different hyperbolic

parameters (Model 2 in Table 13). In this model, types differ only in their hyperbolic parameters and their

awareness of their future present-bias. We find that the take-up results for contract C2 are identical to those

obtained from the general model where risk and cost preferences as well as time preferences are allowed

to vary by type (Model 4 in Table 13). This suggests that variations in risk and cost preferences across

types are not important in explaining variation across types in take-up of contract C2. Note, however, that

risk and cost preferences do seem to play a role in the take-up of Contract C1 by “näıve” agents (take-up

rates for “näıve” agents rise about 20% when we set their risk and cost parameters equal to the estimated

parameters).

We next evaluate the separate contribution of the hyperbolic parameters from that of the awareness

of future present-bias by carrying out another set of counterfactual exercises. These were conducted using

a model where all types have the same risk and cost preferences but the hyperbolic parameter for the

“sophisticated” type is set equal to that estimated for the “näıve” type (Model 1 in Table 13). In effect,

the only difference across inconsistent types is whether they recognize their future present-bias. In this

case, the take-up and retreatment rates for the “näıve” agents are, as expected, the same as in Model 4.

However, we find that the take-up rates for the “sophisticated” and “näıve” types are very close. This again

suggests that it is the hyperbolic parameter for the “sophisticated” types (and its significant difference from

those of the “näıve” and consistent types) that matters for adoption decisions. This is further confirmed

by comparing the results for Models 1 and 2.

Further evidence of the role of the hyperbolic parameters can be found in the similarity of retreatment

rates for “näıve” and time-consistent agents. In particular, it appears that since the hyperbolic parameter

for the “näıve” agents is very close to one, their take-up decisions in the model are very similar to those of the

time consistent agents. Finally, under the range of policy considerations considered here, the retreatment

rates across types are extremely similar. This suggests that the main effect of time-inconsistent preferences

in the model is working through the differential take-up rates across types rather than through differential

retreatment rates.
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To conclude, the results from the counterfactual exercise support the view that time consistent behavior

is perhaps a reasonable approximation for the bulk of the population, with outcomes for only about 10%

of the population (the “sophisticated” types) being affected by time-inconsistency issues.

8 Conclusions

Time inconsistency is often proposed as an explanation for observed intertemporal choice behavior, particu-

larly in poor households. However, the relative occurrence of this phenomena (i.e the population prevalence

of time-inconsistent agents) as well as its quantitative importance (i.e the extent of present-bias) are dif-

ficult to identify and estimate using standard methods and data. We develop a dynamic discrete choice

model for time-inconsistent agents with unobserved types. We show identification for all key parameters —

including separate hyperbolic parameters for different types and time- and type-varying per-period utilities

— for a model based on a specifically collected dataset containing detailed information on beliefs combined

with a field intervention. We also show how the identification results can be extended to a general state

and action space.

We estimate that time-inconsistent agents account for more than half of the population and that

“sophisticated” inconsistent agents are considerably more present-biased than their “näıve” counterparts.

However, the hyperbolic parameter for “näıve” inconsistent agents — who we estimate comprise 40% of

the population — is very close to one and, at least for the range of policy interventions considered, their

behavior is very similar to that of the time-consistent agents. We also examined whether there are other

differences across types (e.g. in risk and cost parameters) and found that these differences are small relative

to the differences in time preferences. Finally, we can evaluate to what extent “sophisticated” agents are

more likely to choose commitment products by comparing the type distribution among product purchasers

to that of the general population. We find that commitment products are not particularly appealing to

“sophisticated” agents and that the purchase of these products is in fact higher among wealthier (and even

“naive”) households.
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Appendix A

Proof of Lemma 1

Proof. Under the independence assumption (Assumption 2) and the additive separability assumption (Assumption
3) and the direct observation of types (Assumption 4), the probability that an agent of type τ who has purchased a
net will re-treat the net is given by

Pτ (a∗3 = 1|x3, z) = G∆(u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)) (21)

G∆ is the distribution of ε0 − ε1 which is known and has support over the real line by assumption. We can invert
this function to obtain

gτ,3(x3, z) = u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)) (22)

The left hand side is directly identified, and by Assumption 5 the integral on the right hand side simplifies to

γ((u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈XC))

Under Assumption 6 we can evaluate (22) at two different values of γ and take differences to obtain

gτ,3(x3, z\γ1, γ1)− gτ,3(x3, z\γ2, γ2) =

(γ1 − γ2)βτδ((u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈Xc))

so that the object on the right hand side below is identified.

(gτ,3(x3, z\γ1, γ1)− g(x3, z\γ2, γ2))

γ1 − γ2
= βτδ

(
(u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈XC)

)
Therefore, we can identify the utility differential as

u3(x3, 1, τ)− u3(x3, 0, τ) = gτ,3(x3, z, γ)− (gτ,3(x3, z\γ1, γ1)− gτ,3(x3, z\γ2, γ2))

γ1 − γ2
γ. (23)

Proof of Lemma 2

Proof. The proof is straightforward by comparing the identified quantities βτN δ
∫
u4(x4, τN ) dF∆(x4|x3, z) and

δ
∫
u4(x4, τC) dF∆(x4|x3, z) (where we have defined the finite signed measure dF∆(x4|x3, z) ≡ dF(x4|x3, 1, z) −

dF(x4|x3, 0, z)), and noting that
∫
u4(x4, τN ) dF∆(x4|x3, z) =

∫
u4(x4, τC) dF∆(x4|x3, z) by Assumption 7.

Proof of Lemma 3

Proof. Under the assumptions in the lemma, the probability that an agent of type τ who has purchased a net will
choose to re-treat it is

Pτ (a∗2 = 1|x2, z) = G∆

(
u2(x2, 1, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ (s3, z) dF∆(s3|x2, z)

)
, (24)

where we have defined the finite signed measure dF∆(s3|x2, z) ≡ dF(s3|x2, 1, z)− dF(s3|s2, 0, z). The value function
v∗τ (·) is defined as

v∗τ (s3, z) ≡ vτ (s3, d
τ (s3, z), z), (25)

where

vτ (s3, a, z) ≡ u3(x3, a, τ) + ε3(a) + δ

∫
u(x4, τ) dF(x4|x3, a, z) (26)
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and

dτ (s3, z) = I
{
u3(x3, 1, τ) + ε3(1) + β̃τδ

∫
u(x4, τ) dF(x4|x3, 1, z) ≥

u3(x3, 0, τ) + ε3(0) + β̃τδ

∫
u(x4, τ) dF(x4|x3, 0, z)

}
so that an agent of type τ will evaluate his continuation utility from period 3 onwards using the decision rule dτ (s3, z).
β̃τ is the present bias that an agent (of type τ) in period 2 thinks she will have in period 3. A time consistent agent
knows that he is not subject to present-bias and so β̃τC = βτC = 1. “Näıve” inconsistent agents assume that their
future selves are not subject to present-bias and will therefore set β̃τN = 1. Conversely, “sophisticated” agents
recognize that their future selves will be present biased and we assume that such agents will set β̃τS = βτS .38

To summarize, “näıve” agents will assume (in period 2) that their period 3 decision rule is unaffected by present-
bias while “sophisticated” agents will recognize that it is and this will be reflected in the decision rule they think
will be used in period 3.

Next, we examine
∫
v∗τ (s3, z) dF∆(s3|x2, z). Define the function

g̃τ,3(x3, z, c) ≡ u3(x3, 1, τ)− u3(x3, 0, τ) + cδ

∫
u4(x4, τ) dF∆(x4|x3, z)

= u3(x3, 1, τ)− u3(x3, 0, τ) + cδγ

(
(u4(bh, τ)− u4(bm, τ))I(x3∈B) + (u4(ch, τ)− u4(cm, τ))I(x3∈C)

)

where the second equality follows from Assumption 5. We can rewrite

dτ (s3, z) = I
(
g̃τ,3(x3, z, β̃τ ) ≥ ε3(0)− ε3(1)

)
and

v∗τ (s3, z) = I
(
g̃τ,3(x3, z, β̃τ ) ≥ ε3(0)− ε3(1)

)(
g̃τ,3(x3, z, 1) + ε3(1)− ε3(0)

)
+ u3(x3, 0, τ) + ε3(0) + δ

∫
u(x4, τ) dF(x4|x3, 0, z) (27)

so that we can write∫
v∗τ (s3, z) dF∆(s3|x2, z) =

∫∫ g̃τ,3(x3,z,β̃τ )(
g̃τ,3(x3, z, 1)−∆ε

)
dG(∆ε) dF∆(x3|x2, z)+∫

u3(x3, 0, τ) dF∆(x3|x2, z) + δ

∫∫
u(x4, τ) dF(x4|x3, 0, z) dF∆(x3|x2, z)

=

∫
G(g̃τ,3(x3, z, β̃τ ))g̃τ,3(x3, z, 1) dF∆(x3|x2, z)−

∫ g̃τ,3(x3,z,β̃τ )

∆ε dG(∆ε) dF∆(x3|x2, z)

+

∫
u3(x3, 0, τ) dF∆(x3|x2, z)

(28)

where we ignore the last two terms in (27) since they integrate to zero. Next, note that the last term in the preceding
is identified by the normalization (Assumption 9).
time-consistent agents
We first consider time consistent agents where βτC = β̃τC = 1 and the function g̃τ,3(x3, z, 1) is identified since
it is equal to the identified function gτC ,3(x3, z). Therefore, for this type the function

∫
v∗τ (s3, z) dF∆(s3|x2, z) is

38We do not consider “partially sophisticated” agents that is to say agents for whom β̃τS 6= βτS but also not equal to 1.
Identification in this case would be considerably more difficult without further information.
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identified. Returning now to the identified function for period 2 for this type,

gτC ,2(x2, z) = u2(x2, 1, τC)− u2(x2, 0, τC) + δ

∫
v∗τC (s3, z) dF∆(s3|x2, z). (29)

Then, Assumption 8 guarantees that∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ2) 6=

∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ1) (30)

Therefore, evaluating (29) at two different points of γ and differencing will identify the exponential discount parameter
δ. Next, using δ we can identify the second period utility differentials u2(x2, 1, τC)− u2(x2, 0, τC) for all x2 ∈ XB .
“sophisticated” time-inconsistent agents
Next, consider the time-inconsistent “sophisticated” agents, i.e. those for whom β̃τS = βτS . For this type the function
g̃τ,3(x3, z, β̃τS ) is identified as gτS ,3(x3, z). This implies that the second term on the right-hand side in the expression
below is identified (note that the last term is identified by the normalization).∫

v∗τ (s3, z) dF∆(s3|x2, z) =

∫
G(gτS ,3(x3, z))g̃τS ,3(x3, z, 1) dF∆(x3|x2, z)−

∫ g̃τS,3(x3,z)

∆ε dG(∆ε) dF∆(x3|x2, z)

+

∫
u3(x3, 0, τ) dF∆(x3|x2, z).

Focusing therefore on the first term, we can rewrite it as

∫
G(gτS ,3(x3, z)g̃τS ,3(x3, z, 1) dF∆(x3|x2, z) = γ

(
G(gτS ,3(ch, z))g̃τS ,3(ch, z, 1)−G(gτS ,3(cm, z))g̃τS ,3(cm, z, 1)

)
= γ

(
G(gτS ,3(ch, z))

(
u3(ch, 1, τS)− u3(ch, 0, τS) + δ

∫
u(x4, τS) dF∆(x4|ch)

))
+ γ

(
G(gτS ,3(cm, z))

(
u3(cm, 1, τS)− u3(cm, 0, τS) + δ

∫
u(x4, τS) dF∆(x4|cm)

))
Define the identified functions H(·) and Q(·) as

H(x2, z) =

∫
u3(x3, 0, τS) dF∆(x3|x2, z)

+

∫ g(x3,z,τS)

∆εdG(∆ε) dF∆(x3|x2, z)

+ γG(gτS ,3(ch, z))(u3(ch, 1, τS)− u3(ch, 0, τS))

+ γG(gτS ,3(cm, z))(u3(cm, 1, τS)− u3(cm, 0, τS)).

(31)

Q(z) = δG(gτS ,3(ch, z))βτSδ

∫
u(x4, τS) dF∆(x4|ch, z)− δG(gτS ,3(cm, z))βτSδ

∫
u(x4, τS) dF∆(x4|cm, z)

In particular, Q(z) is identified since βτSδ
∫
u4(x4, τS) dF∆(x4|x3, z) is identified from Lemma 1, δ is identified from

the results above and G(gτS ,3(ch, z)) is identified since G(·) is known and gτS ,3(ch, z) is identified. We can then write

βτSδ

∫
v∗τS ,3(s3, z) dF∆(s3|x2, z) = βτSδH(x2, z) + Q(z).

The identified function for the “sophisticated” types is then

gτS ,2(x2, z) = u2(x2, 1, τS)− u2(x2, 0, τS) + βτSδH(x2, z) + Q(z). (32)

Therefore, under Assumption 8, the hyperbolic parameter βτS is identified as are the utility differentials for period
2: u2(x2, 1, τS)− u2(x2, 0, τS) for x2 ∈ XC .
inconsistent “näıve” agents
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Finally, consider agents for whom β̃τN = 1. For these agents, we identify the function

gτN ,2(x2, z) = u2(x2, 1, τN )− u2(x2, 0, τN ) + βτN δ

∫
v∗τN (s3, z) dF∆(s3|x2, z). (33)

Next, the function g̃τN ,s(x3, z, 1) is identified since (i) the utility differentials u3(x3, 1, τN )−u3(x3, 0, τN ) are identified
by Lemma 1, (ii) δ is identified by the first part of the proof above and (iii)

∫
u4(x4, τN ) dF∆(x4|x3, z) is identified

by Assumption 7. Looking at equation (8) we see that
∫
v∗τN (s3, z) dF∆(s3|x2, z) is therefore identified (given the

normalization assumption). Since βτN is identified by Lemma 2 and δ is identified above we conclude that the last
term in the display (33) is also identified. Therefore, the utility differential u2(x2, 1, τN )− u2(x2, 0, τN ) is identified
for all x2 ∈ XB .

Proof of Lemma 4

Proof. We first prove that the type-specific choice probabilities are identified. We then use the inversion argument
as before (see Appendix C for the direct argument) to recover preference parameters. First, note that by the
assumption of directly observed types, PτC (a1|x1) = P(a1|x1, r = 0) so that the type-specific choice probabilities
for time consistent agents are identified trivially. Similarly, since we assume that “sophisticated” types only choose
between {n, c} and “näıve” types only choose between {n, b}, PτS (a1 = b|x1) = PτN (a1 = c|x1) = 0.

In order to identify the type-specific choice probabilities for “näıve” and “sophisticated” agents separately we
begin by considering the directly identified matrix E ≡ Pb1,1L

−1
2 for given values of (x1, x

′
1, x2, x

′
2) for xt 6= x′t. Note

that under the assumptions stated, E = (La1)′V1, which is given by

(Lb1)′V1 =

0 πτN (1) πτS (1)
0 πτN (1)PτN (a1 = b, x1) πτS (1)PτN (a1 = b, x′1)
0 πτN (1)PτS (a1 = b, x1) πτS (1)PτS (a1 = b, x′1)


so that the type probabilities (πτ ) and PτN (a1 = b|x1) are identified. In addition, the type-specific distribution for
the initial state PτN (x1) is identified (note that by assumption PτS (a1 = b|x1) = 0) . Following the same argument
but for the choice of the commitment contract yields identification of PτS (a1 = c|x1) and PτS (x1). Therefore, all the
type-specific choice probabilities are identified. Next, using the same inversion argument as before we can invert the
choice probability for type τ to identify the functions

gτ,1,b(x1, z) = u(x1, b, τ)− u(x1, n, τ) + βτδ

∫
v∗τ (s2, z) dF∆,b(s2|x1, z) (34)

gτ,1,c(x1, z) = u(x1, c, τ)− u(x1, n, τ) + βτδ

∫
v∗τ (s2, z) dF∆,c(s2|x1, z) (35)

where the signed measure is dF∆,a(s2|s1, z) = dF(s2|x1, a1 = a, z) − dF(s2|x1, a1 = n, z). Define the period 2
type-specific value function as

v∗τ (s2, z) ≡ vτ (s2, d
τ (s2, z), z) (36)

where

vτ (s2, a, z) ≡ u2(x2, a, τ) + ε2(a) + δ

∫
v∗τ (s3, z) dF(s3|x2, a, z).

The decision rule for an agent of type τ in period 2 is

dτ (s2, z) = I
{
u2(x2, 1, τ) + ε2(1) + β̃τδ

∫
v∗τ (s3, z) dF(s3|x2, 1, z) ≥

u2(x2, 0, τ) + ε2(0) + β̃τδ

∫
v∗τ (s3, z) dF(s3|x2, 0, z)

}
.

As before, β̃τ is the present-bias that agent in period 1 thinks she will have in period 2. A time consistent agent knows
that he is not subject to present-bias and so β̃τC = βτC = 1. “Näıve” inconsistent agents assume that their future
selves are not subject to present-bias and will therefore set β̃τN = 1. Conversely, “sophisticated” agents recognize
that their future selves will be present biased and we assume that such agents will set β̃τS = βτS .

From the previous results the last term in each of the equations (34 and 35) is identified so that using the
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variation in beliefs assured by Assumption 8 we conclude that the utility differentials u(x1, b, τ) − u(x1, n, τ) and
u(x1, c, τ)− u(x1, n, τ) are identified for all initial states x1 and for all types τ .

Proof of Lemma 5

Proof. The idea of the proof is based on Lemma 4 of Kasahara and Shimotsu (2009). The difference is that we use
an exclusion restriction — that conditional on the state,39 ru ≡ (r, a1) only affect type probabilities — to generate
identification instead of placing restrictions on the number of periods required.

We first simplify the joint probability of (at, at+1, xt, xt+1) (for t > 1) and suppress the conditioning on z
throughout for convenience.40

P(at = 1, at+1 = 1, xt, xt+1|ru)

=
∑
τ∈T

πτ (ru)Pτ (at+1 = 1, at = 1, xt+1, xt|ru)

=
∑
τ

πτ (ru)Pτ (at+1 = 1|at = 1, xt+1, xt, ru)Pτ (xt+1|at = 1, xt, ru)Pτ (at = 1, xt)

We use the fact that the optimal action in any period only depends upon previous actions and states through the
current state (see e.g. equation (21)), Assumption 13 and that Pτ (at = 1, xt|ru) = Pτ (at = 1, xt) . Next, since by
assumption P(xt+1|xt, at = 1, z) does not vary by type, we can take them on the left hand side (under the assumption
that these are always strictly positive) and define

P(at = 1, at+1 = 1, xt = xa, xt+1 = xb|ru)

P(xt+1 = xb|xt = xa, at = 1)
≡ Ft,t+1

xa,xb,ru
. (37)

In what follows, we assume that there are M total types to highlight the generality of the argument.

Ft,t+1
xa,xb,ru

=

M∑
τ=1

πτ (ru)Pτ (at+1 = 1|xt+1 = xb, z)Pτ (at = 1, xt = xa)

Ftxa,ru =

M∑
τ=1

πτ (ru)Pτ (at = 1, xt = xa)

Ft+1
xb,ru

=

M∑
τ=1

πτ (ru)Pτ (at+1 = 1|xt+1 = xb)

Define the M ×M matrix

Pt,ru =


1 Ft+1

xa,τ . . . Ft+1
xM−1,ru

... Ft,t+1
xa,xa,ru . . . Ft,t+1

xa,xM−1,ru
...

... . . .
FtxM−1,ru Ft,t+1

xM−1,xa,ru . . . Ft,t+1
xM−1,xM−1,ru

 (38)

Next, define Pτ (at+1 = 1|xt+1 = xb) ≡ λτt+1,xb
and Pτ (at+1 = 1, xt = xa) ≡ λτt,xa . Define the M ×M matrix for t

and t+ 1

Lt =

 1 λ1
t,xa λ1

t,xM−1

...
...

...
1 λMt,xa λMt,xM−1

 (39)

Finally, define the M ×M matrix Vru = diag(πτ1(ru)...πτM (ru)). It is easy to show the following factorization holds.

Pt,ru = L′tVruLt+1 (40)

39Defined to include first period choice.
40Therefore, all identified quantities, including the type probabilities can vary by observables z which is potentially important.
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and by assumption each term on the right hand side is invertible. Next, consider the directly identified object A
defined by

A ≡ P−1
t,ruPt,r′u = L−1

t+1V
−1
ru Vr′uLt+1 (41)

so that
Lt+1A = V̂ru,r′uLt+1

where V̂
ru,r′u

≡ V−1
ru Vr′u is a diagonal matrix. The expression above asserts that the diagonal matrix V̂ru,r′u contains

the eigenvalues of A and that the rows of Lt+1 comprise its left eigenvectors. Therefore, these objects are identified
by carrying out an eigenvalue decomposition of the identified matrix A. Note that the eigenvectors are only identified
up to scale, so that we can identify the matrix E ≡ DLt+1 where D is a diagonal matrix (and we have Lt+1 = D−1E)
Next,

Pt,ruE
−1 = L′tVruD

−1.

Since the first row of L′t consists of ones, the first row of the identified matrix Pt,ruE
−1 identifies the elements of the

diagonal matrix VruD
−1. Define F ≡ VruD

−1 to be the identified matrix from this analysis. Next, note that

L′t = Pt,ruL
−1
t+1V

−1
ru = Pt,ruE

−1DV−1
ru = Pt,ruE

−1F−1

where all the terms on the right hand side are identified, so that Lt is identified.
Next,

VruLt+1 = (L′t)
−1Pt,ru = Pt,ruE

−1F−1Pt,ru . (42)

The first column on the left hand side consists of the diagonal elements of the matrix Vru . Therefore Vru is identified
since all the matrices on the right hand side in (42) are identified. Denote by G ≡ Vru the diagonal matrix obtained
by this argument. Then,

Lt+1 = G−1Pt,ruE
−1F−1Pt,ru , (43)

where the matrix G is invertible since by assumption all its diagonal entries are non-zero. Finally, note that since
Vru is identified, then Vr′u = GV̂ru,r′u and so Vr′u is also identified since both G and V̂ are identified. We can
apply this result for (t, t + 1) = (2, 3) to identify the type-specific choice probabilities for these periods. We can
then use Lemma 4 to recover the type-specific choice probabilities for period 1 as well as the type probabilities
πτ (r) (i.e. the type probabilities only conditioning on r). To see this, consider the matrices Pa1,r (defined in (7)),
Vr = diag(πτC (r), πτN (r), πτS (r)) and La1 (defined in (8)) and the relationship Pa1,r = (La1)′VrL2. Since L2 is identified

from the previous arguments, we can identify L−1
2 P1,r ≡ E. Next, note that the first row of E contains the elements

of the matrix Vr. Therefore, the matrix La1 is identified as V−1
r E for a ∈ {b, c} and therefore Ln1 is also identified.

Finally, since {πτ (r, a)}τ∈T ,a∈{b,c} and {πτ (r)}τ∈T are both identified, and since

πτ (r) =
∑
a1∈A1

πτ (r, a1)P(a1|r),

we can recover πτ (r, n) as well for τ ∈ T .

Appendix B: Results for General Discrete State and Action Space

In this section, we consider the case where the action space At has cardinality K (the results extend easily to the
case where the cardinality varies by time) so the agent can take one of K actions in each period, at ∈ {0, ...K − 1}.
In addition, we assume that the state space has general finite discrete support. The identification results will require
a precise relationship between the support of the belief vector z and the number of points in the state space support
and these are explicated below. In the interest of exposition, we consider identifying variation in the belief vector
z directly (rather than the γ component of it as earlier) and assume z has finite support. This assumption is not
necessary and can be modified straightforwardly if this is not the case. Finally, we suppress dependence upon v
which is not used for identification.

We show identification for the case where the type-specific choice probabilities are identified. In the case of
unobserved types, an analogue of Lemma 5 can be applied to yield the type-specific choice probabilities in the first
step and the results below applied subsequently.
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Final Period and Penultimate Period Identification

First, as before we use standards results (see Hotz and Miller, 1993 or the direct argument in Appendix C) to justify
the inversion argument from the choice probabilities to utility differentials. From this argument we conclude that
there exists a K − 1 vector of directly identified functions gτ,3(x3, z) such that

gτ,3(x3, z) =

 ũτ,1
...

ũτ,K−1

 (44)

where

ũτ,k ≡ u(x3, k, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ) dF∆,k(x4|x3, z)

and we define the signed measure

dF∆,k(x4|x3, z) ≡ dF(x4|x3, k, z)− dF(x4|x3, 0, z)

The identification argument exploits the restrictions implied by equation (44). It will be useful to take differences
of g(·) evaluated at two distinct points in the support of z. This eliminates the third period utility differentials and
allows us to first focus on identifying the utility function in the final period.

gτ,3(x3, zs)− gτ,3(x3, z1)

= βτδ


∫
u(x4, τ) dF∆,s

∆,1(x4)
...∫

u(x4, τ) dF∆,s
∆,K−1(x4)

 (45)

where the signed measure dF∆,s
∆,k(x4) is defined as

dF∆,s
∆,k(x4) ≡ dF∆,k(x4|x3, zs)− dF∆,k(x4|x3, z1)

Define ∆gτ,3(zs) ≡ gτ,3(x3, zs)− gτ,3(x3, z1).
One can pursue at least two distinct identification strategies from this point on. We discuss each in turn. First,

one direct route (that does not depend upon the cardinality of the action space) places strong assumptions on the
variation in beliefs to identify final period utility. In the context of our application, this could either be variation
in beliefs about future income or about malarial incidence. In this first approach, we require that there be as many
points of support in the belief distribution as there are observable states in the final period (which we denote by
#X4).

ASSUMPTION 16. The distribution of the belief vector z conditional on x3 has at least #X4 points of support.

Consider, for a given zs, the kth element ∆gτ,3,k(zs) of ∆gτ,3(zs) and form the vector (of dimension (#X4 −

1) × 1) ∆̄gτ,3,k =

(
∆gτ,3,k(z1), . . . ,∆gτ,3,k(z#X4−1)

)′
. Since by assumption the state space is discrete and since∑#X4

r=1 dF∆,s
∆,k(x4,r) = 0, we can rewrite this vector as

∆̄gτ,3,k =


∑#X4−1
r=1 βτδ(u(x4,r, τ)− u(x4,0, τ))F∆,1

∆,k (x4r)
...∑#X4−1

r=1 βτδ(u(x4,r, τ)− u(x4,0, τ))F∆,#X4−1
∆,k (x4r)

 (46)

which is a system of #X4 − 1 linear equations in the #X4 − 1 unknowns {u(x4,r, τ)− u(x4,0, τ)}#X4−1
r=1 . This system

will always have a solution if

43



ASSUMPTION 17. The matrix dF∆,·
∆,k defined below is invertible a.e. x3

dF∆,·
∆,k ≡


dF∆,1

∆,k(x4,1) . . . dF∆,1
∆,k(x4,#X4−1)

...
...

...

dF∆,#X4−1
∆,k (x4,1) . . . dF∆,#X4−1

∆,k (x4,#X4−1)


The invertibility assumption implies that not only is there sufficient variation in beliefs, but that this variation in
beliefs translates into sufficient independent variation in state probabilities. In the simple case with only 2 states in
the final period and where dF(x4) depends linearly on z, this reduces to the condition that z has at least two points
of support. Note that the above assumption assumes that from every state x3 every possible point in the support
of x4 is reached with positive probability. If this is not true, the above argument (and assumption) needs to be
interpreted as referring to only those points in X4 that can be reached with positive probability from a given x3

LEMMA 7. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4,16 and 17
hold. We observe an i.i.d. sample on ({a∗t , xt}T−1

t=1 , w). Then,

1. Discounted normalized utility in the final period {βτδ (u(x4,r, τ)− u(x4,0, τ))}#X4−1
r=1 are identified.

2. The utility differentials in the penultimate period {(u3(x3, k, τ)− u3(x3, 0, τ))}K−1
k=1 are identified for x3 ∈ X3

The proof is straightforward and follows directly from the invertibility assumption and equation (46) and is omitted.
An alternative approach that requires fewer points of support in the belief distribution would use the unexploited
restrictions on u(x4) coming from all K − 1 equations in (45).
Next, as before we can identify βτN under the addition of Assumption 7. We state the result but omit the proof.

LEMMA 8. Consider an agent of type τN solving at t = 1 the problem (3) and that Assumptions 1–4, 7,16 and 17
hold. Then, βτN is identified.

Period 2 Identification

We next show identification for normalized utility in period 2. We first state the additional assumptions (analogues
of Assumptions 8 and 9 respectively).

ASSUMPTION 18. The distribution of z conditional on x2 has at least two points of support. Also,

1. For the identified function v∗τC ,3(s3, z) defined in (48) below,
∫
v∗τC ,3(s3, z2) dF∆,k(s3|x2, z2) 6=

∫
v∗τC ,3(s3, z1) dF∆,k(s3|x2, z1)

2. For the identified function J(x2, z) J(x2, z1) 6= J(x2, z2) where J(x2, z) is defined in Equation (52).

ASSUMPTION 19. We normalize utility levels by assuming that u3(x3, 0, τ) is known for all x3 ∈ X3, τ ∈ T and
that final period utility in a base state u(x4,0, τ) , τ ∈ T is known.

We can next state the result

LEMMA 9. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4, 7,16–19 hold.
Then

1. Period 2 utility differentials {u2(x2, k, τ)− u2(x2, 0, τ)}K−1
k=1 are identified for all x2 ∈ X2

2. δ and βτS are identified.

Proof. The probability that an agent of type τ will take action k in period 2 (corresponding, say to the number of
household members he can potentially cover under a treated net) is

Pτ (a∗2 = j|x2, z) = P
(
j = argmaxk

{
u2(x2, k, τ) + ε2(k) + βτδ

∫
v∗τ (s3, z) dF(s3|x2, k, z)

})
(47)
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where we define

v∗τ (s3, z) ≡ vτ (s3, d
τ (s3, z), z, 1)

vτ (s3, a, z, c) ≡ u3(x3, a, τ) + ε3(a) + cδ

∫
u(x4, τ) dF(x4|x3, a, z)

dτ (s3, z) ≡ argmaxk

{
vτ (s3, k, z, β̃τ )

}
vτ,∆(s3, a, z, c) ≡ vτ (s3, a, z, c)− vτ (s3, 0, z, c).

Aτa(s3, z) ≡ I
{
a = argmaxj{vτ (s3, j, z, β̃τ )}

}
We can then rewrite

v∗τ (s3, z) =

K−1∑
a=1

vτ,∆(s3, a, z, 1)Aτa(s3, z) + vτ (s3, 0, z, 1) (48)

We consider identification for the three different types of agent. We first focus on the identification of

βτδ

∫
v∗τ (s3, z)dF∆,k(s3|x2, z) (49)

time-consistent agents
For time consistent agents,

vτC ,∆(s3, a, z, 1) = vτC ,∆(s3, a, z, β̃) = ũτC ,a(x3, z) + ε3(a)− ε3(0)

where ũτC ,a(x3, z) is identified from equation (44). Since the distribution of ε3 is known by assumption we conclude
that

∫
v∗τC (s3, z)dF∆,k(s3|x2, z) is identified.

Next, as before, using standard inversion arguments (see Appendix C for a direct argument) we can identify

gτ,2(x2, z) =

 ũτ,2,1
...

ũτ,2,K−1

 (50)

where

ũτ,2,k(x2, z) ≡ u2(x2, k, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ (s3, z) dF∆,k(s3|x2, z). (51)

For time-consistent agents, the last term in the expression above is identified from the previous argument upto δ.
Under Assumption 18, evaluating ũτ,k,z at two different values of z allows us to identify δ. Substituting for δ into
equation (51) yields identification of u2(x2, k, τC)− u2(x2, 0, τC).
“sophisticated” time-inconsistent agents
For “sophisticated” agents,

vτS ,∆(s3, a, z, β̃τS ) = vτS ,∆(s3, a, z, βτS )

= ũ3,τS ,a(x3, z) + ε3(a)− ε3(0)

where the first term on the right-hand side is identified. However, vτS ,∆(s3, a, z, 1) is not identified so that showing
that (49) is identified requires more work. First, we write

βτSv
∗
τS (s3, z) = βτS

K−1∑
a=1

(u(x3, a, τS)− u(x3, 0, τS))Aτa(s3, z)︸ ︷︷ ︸
Ĵ

+

K−1∑
a=1

βτSδ

∫
(u(x4, τS)− u(x4,0, τS)) dF∆,a(x4|x3, z)A

τ
a(s3, z)︸ ︷︷ ︸

K̂

+ βτS u3(x3, 0, τS)︸ ︷︷ ︸
M̂

+βτSδ

∫
(u(x4, τS)− u(x4,0, τS)) dF(x4|x3, 0, z)︸ ︷︷ ︸

N̂

(52)
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and examine each expression in turn. First, the term inside the summation does not pose a problem since the
period 3 utility functions are identified and the distribution of ε is known so that J ≡

∫
Ĵ dF∆,k(s3|x2, z) will be

identified. Similarly, K ≡
∫

K̂ dF∆,k(s3|x2, z) and N ≡
∫

N̂ dF∆,k(s3|x2, z) are also identified since final period
utilities (multiplied by βτδ) are identified by Lemma 7. Next, u3(x3, 0, τS) is assumed known (Assumption 19) so
that M ≡

∫
M̂ dF∆,k(s3|x2, z) is also identified. Therefore we can write∫

βτSv
∗
τS (s3, z) dF∆,k(s3|x2, z) = βτS (J(x2, z) + M(x2)) + K(x2, z) + N(x2, z)

so that we can rewrite (51) (for sophisticated types) as

ũτS ,2,k(x2, z) ≡ u2(x2, k, τS)− u2(x2, 0, τS) + δ

(
βτS (J(x2, z) + M(x2)) + K(x2, z) + N(x2, z)

)
(53)

and under Assumption 18 we can conclude that βτS is identified and consequently that u2(x2, k, τS) − u2(x2, 0, τS)
is identified for x2 ∈ X2.
“näıve” time-inconsistent agents

For “näıve” agents, the standard inversion argument identifies

ũτN ,2,k(x2, z) ≡ u2(x2, k, τN )− u2(x2, 0, τN ) + βτN δ

∫
v∗τN (s3, z) dF∆,k(s3|x2, z). (54)

Recall that (βτN , δ) are already identified. Further as we will show below,
∫
v∗τ (s3, z) dF∆,k(s3|x2, z) is also identified.

Therefore, u2(x2, k, τN )− u2(x2, 0, τN ) is identified.
To see that v∗τ (s3, z) dF∆,k(s3|x2, z) is identified, first recall that

v∗τN (s3, z) =

K−1∑
a=1

vτN ,∆(s3, a, z, 1)Aτa(s3, z) + vτN (s3, 0, z, 1)

=

K−1∑
a=1

(u(x3, a, τN )− u(x3, 0, τN ))Aτa(s3, z) +

K−1∑
a=1

δ

∫
(u(x4, τN )− u(x4,0, τN )) dF∆,a(x4|x3, z)A

τ
a(s3, z)

+ u(x3, 0, τN ) + δ

∫
(u(x4, τN )− u(x4,0, τN )) dF(x4|x3, 0, z)

and each expression on the right hand side above is identified.

Period 1 Identification

Conditional on the identification of the type-specific choice probabilities, identification of utility in the first period
follows the same arguments as previously. Identifying the type-specific choice probabilities for the first period uses
the same arguments as in Lemma 4 (under Assumptions 10 and 11) and we omit the details here.

Once the type specific choice probabilities are identified, using standard inversion arguments (see Appendix C
for a direct argument) we can show that the function

g1,τ (x1, z) =

 ũτ,1,1
...

ũτ,1,K−1

 (55)

is identified and where

ũτ,1,k(x1, z) ≡ u(x1, k, τ)− u(x1, 0, τ) + βτδ

∫
v∗τ (s2, z) dF∆,k(s2|x1, z) (56)

46



and as before we define the signed measure

dF∆,k(s2|s1, z) ≡ dF(s2|s1, k, z)− dF(s2|s1, 0, z)

v∗τ (s2, z) ≡ vτ (s2, d
τ (s2, z), z, 1)

vτ (s2, a, z, c) ≡ u2(x2, a, τ) + ε2(a) + cδ

∫
v∗τ (s3, τ) dF(s3|x2, a, z)

dτ (s2, z) ≡ argmaxk

{
vτ (s2, k, z, β̃τ )

}
vτ,∆(s2, a, z, c) ≡ vτ (s2, a, z, c)− vτ (s2, 0, z, c).

Aτa(s2, z) ≡ I
{
a = argmaxj{vτ (s2, j, z, β̃τ )}

}
We next make an explicit normalization on second period utility

ASSUMPTION 20. u2(x2, 0, τ) is known for all x2 ∈ X2

Then, βτδ
∫
v∗2(s2, z) dF∆,k(s3|x2,z) is identified. We can then directly identify the first period utility (upto a

normalization)

ũτ,1,k(x1, z)− βδ
∫
v∗τ (s2, z) dF∆,1(s2|s1, z) = u(x1, k, τ)− u(x1, 0, τ)

and we record the result

LEMMA 10. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4, 7,10,11,16–20
hold. Then, the first period utility differentials u(x1, b, τ) − u(x1, n, τ) and u(x1, c, τ) − u(x1, n, τ) are identified for
all x1 ∈ X1 and for all types τ . In addition the type probabilities {πτ (·)}τ∈T are also identified.

Appendix C: Inversion Argument

In in the interest of keeping proofs self-contained we provide a simple direct argument for the inversion of choice
probabilities that is used repeatedly in the previous proofs.41 To simplify the exposition, we consider the case where
the action space has 3 elements so that a ∈ {0, 1, 2} although the general case follows exactly analogously. We
maintain assumptions Assumptions 1-3 for the argument. The probability that an agent chooses action 0 will be
given by

P(a2 = 0|x2) =Px2


u(x2, 0) + ε(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 0) + ε(0) + βδ
∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 2) + ε(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)


Correspondingly, the probability that an agent will choose action 1 will be given by

P(a2 = 1|x2) =Px2


u(x2, 0) + ε(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≤

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1) ≥

u(x2, 2) + ε(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)


41see Hotz and Miller (1993) for the original (different) argument. Note that for our argument, we require that the distri-

bution of the unobservable state variables conditional on the observed state variables has support over all of RK where K is
the number of possible actions
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Next, define

û1 ≡ u(x2, 1)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,1(s3|s2)

û2 ≡ u(x2, 2)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,2(s3|s2)

and as usual, the signed measure is defined as

dF∆,k(s3|s2) ≡ dF(s3|s2, k)− dF(s3|s2, 0)

Using this notation, we can write the inequalities more compactly as

P(a2 = 0|x2) = P (ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)|x2)

P(a2 = 1|x2) = P (ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)|x2)

Suppose that (û1, û2) are not identified from these equations. Then, there exist (u∗1, u
∗
2) such that

P (ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)|x2)− P (ε(0)− u∗1 ≥ ε(1), ε(0)− u∗2 ≥ ε(2)|x2) = 0 (57)

P (ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)|x2)− P (ε(0)− u∗1 ≤ ε(1), ε(1) + (u∗1 − u∗2) ≥ ε(2)|x2) = 0 (58)

We will show that these inequalities are mutually contradictory. We will throughout assume that we are conditioning
on x2. First, assume first that û1 > u∗1. Then, in order for the first equality to hold, we must have û2 < u∗2. To see
this, note that if instead û2 ≥ u∗2 then the set

{ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)} ⊂ {ε(0)− u∗1 ≥ ε(1), ε(0)− u∗2 ≥ ε(2)} = 0

and as long as dF(ε|x2) had strictly positive measure on all of R3, the equality in (57) cannot hold.42 Therefore, if
û1 > u∗1 we must have û2 < u∗2. But, in turn, if this is true, then the equality (58) cannot hold because

{ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)} ⊂ {ε(0)− u∗1 ≤ ε(1), ε(1) + (u∗1 − u∗2) ≥ ε(2)}

We can carry out similar arguments using the opposite inequalities to conclude that the (û1, û2) are identified.

Appendix D: Data and Estimation Details

State Space
Malaria: In period one, the malaria indicator is equal to 1 if any one in the household tested positive for malaria using
the rapid diagnostic test during the baseline. In period two, the malaria indicator is equal to one if the household
reported someone contracting malaria in the period between the purchase of the nets and the first retreatment (this
information was collected at the time of the first retreatment). Finally, malaria in period 3 is a binary indicator for
malaria incidence in the household that is measured during the follow up survey.
Income: The income indicator is equal to one if a household’s income level was high in that period and zero other
wise. This variable was derived by first generating an income process and then choosing a cut-off value appropriately.
The income process is generated as follows: First, we use household reports about their expectations of future income
to construct a household specific income distribution using a triangular distribution. In particular, households at
baseline report an upper and lower bound for expected future annual income as well as the probability that the
realized income will be greater than the average of the lower and upper bounds. These reports (denoted by [l, u, q])

42Note that in this argument all that is required is that the distribution of the ε vector conditional on x2 has support over
all of R3
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and the parametric distribution assumption imply that the C.D.F. of income is

F (y) =I{y ≤ l + u

2
}
(

4q

(u− l)2
(y − l)2

)
+

I{y ≥ l + u

2
}
(

4(1− q)
(u− l)2

(u− y)2

)
Next, we draw from this distribution by inverting the CDF (for a uniformly distributed random variable u) to
generate y as

u ≤ q ⇒ y = l +

(
(u− l)

2

)√
u

q

u ≥ q ⇒ y = u−
(

(u− l)
2

)√
1− u
1− q

and we set y equal to the lower or upper bound if the above algorithm yields draws that violate the support condition.
Denote the three draws from this distribution as {εs}3s=1. We then generate income {yt}3t=1 as yt = αyt−1 +(1−α)εt
where y0 is baseline income and α is the autoregressive coefficient in the regression of follow-up income on baseline
income. We then experimented with various discretizations of the income variable and given the sparseness of the
data, settled on a two point distribution depending upon whether household income was above or below the median
income for that period (using alternative cut-offs such as the mean did not alter the results). Finally, for periods 2
and 3 the state variables also include the kind of contract purchased in period 1.
Other Variables
Attitudes Towards Risk: We also measured household’s attitudes towards risk using a version of the procedure
proposed by Holt and Laury (2002). Each respondent was presented with a set of five choice problems. In each
problem, the respondent was asked to choose between two lotteries (denoted A and B respectively). The lotteries
were designed so that a risk-neutral agent would choose lottery A for the first two problems and switch to lottery B
for the remaining 3 problems. We use as our measure of a household’s attitude towards risk the number of times the
household chose option A in response to the choice problems.
Household Assets: A baseline measure of household assets is used as a conditioning variable in the analysis. The
measure is (a function of) the first principal component of the following baseline binary asset indicators: house
ownership, motorbike ownership, bicycle ownership, radio ownership, clock ownership, car ownership television own-
ership, fan ownership, poultry ownership, livestock ownership (small and large), land ownership. In order to ease the
first step inversion (which needs to be carried out at each value of the conditioning variables, we classify households
into either a low or a high asset category if they were respectively below or above the median of the first principal
component.
Beliefs The beliefs data is discussed in greater detail on page 6. In order to ease the first step inversion (which needs
to be carried out at each value of the conditioning variables) we use a three point support for the belief data.

49



Bargarh

Sambalpur

Khandhamal
(Phulbani)

Balangir

Keonjhar

Figure 1: Study Areas

Notes: A total of 166 villages have been included in the study. The 47 communities studied within this
paper include 8 villages in Sambalpur, 3 in Kandhamal (Phulbani), 10 in Keonjhar, 10 in Balangir and 16
in Bargarh.
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Figure 2: Perceived Protective Power of Bednets

Notes: Histograms of subjective beliefs about the protective power of bednets. Data from March-April
2007 baseline survey.
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Table 1: Baseline Summary Statistics

Mean Median S.d.

Household size 5.3 5 2.1
no. children under 5 .49 0 .7
Head is male .93 1 .25
Age of head 45 45 12
Per capita monthly total expenditure (Rs.) 705 602 426
Highest no. of years of schooling in household 8.6 9 3.6

Nets per head (pre-intervention) .31 .25 .31
ITNs per head (pre-intervention) .055 0 .18
Owns at least one net .67 1 .47
% protected by a net last night .16 0 .32
% protected by an ITN last night .032 0 .15
% usually sleeping under net in malaria season .57 .8 .46

Malaria prevalence (RDT) .11 0 .29
Anemia prevalence (RDT) .46 .5 .46
Thinks mosquitoes are malaria carriers .96 1 .2
Thinks bednets can protect against malaria .95 1 .22
Expected cost of a malaria episode (working man) (Rs.) 2865 2300 2318
Expected cost of a malaria episode (working woman) (Rs.) 1874 1550 2167
Expected cost of a malaria episode (non-working) (Rs.) 1772 1400 1524
Mean cost of recent (actual) malaria episodes (Rs.) 1326 748 1637

Notes: Data from March-April 2007 survey. n = 621. All monetary values are in Rs. (PPP exchange rate ≈ 16Rs/USD,
World Bank, 2008).
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Table 2: Baseline Time Preferences

Prefers Rs. 10 to Rs. 10 in 4 months 0.84
Prefers Rs. 10 to Rs. 12 in 4 months 0.71
Prefers Rs. 10 to Rs. 14 in 4 months 0.65
Prefers Rs. 10 to Rs. 16 in 4 months 0.60

Prefers Rs. 10 to Rs. 10 in 7 months 0.82
Prefers Rs. 10 to Rs. 15 in 7 months 0.63
Prefers Rs. 10 to Rs. 20 in 7 months 0.53
Prefers Rs. 10 to Rs. 25 in 7 months 0.49

Prefers Rs. 10 in 4 months to Rs. 10 in 7 months 0.83
Prefers Rs. 10 in 4 months to Rs. 12 in 7 months 0.73
Prefers Rs. 10 in 4 months to Rs. 14 in 7 months 0.66
Prefers Rs. 10 in 4 months to Rs. 16 in 7 months 0.58

Always prefers earlier reward 0.27
At least one “hyperbolic” preference reversal 0.26
Mean no. of “hyperbolic” preference reversals (> 0) 1.3

Notes: Data from March-April 2007 survey. n = 621. “Hyperbolic” preference reversals are defined as cases when the
respondent prefers the earlier reward at a short time horizon but switches to the later reward when both time horizons are
shifted away from the present by a same time period. The means in the last two rows are calculated including only respondents
who displayed at least one hyperbolic preference reversal.
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Table 3: Summary of purchases

(A) Mean S.d.
Fraction who purchased at least one loan contract .53 .5
no. ITNs purchased on credit .51 1.2
no. ITNs + 2 re-treatments purchased on credit .65 2.1
no. ITNs purchased on credit (conditional on purchase) 1.9 1.6
no. ITNs + 2 re-treatments purchased on credit (conditional on purchase) 2.3 3.5

no. of households who purchased ITNs only 153
no. of households who purchased ITNs + retreatment contracts 165
no. of households who purchased both types of contracts 12

(B) Mean S.d.
Fraction who purchased at least one cash contract .023 .15
no. ITNs purchased for cash .024 .33
no. ITNs + 2 re-treatments purchased for cash .0081 .09
no. ITNs purchased on loan (conditional on purchase) 2.5 2.5
no. ITNs + 2 re-treatments purchased on loan (conditional on purchase) 1 0

Notes: Data from September-November 2007.
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Table 4: Monte Carlo Results: Directly Observed Types

Mean Median Std.Dev IQR

N=150

δ 0.81 0.76 0.75 0.93
βN 0.76 0.68 0.45 0.57
βS 0.91 0.80 0.64 0.65
θ4 3.82 2.86 8.27 3.49
θ5 1.10 1.11 0.84 1.15

N=300

δ 0.88 0.86 0.52 0.65
βN 0.74 0.71 0.30 0.40
βS 0.83 0.79 0.32 0.41
θ4 4.37 3.09 4.92 3.11
θ5 1.03 1.03 0.56 0.74

N=600

δ 0.90 0.86 0.37 0.52
βN 0.71 0.70 0.18 0.25
βS 0.81 0.78 0.23 0.28
θ4 3.71 3.09 2.10 1.93
θ5 1.04 1.04 0.38 0.51

N=1200

δ 0.88 0.88 0.25 0.35
βN 0.71 0.70 0.13 0.20
βS 0.81 0.80 0.16 0.21
θ4 3.37 3.09 1.12 1.29
θ5 1.02 1.02 0.27 0.39

N=2400

δ 0.89 0.89 0.18 0.26
βN 0.69 0.69 0.09 0.13
βS 0.80 0.79 0.11 0.14
θ4 3.17 3.03 0.73 0.94
θ5 1.00 0.99 0.18 0.24

N=4800

δ 0.91 0.92 0.13 0.18
βN 0.70 0.70 0.07 0.10
βS 0.80 0.79 0.08 0.10
θ4 3.05 2.97 0.47 0.59
θ5 1.01 1.01 0.13 0.18

Notes: Each model was simulated 500 times. The true values for the parameter vector are
(δ, βN , βS , θ4, θ5) = (.9, .7, .8, 3, 1)
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Table 5: Monte Carlo Results: Unobserved Types

Mean Median Std.Dev IQR

N=150

δ 0.4992 0.3229 0.4955 0.6216
βN 1.6499 0.5385 2.9145 1.9593
βS 0.7057 0.5981 0.6116 0.4903
θ4 7.6032 6.2491 4.7227 4.1101
θ5 1.0383 1.0037 0.6848 0.9602

N=300

δ 0.6669 0.6309 0.3303 0.4147
βN 0.4034 0.2795 0.4306 0.6809
βS 0.9608 0.9315 0.4766 0.6875
θ4 5.0283 4.0879 3.3146 3.0744
θ5 1.0576 1.0462 0.5426 0.6934

N=600

δ 0.7377 0.7051 0.3016 0.4182
βN 0.4330 0.4020 0.4000 0.4674
βS 0.9475 0.9263 0.3027 0.4387
θ4 4.0817 3.6559 1.7953 2.2880
θ5 1.0742 1.0695 0.3836 0.5152

N=1200

δ 0.7200 0.7132 0.2873 0.4098
βN 0.4374 0.4146 0.2944 0.3445
βS 1.0216 0.9626 0.3825 0.4188
θ4 4.0004 3.3144 2.1385 2.0337
θ5 1.0135 1.0107 0.2779 0.3777

N=2400

δ 0.7865 0.7751 0.2083 0.2920
βN 0.4137 0.4096 0.1782 0.2229
βS 0.9701 0.9552 0.2143 0.2611
θ4 3.2838 3.0896 0.9665 1.2084
θ5 1.0159 1.0165 0.2054 0.2545

N=4800

δ 0.7921 0.7882 0.1464 0.2053
βN 0.4071 0.4040 0.1217 0.1595
βS 0.9623 0.9503 0.1479 0.1894
θ4 3.1284 3.0296 0.5999 0.8060
θ5 1.0093 1.0079 0.1401 0.1745

Notes: Each model was simulated 500 times. The true values for the parameter vector are
(δ, βN , βS , θ4, θ5) = (.8, .4, .95, 3, 1)
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Table 6: Predicting Contract Choice (Period 1)

(1) (2) (3)
Logit Logit Multinomial Logit

Any Contract C1 vs C2 C1 C2

Malaria (t=1) 0.34∗∗ 0.20 0.42∗ 0.26
(0.17) (0.31) (0.24) (0.21)

Income (t=1) -0.37∗ 0.055 -0.31 -0.43
(0.22) (0.33) (0.28) (0.27)

ITN Efficacy Beliefs (γ) -1.62∗ 1.94 -0.70 -2.39∗∗

(0.98) (1.20) (1.29) (1.05)

ITN Efficacy2 (γ2) 2.26∗ -2.31∗ 1.16 3.18∗∗

(1.20) (1.32) (1.52) (1.24)

Time Inconsistency 0.10 -0.071 0.046 0.15
(0.19) (0.27) (0.21) (0.26)

Household Size 0.028 -0.11 -0.017 0.065
(0.047) (0.078) (0.061) (0.055)

Baseline Assets 0.024 -0.35 -0.14 0.19
(Tercile 2) (0.19) (0.27) (0.25) (0.22)

Baseline Assets -0.45∗ -0.47 -0.69∗∗ -0.21
(Tercile 3) (0.26) (0.36) (0.35) (0.29)

2 #A Choices -0.24 0.55 0.012 -0.49
(0.29) (0.34) (0.33) (0.33)

3 #A Choices -0.33 0.072 -0.30 -0.36
(0.26) (0.36) (0.34) (0.30)

4 #A Choices -0.43 -0.19 -0.52∗ -0.35
(0.31) (0.34) (0.32) (0.37)

Baseline Net 0.18 0.34 0.34 0.025
Ownership (0.24) (0.30) (0.30) (0.27)

Constant 0.45 0.097 -0.25 -0.25
(0.46) (0.73) (0.67) (0.49)

Observations 572 290 572

Notes: Malaria is equal to 1 is anyone in the household suffered from Malaria in the six months before the offer

of ITNs. ITN Efficacy beliefs are household reported probabilities about the efficacy of ITNs. Time Inconsistency

is equal to 1 if the household exhibited at least one preference reversal to a set questions designed to elicit time

preferences. Baseline Assets is a ternary valued variable (3 is the highest tercile) based on a principal component

decomposition of asset ownership at baseline. The # A choices variable takes on 4 values equal to the number of

times the respondent picked option A in the questions on risk aversion (see Section 2 and Appendix 8 for more details

on the variables used). Standard errors are clustered at the village level. T-test significant at ***1%, **5%,*10%

56



Table 7: Predicting Retreatment Rates

(1) (2) (3) (4) (5)
Retreatment C1 Retreatment C2 Retreatment C1 -Period 3 C2 - Period 3

Standard (C1) -0.49∗∗∗

(0.075)

Malaria -0.56 -2.40∗∗ -0.11 -0.16
(0.44) (1.10) (0.35) (0.62)

Income 0.49 -0.60 -0.31 -0.34
(0.41) (0.66) (0.61)( (0.63)

ITN Efficacy Beliefs (γ) -0.60 7.40∗∗∗ -3.30∗ 4.86∗∗∗

(2.11) (1.63) (1.84) (1.65)

ITN Efficacy2 (γ2) 1.44 -4.89∗ 6.05∗∗∗ -3.20
(2.01) (2.54) (2.21) (2.03)

Time Inconsistency -1.04∗∗ 0.45 -0.78 0.74
(0.47) (0.56) (0.62) (0.56)

Household Size -0.064 -0.074 -0.20 0.22
(0.11) (0.20) (0.18) (0.22)

Baseline Assets 0.49 -1.14∗ 0.84 -0.14
(Tercile 2) (0.47) (0.60) (0.61) (0.47)

Baseline Assets 0.62 -1.12 0.49 0.64
(Tercile 3) (0.60) (0.84) (0.62) (0.57)

2 #A Choices -0.090 -1.31 -0.38 0.30
(0.40) (1.21) (0.50) (0.98)

3 #A Choices -0.073 -1.43 -1.79∗∗ -0.29
(0.54) (1.16) (0.82) (0.77)

4 #A Choices 0.17 -0.78 -1.02∗ -0.43
(0.59) (1.15) (0.53) (0.69)

Baseline Net 0.11 0.15 0.94∗ -0.62
Ownership (0.48) (0.78) (0.54) (0.66)

Constant 0.93∗∗∗ -0.23 4.06∗∗∗ -0.26 0.36
(0.041) (1.04) (1.57) (1.13) (1.81)

Observations 290 141 149 141 149

Notes: Malaria is equal to 1 is anyone in the household suffered from Malaria in the six months before the offer

of ITNs. ITN Efficacy beliefs are household reported probabilities about the efficacy of ITNs. Time Inconsistency

is equal to 1 if the household exhibited at least one preference reversal to a set questions designed to elicit time

preferences. Baseline Assets is a ternary valued variable (3 is the highest tercile) based on a principal component

decomposition of asset ownership at baseline. The # A choices variable takes on 4 values equal to the number of

times the respondent picked option A in the questions on risk aversion (see Section 2 and Appendix 8 for more details

on the variable used). Models are estimated using the Logit and standard errors are clustered at the village level.

T-test significant at ***1%, **5%,*10%
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Table 8: Type Probabilities

πτ (r) Estimate 2.5 97.5

πC(0) 0.3870 0.2894 0.4837
πN (0) 0.5019 0.4172 0.6059
πS(0) 0.1111 0.0593 0.1691

πC(1) 0.4143 0.3092 0.5126
πN (1) 0.4699 0.3851 0.5790
πS(1) 0.1158 0.0639 0.1756

Notes: πτ (r) is the probability that an agent is of type τ given their response to the time-inconsistency question r. The

second and third columns are the 2.5th and 97.5th percentiles of the bootstrap distribution of the type-probabilities

computed using a clustered bootstrap (at the village level) with 200 replications.

Table 9: Type Probabilities (Conditional on Contract Choices C1 or C2)

πτ (r, a1) Estimate 2.5 97.5

πC(0, 1) 0.3565 0.2776 0.4484
πN (0, 1) 0.5153 0.4409 0.5876
πS(0, 1) 0.1282 0.0729 0.2034

πC(0, 2) 0.2780 0.1394 0.4186
πN (0, 2) 0.5697 0.4644 0.6856
πS(0, 2) 0.1523 0.0486 0.2978

πC(1, 1) 0.3970 0.3196 0.4792
πN (1, 1) 0.4738 0.4052 0.5505
πS(1, 1) 0.1292 0.0801 0.1938

πC(1, 2) 0.2978 0.1530 0.4372
πN (1, 2) 0.5607 0.4512 0.6804
πS(1, 2) 0.1415 0.0438 0.2743

Notes: πτ (r, a) is the probability that an agent is of type τ given their response to the time-inconsistency question

r and their choice of contract a1 (1 represents the standard contract C1 and 2 represents the commitment contract

C2). The second and third columns are the 2.5th and 97.5th percentiles of the bootstrap distribution of the type-

probabilities computed using a clustered bootstrap (at the village level) with 200 replications.
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Table 10: Unobserved Types (Type Invariant Risk Aversion)

Estimate 2.5 97.5

δ 0.7894 0.0010 0.9351
βN 0.9727 0.9161 0.9798
βS 0.5533 0.0060 0.7311

α1 0.7219 0.6047 1.8436
α4 0.5755 0.3725 1.6225
α5 0.8424 0.6911 1.5438
α6 0.9401 0.7935 2.0000

κC -0.6870 -1.7168 1.0740
κN -0.5277 -1.6417 0.8373
κS -1.2090 -2.0000 1.3694
κ4 -1.5486 -1.9933 0.3874
κ5 -1.2644 -1.7997 1.7145

Notes: δ is the exponential discount parameter. βN is the hyperbolic parameter for “näıve” time-inconsitent agents,

βS is the corresponding parameter for “sophisticated” time-inconsistent agents. the α vector parameterizes the risk-

aversion parameter and the κ vector parameterizes the malaria cost function. The second and third columns are the

2.5th and 97.5th percentiles respectively of the clustered bootstrap distribution of the two-step estimation procedure

outlined in section 6.3 with 200 replications.

Table 11: Unobserved Types (Types vary by risk aversion)

Estimate 2.5 97.5

δ 0.7880 0.0000 0.9351
βN 0.9757 0.9313 0.9798
βS 0.5727 0.0007 0.7311

αC 0.7230 0.6047 1.7890
αN 0.4348 0.2935 1.9277
α4 0.5513 0.3725 1.9736
α5 0.8389 0.6911 2.0000
α6 0.9205 0.7935 1.9445

κC 0.0070 -1.9950 1.0754
κN -0.1998 -0.6869 0.8373
κS -0.5314 -1.9951 1.3667
κS -0.9613 -1.2298 0.3725
κ5 -0.3721 -2.0000 1.6852

Notes: δ is the exponential discount parameter. βN is the hyperbolic parameter for “näıve” time-inconsitent agents,

βS is the corresponding parameter for “sophisticated” time-inconsistent agents. the α vector parameterizes the risk-

aversion parameter and the κ vector parameterizes the malaria cost function. The second and third columns are the

2.5th and 97.5th percentiles respectively of the clustered bootstrap distribution of the two-step estimation procedure

outlined in section 6.3 with 200 replications.
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Table 12: Counterfactuals: Change in Take up and Retreatment Rates

Outome Retreatment Price Rs. 30 Retreatment Price Rs. 7

% Change C1 Take Up -5.39 17.12
[-7.19,2.67] [0.51, 20.21]

% Change C2 Take Up 1.68 -7.98
[-12.54,2.69] [-9.02, 7.66]

% Change Retreatment C1 -74.15 81.91
[-74.61,-74.04] [81.10, 84.96]

Notes: All changes are relative to the retreatment price of Rs.15 offered during the intervention. All figures are

arrived at by averaging over the estimated distribution of demographics, beliefs and types. Figures for retreatment

are provided separately for each contract type. The figures in parentheses are the 2.5th and 97.5th percentiles

respectively of the clustered bootstrap distribution of the estimates

Table 13: The Relative Importance of Risk, Cost and Time Preferences

Outcome Model 1 Model 2 Model 3 Model 4

C1 Take Up (C) .14 .14 .14 .14
[.138,.144] [.138,.144] [.135,.143] [.136,.143]

C1 Take Up (N) .14 .14 .16 .17
[.139,.145 [.139,.145] [.056,.272] [.057,.275]

C1 Take Up (S) .14 .16 .15 .17
[.139,.145] [.145,.177] [.015,.290] [.015,.325]

C2 Take Up (C) .31 .31 .31 .31
[.129,.491] [.129,.491] [.128,.483] [.128,.483]

C2 take Up (N) 31 .31 .31 .31
[.129,.486] [.129,.486] [.041,.583] [.041,.578]

C2 take Up (S) .31 .21 .31 .21
[.129,.486] [.082,.342] [.002,623] [.002,.466]

Retreatment C1 (C) . 19 .19 .19 .19
[.181,.191] [.181,.191] [.181,.191] [.181,.191]

Retreatment C1 (N) . 19 .19 .19 .19
[.181,.191] [.181,.191] [.174,.198] [.174,.197]

Retreatment C1 (S) .19 .18 .18 .18
[.181,.191] [.180,.186] [.154,.208] [.158,.203]

Retreatment C2 (C) .51 .51 .51 .51
[.500,.515] [.500,.515] [.501,.515] [.500,.515]

Retreatment C2 (N) .51 .51 .51 .51
[.500,.515] [.500,.515] [.492,.526] [.493,.526]

Retreatment C2 (S) .51 .50 .50 .50
[.500,.515] [.498,.508] [.471,.529] [.478,.521]

Notes: In Model 1 all types have the same risk and cost preferences but βS is set equal to βN . Model 2 is the same as Model

1 but with βN 6= βS . In model 3, risk and cost parameters are as in Table 11 but βN = βS = 1. In Model 4, parameter values

are as in Table 11 . Key: C = Time Consistent, N = “Näıve” Inconsistent, S= “Sophisticated” Inconsistent. The figures in

parentheses are confidence intervals computed using the clustered bootstrap
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